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Graphs and networks have been studied extensively in recent decades by
mathematicians, computer scientists, engineers, operations researchers as well
as physicists, biologists, chemists, and even linguists and sociologists. Their
two key elements, vertices and edges, are extremely useful as representations
of a wide spectrum of phenomena ranging from transportation networks,
through topology of atoms to social networks. Furthermore, many problems
modelled with graphs and networks naturally lend themselves to algorithmic
analysis and ultimate solutions with the help of modern high-speed comput-
ers. The shortest path, maximal spanning tree and max-flow/min-cut prob-
lems are just three examples out of a large collection of well-solved important
problems.

Nonetheless, there is also a large collection of graph theoretic and network
optimisation problems that are fundamentally difficult in the sense of be-
longing to the very challenging computational complexity classes such as the
NP-complete and NP-hard classes. Indeed, the famous Hamiltonian cycle
problem (HCP) is known to be NP-complete. The now extensive body of re-
search into the HCP was, perhaps, stimulated by investigations of interesting
instances of that problem by great mathematicians such as Euler in the 18th
and Hamilton in the 19th century, respectively.

The essence of the Hamiltonian cycle problem is contained in the following—
deceptively simple—single sentence statement:

Given a graph, find a cycle that passes through every single vertex exactly
once, or determine that this cannot be achieved.

Such a cycle is called a Hamiltonian cycle. The HCP has become a challenge
that attracts mathematical minds both in its own right and because of its
close relationship to the famous travelling salesman problem (TSP), that calls
for the identification of a Hamiltonian cycle with the lowest cost possible in a
graph where every edge has a known cost associated with “travelling” along
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that edge. An efficient solution of the TSP would have an enormous impact
in operations research, optimisation and computer science. However, from a
mathematical perspective, the underlying difficulty of the TSP is, perhaps,
hidden in the Hamiltonian cycle problem. Hence, in this monograph, we focus
on the Hamiltonian cycle problem.

Arguably, the inherent difficulty of many problems in graph theory and com-
binatorial optimisation stems, precisely, from the discrete nature of the do-
mains in which these problems are posed. Consequently, this monograph is
devoted to a line of research that maps such problems into convex domains
where continuum analysis can be easily carried out. This convexification of
domains is achieved by assigning probabilistic interpretation to the key el-
ements of the original problems even though these problems are deterministic.

While there are other instances of similar ideas being exploited elsewhere,
our approach builds on the innovation introduced in Filar and Krass [49]
where the Hamiltonian cycle problem and the travelling salesman problem
are embedded in a structured singularly perturbed Markov decision process
(MDP). The unifying idea of [49] is to interpret subgraphs traced out by de-
terministic policies (including Hamiltonian cycles, if any) as extreme points
of a convex polyhedron in a space filled with randomised policies.

This approach was continued by Chen and Filar [22] and, independently,
by Feinberg and Shwartz [46] and Feinberg [44]. Further results were ob-
tained by Filar and Liu [51], Andramonov et al. [4], Filar and Lasserre [50],
Ejov et al. [30]–[38] and Borkar et al. [17]–[18]. In addition, three recent
(but not readily accessible) PhD theses by Nguyen [81], Haythorpe [62] and
Eshragh [41] contain some of the most recent results. Thus, there is now an
active group of researchers in various countries interested in this approach
to discrete problems. Majority of these contributions focused on the classi-
cal Hamiltonian cycle problem, but in principle many of the techniques used
could be adapted to other problems of discrete mathematics (as, indeed, was
done by Feinberg [45]).

To indicate the flavour of the results reported in the present monograph,
consider a key observation that led to the recent results presented in Borkar
et al. [17] and [18]: the “natural” convex domain where Hamiltonian cy-
cles should be sought is the set of doubly stochastic matrices induced by a
given graph. This observation is nearly obvious, once we recall the famous
Birkhoff-von Neumann theorem, which states that the set of all N×N doubly
stochastic matrices is the convex hull of permutation matrices. Of course, in
searching for a Hamiltonian cycle of a given graph, we need to restrict our-
selves to the convex hull of only those permutation matrices that correspond
to subgraphs of that graph. Results in Chapter 3 (based on Borkar et al. [17]
and [18]) imply, that after a suitable perturbation and defining the random
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variable τ1 to be the first hitting time of the home vertex 1 (after time 0),
the Hamiltonian cycle problem essentially reduces to “merely” minimising
the variance-like functional E[(τ1 −N)2] over the space of doubly stochastic
matrices. This probabilistic, almost statistical, interpretation enables us to
exploit a wide range of both analytical and algorithmic tools on the HCP.

