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Introduction

This book originates from a graduate course given at the University of Milan in
2007.

Our goal is twofold: first, to present a self-contained introduction to the
geometric and analytic aspects of the Yamabe problem on a complete noncompact
Riemannian manifold, treating existence, nonexistence, uniqueness and a priori
estimates of the solutions. Secondly, we intend to describe in a way accessible
to the nonspecialist a range of methods and techniques that can be successfully
applied to more general nonlinear equations which arise in applications.

The classical Yamabe problem concerns the possibility of pointwise confor-
mally deforming a metric of scalar curvature S(x) on the manifold M to a new
metric with prescribed scalar curvature K(x). In the case where K is constant it is
a natural higher dimensional generalization of the Poincaré–Köbe Uniformization
Theorem for Riemann surfaces and can be seen as a way to select a privileged
metric on the manifold.

If 〈 , 〉 is the original metric of the Riemannian manifold M and we denote

with 〈̃ , 〉 = ϕ2 〈 , 〉, ϕ > 0, a conformally deformed metric, then the two scalar

curvatures S(x) and S̃(x) are related by the equation

ϕ2S̃(x) = S(x)− 2(m− 1)
∆ϕ

ϕ
− (m− 1)(m− 4)

|∇ϕ|2

ϕ2

(see equation (2.7) in Chapter 2), where Laplacian, gradient, and norm are those
of the metric 〈 , 〉. In the case where the dimension m of the manifold is greater
than or equal to three, it is useful to set

ϕ = u
2

m−2

so that the above equation takes the form

S̃u
m+2
m−2 = Su− 4

m− 1

m− 2
∆u.

Thus the Yamabe problem amounts to finding a positive solution u of the familiar
Yamabe equation

cm∆u− Su+Ku
m+2
m−2 = 0, (1)
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where cm = 4m−1
m−2 and K = S̃, the prescribed scalar curvature of the conformally

deformed metric. If M is compact and K is constant, after an initial attempted
solution by H. Yamabe [Yam60], the problem was solved thanks to efforts of N.
Trudinger [Tru68], T. Aubin [Aub76] and R. Schoen [Sch84] (see the nice survey
paper by J.M. Lee and T.H. Parker, [LP87], for a complete and self-contained
treatment). The solution was obtained using variational methods, and one of the
main analytic difficulties stems from the fact that m+2

m−2 is the critical exponent for

the Sobolev embedding W 1,2 ↪→ L
2m
m−2 .

A natural generalization of the classical Yamabe problem is the case where
K is nonconstant and/or M is noncompact. In this direction we mention the
pioneering work of J. L. Kazdan and F. W. Warner, [KW74a], [KW74b], [KW75a],
[KW75b]. It should also be mentioned that even the classical Yamabe problem of
deforming the metric to one of constant scalar curvature in the noncompact setting
is in general not solvable, as first shown by Z. R. Jin, [Jin88].

The Yamabe problem for noncompact manifolds with variable prescribed cur-
vature is the subject of the present monograph. Indeed, we describe methods which
allows us to consider the more general Yamabe-type equations (resp. inequalities)
of the form

∆u+ a(x)u− b(x)uσ = 0 (resp. ≥ 0) (2)

where σ > 1, and we study nonexistence, a priori estimates, uniqueness and
existence.

Equations of the form (2) and still more general differential inequalities of
the form

u∆u+ a(x)u2 − b(x)uσ+1 ≥ −A|∇u|2 (3)

arise in complex analysis (e.g. in the study of the structure of complete Kähler
manifolds, [LY90], [Li90] and [LR96], in the Schwarz Lemma for the ratio of vol-
ume elements of Kähler manifolds of the same dimension, [Gri76], in the study of
pluriharmonic functions on a Kähler manifold, [PRS08]), in the study of harmonic
maps with bounded dilation ([EL78] and [PRS08] Chapter 8), in the classification
of locally conformally flat manifolds ([PRS07]), in the study of Yang-Mills fields,
and in population dynamics, to quote only a few examples.

Existence and nonexistence of positive solutions of (2) clearly depend on the
geometry of the underlying manifold, typically encoded by curvature or volume
growth of geodesic balls, on properties of the coefficients (typically the relative
signs of the coefficients a(x) and b(x)) and their asymptotic behavior and on the
mutual interplay of the two. This interplay can be taken into account in terms of
the relative asymptotic behavior of the coefficients versus the geometry at infinity
of the manifold or, at a deeper level, in terms of spectral properties of Schrödinger
operators naturally associated to the equation.

