Cambridge University Press 978-1-107-61684-4 – Cambridge International AS and A Level Physics Robert Hutchings Frontmatter <u>More information</u>

REVISION GUIDE

Cambridge International AS and A Level

Robert Hutchings

© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

Information on this title: education.cambridge.org

© Cambridge University Press 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by Latimer Trend

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-61684-4 Paperback

Additional resources for this publication at www.cambridge.org/delange

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

NOTICE TO TEACHERS IN THE UK

It is illegal to reproduce any part of this work in material form (including photocopying and electronic storage) except under the following circumstances:

- (i) where you are abiding by a licence granted to your school or institution by the Copyright Licensing Agency;
- (ii) where no such licence exists, or where you wish to exceed the terms of a licence, and you have gained the written permission of Cambridge University Press;
- (iii) where you are allowed to reproduce without permission under the provisions of Chapter 3 of the Copyright, Designs and Patents Act 1988, which covers, for example, the reproduction of short passages within certain types of educational anthology and reproduction for the purposes of setting examination questions.

All exam-style questions that appear in this title taken from past papers are reproduced by permission of Cambridge International Examinations.

All Progress Check questions, samples answers for Progress Check questions and worked examples were written by the author. In examinations, the way that marks would be awarded for questions like these may be different.

Cambridge University Press 978-1-107-61684-4 - Cambridge International AS and A Level Physics Robert Hutchings Frontmatter More information

Contents

How to use this Book	vii	Chapter 4 Dynamics
Chapter 1 Physical Quantities and Units	1	Introduction
Physical quantities	1	Conservation of momentum
SI units (Système International d'unités)	2	The deduction of the principle from Newton's t
Estimating physical quantities	2	The use of the principle of conservation of mon
Estimating physical qualities	2	The use of the principle of conservation of mon
Vectors and scalars	3	Buoguese Cheele
Combining vectors	3	Progress Check
Resolution of vectors	1	Chapter F. Fores Density and Pr
Progress Check	5	Chapter 5 Forces, Density and Fr
1 Togress Check	5	Types of force
Chapter 2 Measurement Techniques	6	Forces in fluids
Chapter 2 Measurement rechniques	0	Resistive forces
Introduction	6	Centre of gravity
Record taking	6	Turning forces
Graphical work	7	Equilibrium
Analogue scales and digital displays	7	The principle of moments
Experimental uncertainty	8	Density
Precision and accuracy	8	Pressure
Choice of measuring instrument	9	Atmospheric pressure
Calibration curves	10	Pressure due to a column of liquid of constant of
Estimating uncertainties	10	Progress Check
Progress Check	12	Examination Questions II
Examination Questions I	12	
		Chapter 6 Work, Energy and Pow
Chapter 3 Kinematics	14	Work and energy
Distance and displacement	14	Work
Speed and velocity	14	Fnergy
Acceleration	15	Examples of work done or energy supplied
Graphs for motion	15	Power
Distance-time graphs	15	Ffficiency
Velocity-time graphs	15	Progress Check
Derivation of equations of motion for uniformly	10	Framination Questions III
accelerated motion in a straight line	16	Examination Questions III
Weight	17	Chapter 7 Deformation of Solids
Measurement of the acceleration of free fall σ	17	Chapter 7 Deformation of Solids
The effect of air resistance on a falling body	18	Introduction
Objects moving under gravity in two dimensions	18	Tension and compression
Progress Check	20	Springs
1 108,000 Oncon	20	

Introduction	21
Newton's laws of motion	21
Conservation of momentum	24
The deduction of the principle from Newton's third law	24
The use of the principle of conservation of momentum	25
Elastic and inelastic collisions	25
Progress Check	27
Chapter 5 Forces, Density and Pressure	28
Types of force	28
Forces in fluids	28
Resistive forces	29
Centre of gravity	29
Turning forces	30
Equilibrium	30
The principle of moments	31
Density	32
Pressure	32
Atmospheric pressure	32
Pressure due to a column of liquid of constant density	33
Progress Check	33
Examination Questions II	36
Chapter 6 Work, Energy and Power	37
Work and energy	37
Work	37
Energy	37
Examples of work done or energy supplied	38
Power	40

40

42

43

47 47

47

47

21

Cambridge University Press 978-1-107-61684-4 – Cambridge International AS and A Level Physics Robert Hutchings Frontmatter <u>More information</u>

48

48

50

51

52

53

56

56

56

57

58

59

60

61

62

63

64

64

64

66

> 73 75

76

76

76 76

80

iv Contents

Elastic and plastic deformation of a material The Young modulus Categories of materials Strain energy *Progress Check Examination Questions IV* Chapter 8 Waves Introduction Wave motion Wave terminology Energy transfer by a progressive wave Transverse and longitudinal waves

- Experimental techniques
- The electromagnetic spectrum The Doppler effect
- Progress Check

Chapter 9 Superposition

Introduction	
Stationary waves	
Diffraction	
Interference	
The diffraction grating	
Progress Check	
Examination Questions V	

