

FRAGMENTATION PROCESSES

Revolutionary advances in experimental techniques and spectacular increases in computer power over recent years have enabled researchers to develop a much more profound understanding of the atomic few-body problem. One area of intense interest has been the study of fragmentation processes.

Covering the latest research in the field, this edited text is the first to provide a focused and systematic treatment of fragmentation processes, bringing together contributions from a range of leading experts. As well as tackling the more established coincident study of electron-impact ionization, the (e,2e) process, this book also guides the reader through topics such as molecular fragmentation, ion–atom collisions and multiphoton processes.

Combining a broad range of topics with an equal mix of theoretical and experimental discussion, this is an invaluable text for graduate students and researchers in atomic collisions, laser physics and chemistry.

COLM T. WHELAN is a Professor of Physics and an Eminent Scholar at Old Dominion University, USA. He received a Ph.D. in Theoretical Atomic Physics from the University of Cambridge in 1985 and an Sc.D. in 2001. He is a Fellow of both the American Physical Society and the Institute of Physics (UK). He has edited five previous books and has written over 150 research papers, mostly on atomic collision physics.

FRAGMENTATION PROCESSES

Topics in Atomic and Molecular Physics

Edited by

COLM T. WHELAN
Old Dominion University

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9781107007444

© Cambridge University Press 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Fragmentation processes: topics in atomic and molecular physics / edited by Colm T. Whelan,
Old Dominion University.

pages cm Includes bibliographical references and index. ISBN 978-1-107-00744-4

Few-body problem.
 Ion-atom collisions.
 Nuclear fragmentation.
 Whelan, Colm T., editor of compilation.

QC174.17.P7F72 2012 530.14 - dc23 2012035049

ISBN 978-1-107-00744-4 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List of contributors				
	Prej	îace — — — — — — — — — — — — — — — — — — —	xi		
1	Direct and resonant double photoionization: from atoms to solids				
	LORENZO AVALDI AND GIOVANNI STEFANI				
	1.1	Introduction	1		
	1.2	Direct double photoionization	3		
	1.3		21		
	1.4	Conclusions	40		
2	The application of propagating exterior complex scaling				
	to atomic collisions				
	PHILIP L. BARTLETT AND ANDRIS T. STELBOVICS				
	2.1	Introduction	48		
	2.2	Introduction to exterior complex scaling	49		
	2.3	Application of ECS to electron–hydrogen scattering	53		
	2.4	Scattering in electron–hydrogen system	58		
	2.5	Exterior complex scaling for electron–helium scattering	61		
	2.6	Summary and outlook for the future	69		
3	Frag	Fragmentation of molecular-ion beams in intense ultrashort			
	laser pulses				
	ITZIK BEN-ITZHAK				
	3.1	Introduction	72		
	3.2	Experimental method	75		
	3.3	Benchmark molecules	82		
	3.4	Complex and/or unique molecular ions	87		
	3.5	Summary and outlook	94		

V

vi

Cambridge University Press 978-1-107-00744-4 - Fragmentation Processes: Topics in Atomic and Molecular Physics Edited by Colm T. Whelan Frontmatter More information

4	Atoms with one and two active electrons in strong laser fields			
	I. A. IVANOV AND A. S. KHEIFETS			
	4.1 Introduction	98		
	4.2 Theoretical model	99		
	4.3 Two-photon double ionization of helium	101		
	4.4 DC-assisted double photoionization of He and H ⁻	103		
	4.5 Strong-field ionization of lithium and hydrogen	105		
	4.6 High harmonics generation	108		
	4.7 Time delay in atomic photoionization	110		
5	Experimental aspects of ionization studies by positron and			
	positronium impact	116		
	G. LARICCHIA, D. A. COOKE, Á. KÖVÉR AND S. J. BRAWL			
	5.1 Introduction	116		
	5.2 Integral cross sections for positron impact ionization	117		
	5.3 Differential cross sections for positron impact ionization			
	5.4 Positronium-induced fragmentation	129		
	5.5 Conclusions and outlook	133		
6	(e,2e) spectroscopy using fragmentation processes	137		
	JULIAN LOWER, MASAKAZU YAMAZAKI AND			
	MASAHIKO TAKAHASHI			
	6.1 Introduction	137		
	6.2 Background	139		
	6.3 Theory	142		
	6.4 Electron momentum spectroscopy results	143		
	6.5 Low-energy (e,2e) results	147		
	6.6 Conclusion	152		
7	A coupled pseudostate approach to the calculation of ion-ato	om		
	fragmentation processes	155		
	M. MCGOVERN, H. R. J. WALTERS AND COLM T. WHELAN			
	7.1 Introduction	155		
	7.2 Theory	155		
	7.3 Antiproton-induced ionization	160		
8	Electron impact ionization using (e,2e) coincidence techniques from			
	threshold to intermediate energies			
	ANDREW JAMES MURRAY	174		
	8.1 Introduction	164		
	8.2 Experimental methods and techniques	171		
	8.3 Theoretical models	181		