More generally, this monograph summarises results of both theoretical and
algorithmic investigations. The theoretical aim of this line of research is to
explain the essential difficulty of the Hamiltonian cycle problem in analytic
terms such as a measure of variability, or the size of a gap between certain
optimisation problems, or by the nature of certain singularities. The algo-
rithmic aim of the approach is to construct either exact or heuristic methods
to obtain numerical solutions of the HCP. It is based on the belief that some
classical “static” optimisation problems can be well analysed by embedding
them in suitably constructed Markov decision processes.

In our setting, the theoretical and algorithmic aims are not separate. Indeed,
results on one aim seem to influence progress on the other. For instance, the
optimisation algorithms presented in Chapters 7 and 8 follow directly from
the theoretical developments presented in Chapters 3–5 and have identified
difficulties that some of the theoretical developments reported in Chapters 6,
9 and 10 are trying to resolve.

The general approach constitutes one of the few instances where probabilistic,
continuous optimisation and dynamic control methods are combined to deal
with a hard problem of discrete mathematics. Arguably, simulated annealing
could be seen as a precursor of this approach. However, it should be men-
tioned that relationships between Markov chains and graphs are also of recent
interest to other researchers, notably Aldous and Fill [2] and Hunter [67].

Next we shall, briefly, differentiate between our approach and some of the
best known, well established, approaches to the HCP. We first note that the
present line of research is essentially different from that adopted in the study
of random graphs, where an underlying random mechanism is used to gener-
ate a graph (see, for example, Karp’s seminal paper [69]). In our approach,
the graph to be studied is given and fixed but a controller can choose edges
according to a probability distribution, and with a small probability (due to a
perturbation) an edge may take you to a vertex. Random graphs have played
an important role in the study of Hamiltonicity, a striking result to quote
is that of Robinson and Wormald [92] who show that with high probability
k-regular graphs are Hamiltonian, for k ≥ 3.

Typical general purpose heuristic algorithms can perhaps be classified—we
cite only few representative papers—as rotational transformation algorithms
(Posa [86]), cycle extension algorithms (Bollobas et al. [13]), long path algo-
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rithms (Kocay and Li [71]), low degree vertices algorithms (Broder et al. [20]
and Brunacci [21]),multipath search or pruning algorithms (Christofides [23]).
Of course, much research has been done on algorithms for finding a Hamilto-
nian cycle on various restricted graph classes (see, for example, Parberry [84]).
Clearly, algorithms designed for particular classes of graphs tend to outper-
form the best general purpose algorithms when applied to graphs from these
classes.

In the operations research and optimisation communities, many of the suc-
cessful, now classical, approaches to the HCP and TSP focus on solving a
linear programming relaxation followed by heuristics that prevent the for-
mation of sub-cycles (see, for example, Lawler et al. [76]). In the present
approach, we embed a given graph in a singularly perturbed MDP in such a
way that we can identify Hamiltonian cycles with irreducible Markov chains
and sub-cycles with non-exhaustive ergodic classes. This permits a search for
a Hamiltonian cycle in either (i) the policy space of an MDP, or (ii) the space
of the occupational measures of the MDP that is a polytope with a non-empty
interior. In both cases, the original discrete optimisation problem is converted
to a continuous one. The Branch and Fix, Wedged-MIP and Cross-Entropy
heuristics reported in Chapters 7 and 8 can be seen as belonging to (ii), as
they all exploit properties of the spaces of occupational measures. They are
performing competitively with alternative—general purpose—algorithms on
various test problems including the Knight’s Tour problem on chessboards
of the size up to 32× 32. The Interior Point heuristic discussed in Chapter 8
belongs to (i) and should be properly seen as being still under development.
However, it opens up promising opportunities for a lot of further research,
as it exploits numerically attractive algebraic factorisation properties of irre-
ducible generator matrices of Markov chains.
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