Chapter 10 Electric Fields: Part A

Electric field definition	
Electric field diagrams	
Potential difference	
The movement of charges in electric fields	
Progress Check	

Chapter 11 Current of Electricity

Charge and current
Introduction
Conductors and insulators
Potential difference
Resistance
Equation summary
Current–potential difference (<i>I–V</i>) characteristics
1. A wire at a constant temperature
2. A filament lamp
3. A semiconductor diode
Temperature characteristics
Ohm's law
Electrical resistivity
Progress Check
-

Chapter 12 Direct Current (D.C.) Circuits 82 Introduction 82 Electrometric force comf and netential difference red 82

Electromotive force, e.m.f. and potential difference, p.d.	83
Internal resistance	83
Kirchhoff's laws	83
Kirchhoff's first law	84
Kirchhoff's second law	84
Combinations of resistors	84
Resistors in series	84
Resistors in parallel	85
Electrical circuits	85
Warning of common mistakes	85
Sample circuits	86
The effect of a voltmeter being used	86
The potentiometer	87
Progress Check	89
Examination Questions VI	90

Chapter 13Nuclear Physics: Part A93Introduction93Structure of the atom93Discovery of the nucleus of atoms93

Isotopes	94
Definitions and data	94
Nuclear reactions	95
Experiments with radioactive materials	96
Properties of alpha (α), beta (β) and gamma (γ) radiations	97
Antiparticles	98
Fundamental particles	98
Beta decay	99
Progress Check	100
Examination Questions VII	101

Chapter 14 Physical Quantities, Units and Measurement Techniques 103

	1	
Amount of substance		103
Experimental techniques		103

Chapter 15Motion in a Circle104

Angular measure	104
Angular velocity	104
The relationship between angular velocity ω and speed v	104
Small angle approximations for angles	105
Circular motion	105
Acceleration at constant speed	105
Acceleration in circular motion at constant speed	106
The force required for a centripetal acceleration	106
Progress Check	108

Cambridge University Press 978-1-107-61684-4 – Cambridge International AS and A Level Physics Robert Hutchings Frontmatter <u>More information</u>

Contents v

Chapter 16 Gravitational Field	109
Introduction	109
Gravitational field strength	109
Newton's law of gravitation	109
The relationship between g and G	110
Gravitational potential	110
Space travel	111
Circular orbits	112
Geostationary satellites	112
Progress Check	114
Examination Questions VIII	114
Chapter 17 Ideal Gases	117
Introduction	117
The equation of state for an ideal gas	117
Standard temperature and pressure, S.T.P.	118
The kinetic theory of gases	118
The Boltzmann constant, <i>k</i>	119
Progress Check	120
Chapter 18 Temperature	121
Introduction	121
Thermal equilibrium	121
Measurement of temperature	121
The potential divider in use	122
The thermistor	123
Temperature scales	124
Progress Check	125
Chapter 19 Thermal Properties of	
Materials	126
Specific heat capacity	126
Change of state	127
Melting Pailing and eveneration	12/
Internal anargy	128
The first law of thermodynamics	129
Progress Check	130
Examination Questions IX	132
Chapter 20 Oscillations	136
	126
Introduction Patterns of oscillation	136
Wave terminology	130
Angular frequency (ω)	137
The definition of simple harmonic motion (SHM)	138
Damped oscillations	140
Forced oscillations and resonance	141
Progress Check	144
Examination Questions X	144

Chapter 21 Ultrasound	149
The piezo-electric transducer	149
Ultrasound scanning	149
Absorption coefficients	151
Progress Check	152
Chapter 22 Communicating Information	153
The principles of modulation	153
Introduction	153
Signal modulation	153
Bandwidth	153
Comparison between amplitude modulation (AM) and	
frequency modulation (FM)	155
Frequencies and wavelengths used in	
telecommunications	156
Digital information	156
Sampling rates	156
Modes of communication	158
Attenuation	158
Comparison of channels of communication	159
Satellite communication	160
Satellite orbits	160
Progress Check	162
Examination Questions XI	163
Chapter 23 Electric Fields: Part B	164
Introduction	164
Coulomb's law	164
The electric field strength at a distance <i>r</i> from a	
point charge	164
Electrical potential	165
Comparison between electric fields and	
gravitational fields	165
The definition of electrical potential	166
Progress Check	168
Chapter 24 Capacitance	169
Introduction	169
The definition of capacitance	169
Capacitors in series and in parallel	169
Capacitors in parallel	169
Capacitors in series	170
The energy stored in a charged capacitor	172
Progress Check	173
Chapter 25 Sensing Devices	174
Sensing devices	174
The light-dependent resistor	174
The negative temperature coefficient thermistor	175
The piezo-electric transducer	175
Strain gauges	175
Progress Check	177
0	