Contents

		Contents	vii
	8.4	Atomic targets	186
	8.5	Molecular targets	196
	8.6	Experiments from laser-aligned atoms	200
	8.7	Future work and conclusions	203
9	(e,2e	e) processes on atomic inner shells	207
	COLM T. WHELAN		
	9.1	(e,2e) processes – an overview	207
	9.2	Non-relativistic theory	208
	9.3	The distorted wave Born approximation	212
	9.4	Inner-shell ionization of heavy metal targets at relativistic	
		impact energies	221
	9.5	General features of the cross section	228
	9.6	Special features	230
10	Spin	resolved atomic (e,2e) processes	243
	JUL	IAN LOWER AND COLM T. WHELAN	
	10.1	Introduction	243
	10.2	Experimental considerations	245
	10.3	Low-Z targets and low electron impact energies	247
	10.4	High-Z targets and low electron impact energies	249
	10.5	High-Z targets and high electron impact energies	254
	10.6	Longitudinally polarized electrons	260
	10.7	Conclusion	265
	Inde	α	268

Contributors

- Lorenzo Avaldi CNR-Istituto di Metodologie Inorganiche e dei Plasmi, Area della Ricerca di Roma 1, CP10, I-00015 Monterotondo Scalo, Italy
- Philip L. Bartlett ARC Centre for Antimatter-Matter Studies, Murdoch University, Perth 6150, Australia
- Itzik Ben-Itzhak James R. Macdonald Laboratory, Cardwell Hall, Kansas State University, Manhattan, KS 66506-2604, USA
- S. J. Brawley Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- D. A. Cooke Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- I. A. Ivanov Research School of the Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia
- Á. Kövér Institute of Nuclear Research of the Hungarian Academy of Science, (ATOMKI), Debrecen, Hungary
- A. S. Kheifets Research School of the Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia
- G. Laricchia Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
- Julian Lower Institut für Kernphysik, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
- Andrew James Murray Photon Science Institute, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
- M. McGovern Department of Applied Mathematics and Theoretical Physics, The Queen's University, Belfast, BT7 1NN, UK
- Giovanni Stefani Dipartimento di Fisica and CNISM Universitá Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy
- Andris T. Stelbovics ARC, Center for Antimatter-Matter Studies, Curtin University, Perth, WA 6102, Australia

Х

Cambridge University Press 978-1-107-00744-4 - Fragmentation Processes: Topics in Atomic and Molecular Physics Edited by Colm T. Whelan Frontmatter More information

List of contributors

Masahiko Takahashi Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan H. R. J. Walters Department of Applied Mathematics and Theoretical Physics,

The Queen's University, Belfast, BT7 1NN, UK

Colm T. Whelan Physics Department, Old Dominion University, Norfolk, Virginia, USA

Masakazu Yamazaki Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan

Preface

In the past few years, revolutionary advances in experimental techniques and spectacular increases in computer power have offered unique opportunities to develop a much more profound understanding of the atomic few-body problem. One area of intense effort is the study of fragmentation processes – break-up processes – which are studied experimentally by detecting in coincidence the collisional fragments with their angles and energies resolved. These experiments offer a unique insight into the delicacies of atomic and molecular interactions, being at the limit of what is quantum mechanically knowable; the fine detail that is revealed would be swamped in a less differential measurement. The challenge for the theorist is to develop mathematical and computational techniques which are of sufficient ingenuity and sophistication that they can elucidate the Physics observed in existing measurements and give direction to the next generation of experiments. Fragmentation processes are studied by those interested in electron and photon impact ionization, heavy particle collisions, collisions involving antimatter, as well as molecular collisions.

Colm T. Whelan 31 January 2012