From the geometrical interpretation of the equation, it is natural to expect it
will be easier to have existence when a and b are “close” enough, for instance they
have the same sign, while it will be more difficult to have existence (and therefore
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it will be easier to prove nonexistence) when a and b are farther apart, for instance
when they have opposite sign. This expectation is confirmed by both the existence
and the nonexistence results that we will describe.

The geometry of the manifold also plays a natural role in the uniqueness re-
sults as well in the a priori estimates on the solutions. The latter have a particular
geometric interest since they are responsible for the completeness/noncompleteness
of the deformed metric.

As mentioned above, we use a variety of techniques adapted to the geometric
situation at hand in which the lack of compactness and of symmetry and homo-
geneity prevents the use of more standard tools typical of compact situations or
of the Euclidean setting.

In particular, for existence we will essentially use the method of sub-super
solutions, [Ama76], [Sat73]. Nonexistence will be obtained using Liouville-type
results which in turn are obtained using either integral formulas or a method
based on the coupling of the supposed solution of the Yamabe-type inequality with
that of an appropriate Schrödinger-type inequality associated to it, in a manner
reminiscent of the classical generalized maximum principle. Uniqueness will be
obtained using variants of the weak maximum principle (see, e.g., [PRS05b]) and of
clever integration by parts arguments. Finally, a priori estimates will be typically
obtained using an elaboration of the old idea of the proof of the Schwarz’s Lemma
by L. H. Ahlfors, [Ahl38], which is at the heart of the maximum principle.

The book is divided into seven chapters.
In the first chapter we give a quick review of Riemannian geometry using

the method of moving frames. While we assume basic knowledge of Riemannian
geometry, several computations will be carried out in full detail in order to ac-
quaint the reader with notation and formalism. We concentrate on derivation of
the symmetry properties of the curvature tensors together with a number of other
identities that will be repeatedly used in the sequel. In particular, we will describe
the commutation rules for covariant derivatives up to fourth order. Then we de-
scribe comparison results for the Laplacian of the Riemannian distance function,
and for the volume of geodesic balls in terms of lower bounds for the Ricci curva-
ture. We point out that our treatment, which follows that of [PRS05b], does not
use Jacobi fields.

In Chapter 2 we first derive equations for the change of curvature tensors
under a conformal change of the metric and introduce the Yamabe equation. As a
side product of our computations we obtain decomposition of the Riemann curva-
ture tensor in its irreducible components and we exhibit the conformal invariance
of the Weyl tensor. Then, we briefly consider the case where M is compact to
illustrate the interplay between geometry and analysis, with a few illuminating
examples such as the Kazdan-Warner obstruction, a result of Obata on Einstein
manifolds and a far-reaching “generalization” due to Véron-Véron, through which
we prove further results of Escobar. Along the way we give a detailed proof, which
inspires to Petersen’s treatise [Pet06a], of a famous rigidity result of Obata. The
goal is also to give some geometrical feeling on the subject that will enable us to



4 Introduction

proceed with the noncompact case: the case of the rest of our investigation.
The core of the monograph begins with Chapter 3, devoted to nonexistence

results. As mentioned above, since our methods apply to more general situations
which have a wide range of applications, we consider in fact differential inequalities
of the form (2) and (3). We describe several nonexistence results; in most of them
we assume that u satisfies suitable integrability conditions, that b(x) is nonnegative
and that there exists a positive solution ϕ to the differential inequality

∆ϕ+Ha(x)ϕ ≤ −K |∇ϕ|
2

ϕ

with H,K parameters satisfying H > 0, K > −1. Note that in the special case
where K = 0 the latter condition amounts to the fact that the bottom of the
spectrum of the operator −∆−Ha(x) is nonnegative. Since −∆ is a nonnegative
operator, the condition is trivially satisfied if a(x) ≤ 0 on M and may be inter-
preted as a measure of smallness in a spectral sense of the positive part of a(x).
This agrees with the heuristic intuition on the effect of the relative signs of a(x)
and b(x) on the existence of solutions. The existence of the positive function ϕ
enters the proof in two different ways. In Theorem 3.2 one uses the functions ϕ
to obtain an integral inequality involving u and its gradient from which one con-
cludes that u is constant, and therefore necessarily identically zero. In a second
group of results, the function ϕ is combined with the solution u to give rise to a
diffusion-type differential inequality for which we prove a Liouville theorem. This
yields the desired triviality. We also show that when σ is greater than or equal to
the critical exponent (m+ 2)/(m− 2), then, by performing an appropriate change
of the metric and of the solution, the nonexistence results can be improved to
allow even some controlled negativity of the coefficient b(x).