Cambridge University Press 978-1-107-61684-4 – Cambridge International AS and A Level Physics Robert Hutchings Frontmatter <u>More information</u>

vi Contents

Chapter 26 Electro	nics 178
The operational amplifier (o	p-amp) 178
The properties of an op-amp	178
The op-amp as a comparator	178
Adjusting the gain of an op-	amp 179
The non-inverting amplifier	179
Output devices	180
Progress Check	181

Chapter 27 Magnetic Fields

Introduction	182
Concept of a magnetic field	182
Making magnets	183
Magnetic flux density	184
The current balance	185
The force on a charge q moving with velocity v	
in a magnetic field	185
Magnetic field patterns of electric currents in wires	
and forces on the wires	187
The Hall probe	188
Velocity selection	189
A comparison between the effect on charges in	
electric and magnetic fields	189
Magnetic resonance imaging, MRI	190
Introduction	190
Precession of nuclei	190
Nuclear resonance	191
The MRI scanner	191
Progress Check	192

Chapter 28 Electromagnetic Induction 194

Introduction	194
Experiments on electromagnetic induction	194
Definitions of terms used in electromagnetic induction	195
Faraday's law of electromagnetic induction	195
The a.c. generator, often called an alternator	195
Lenz's law	196
Progress Check	198

Chapter 29 Alternating Currents

Introduction	199
Power in an a.c. circuit	199
The transformer	200
The theory of a transformer	201
Transformer Losses	203
Rectification	204
Half-wave rectification	204
Full-wave rectification	204

Smoothing the output from a rectifier circuit	205
Framination Questions XII	200
Examination Questions All	207
Chapter 30 Quantum Physics	211
Introduction	211
The photoelectric effect	211
The Planck constant, <i>h</i>	212
Wave-particle duality	213
Spectra	213
Band theory	214
Variation of resistance with temperature	215
Variation of resistance with intensity of light	215
Absorption spectra	216
The production and use of X-rays	216
Introduction	216
The production of X-rays	216
The use of X-rays	217
Computed tomography (CT) scan	218
Progress Check	220
Chapter 31 Nuclear Physics: Part B	221
Energy and mass	221
Nuclear binding energy	221
Variation of binding energy with nucleon number	222
Nuclear fission	223
Activity and half-life	223
Halflife	224
Progress Check	225
Examination Questions XIII	225

Appendix A	Quick tips on exam preparation	228
Appendix B	Physical quantities: symbols, definitions and equations	231
Appendix C	SI units, symbols and definitions	233
Appendix D	Answers to Progress Check questions	235
Index		244

Cambridge University Press 978-1-107-61684-4 – Cambridge International AS and A Level Physics Robert Hutchings Frontmatter <u>More information</u>

How to use this Book

Introduction

Explains the layout of each chapter, helps with navigation through the book and gives a reminder of what is important about each topic.

Introduction

The application of a pair of squeezing or stretching forces to a solid will cause a change in the shape of a solid. This chapter will deal only with solids, because for liquids and gases, changes in shape are dependent on the container holding them.

Teacher's tips

Quick suggestions to remind you about key facts and highlight important points.

Example 2

Teacher's Tip

Be careful when subtracting temperatures. A temperature change from 6 °C to 80 °C is obviously 74 °C. This could have been written 353 K – 279 K = 74 K. The temperature interval between two temperatures must be the same whether the Celsius scale or the Kelvin scale are used. You must not add on 273 when considering temperature intervals.

Examples

A step by step approach to answering questions, guiding you through from start to finish.

Cambridge University Press 978-1-107-61684-4 – Cambridge International AS and A Level Physics Robert Hutchings Frontmatter <u>More information</u>

How to use this Book

Progress check questions

Check your own knowledge and see how well you are getting on by answering regular questions. Sample answers for these are provided at the back of the book.

Examination questions

Help prepare for examination by completing the questions taken from Cambridge past-examination papers.

Examination Questions VIII 1. (a) Define gravitational potential at a point.

(b) The gravitational potential ϕ at distance *r* from point mass *M* is given by the expression $\phi = -\frac{Gm}{r}$ where *G* is the gravitational constant. Explain the significance of the negative sign in this expression.

Chapter summary

At the end of each chapter so you can check off the topics as you revise them.

Chapter Summary

- Newton's first law. Every object continues in its state of rest or state of uniform motion in a straight line unless acted upon by a resultant external force.
- Newton's second law. The rate of change of momentum of a body is proportional to the resultant force acting on it.
- Newton's third law. If body A exerts a force on body B then body B exerts an equal and opposite force on body A.
- Mass is a measure of how difficult it is to accelerate a body. It is measured in kilograms.
- Weight is the force of gravitational attraction acting on a body. It is measured in newtons.

[1]

[2]

- ✓ Momentum is the product of an object's mass and velocity. It is measured in N s. To determine the time *t* an object takes to stop when a force *F* is applied, use its momentum in the equation *mv* = *Ft*.
- / The principle of conservation of momentum states that in all collisions the total momentum is constant provided that there is no resultant external force acting.