Chapter 4 is devoted to establishing a priori upper and lower estimates for
the asymptotic behavior of solutions of the differential inequalities

∆u+ a(x)u− b(x)uσ ≥ 0, resp. ∆u+ a(x)u− b(x)uσ ≤ 0,

under assumptions on a(x) and b(x) related to an assumed radial lower bound
for the Ricci curvature. As briefly mentioned above, the results are obtained by
applying Alhfors’s old idea, namely, one considers an auxiliary function defined in
terms of the solution u which by construction attains an extremum, and applies
the usual maximum principle. Clearly, the heart of the method consists in finding
the best auxiliary function for the problem at hand. We exhibit examples showing
that our estimates are essentially sharp. Some further estimates, which cannot
be obtained with the previous method, are provided by direct comparison with
the aid of the maximum principle (see section 4.3). The chapter ends with some
nonexistence results for the Yamabe problem, which complement those described
in Chapter 3.

In Chapter 5 we discuss some uniqueness results for positive solutions of
Yamabe-type equations (2). The first, the very general Theorem 5.1, states that
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if the coefficient b(x) is nonnegative and not identically zero, then two solutions
whose difference is L2-integrable are necessarily the same. Although very general,
it is sharp, and, remarkably, the assumption on the L2-integrability cannot be
replaced by an Lp condition with p > 2. The result is obtained by means of a
clever elementary integral inequality. The second result, Theorem 5.2, follows by
a comparison argument which relies on a version of the weak maximum principle
(see Theorem 5.3) which is interesting in its own. While in most of the results
available in the literature, uniqueness is obtained by requiring that solutions have
a rather precisely determined asymptotic behavior, our result applies to solutions
whose behavior at infinity is specified in a much less stringent manner, see (5.13);
moreover, the conclusion is reached assuming only conditions on the volume growth
of the manifold. Counterexamples show the sharpness of each result. The chapter
ends with a geometric application to the group of conformal diffeomorphisms of
a complete manifold and to the uniqueness of solutions of the geometric Yamabe
problem.

Chapter 6 deals with existence results for Yamabe-type equations (2) on the
complete, noncompact, Riemannian manifold M . The main tool is the monotone
iteration scheme in various forms, and we give a rather detailed description of
it in the appendix at the end of the chapter. The application of the scheme in
this context goes back to W. M. Ni, [Ni82], in the Euclidean setting and to P.
Aviles and R. C. McOwen, [AM85] and [AM88], for noncompact manifolds. After
having introduced some preliminary material on spectral theory, and a useful
comparison result, the main body of the chapter is then devoted to the construction
of (global and local) super- and subsolutions for the problem. In general terms,
supersolutions are obtained under assumptions on the sign of b(x) and of the first
eigenvalue of L = ∆ + a(x) on appropriate domains. Because of the combination
of signs of the coefficients, subsolutions are harder to find. We give a number of
sufficient conditions which ensure that such subsolutions do exist: among them
the spectral condition λL1 (M) < 0, for which we provide a new sufficient condition
contained in Theorem 6.11. Furthermore, we mention Theorem 6.15, in which
existence is guaranteed under a very week growth condition on b(x), and also
Theorem 6.16, where a further weakining on the condition on the sign of b(x)
is balanced by the necessity of imposing a constant negative lower bound on the
Ricci curvature. We explicitly note that the assumptions of our existence theorems
match those of the nonexistence results in the previous chapters.

In the last chapter, Chapter 7, we consider some particular cases where the
symmetry of the geometry allows one to use special techniques and to obtain
stronger results. Typically this happens in Euclidean and Hyperbolic spaces, and
more generally in the case of models (in the sense of R. Greene and H. Wu,
[GW79]), or manifolds with special symmetry. The specific feature of models which
make the analysis more precise is that the Laplacian of the distance function
from the origin is given explicitly, as opposed to the case of a general manifold
where only upper and lower bounds may be obtained under suitable curvature
assumptions, by means of the the Laplacian and Hessian comparison theorems,
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and where the possible presence of the cut locus raises additional difficulties.
We describe refined techniques adapted to the situation at hand and obtain

results that, as a by-product, show the degree of sharpness of the general theory
and methods we have developed dealing with generic complete Riemannian man-
ifolds. It seems worth remarking that, in the specific case of Hyperbolic space,
we provide a nonexistence result with the aid of a Rellich-Pohozaev type formula
(see Theorem 7.7) and, even more, in Proposition 7.9 we introduce an integral
obstruction to the existence of a conformal deformation which is of a different
nature with respect to the Kazdan-Warner condition.

Many of the results presented in this monograph have been obtained over
the years by the authors jointly with many collaborators. To all of them we wish
to extend our thanks and appreciation. In particular we are indebted to S. Pigola
and M. Rimoldi who provided us with the proof of Theorem 2.10 in Chapter 2.


