
Preface

General relativity is to date the most successful theory of gravity. In this theory, the
gravitational field is not a conventional force but instead is due to the geometric
properties of a manifold commonly known as space–time. These properties give
rise to a rich physical theory incorporating many areas of mathematics. In this
vein, this book is well suited for the advanced mathematics or physics student, as
well as researchers, and it is hoped that the balance of rigorous mathematics and
physical insights and applications will benefit the intended audience. The main text
and exercises have been designed both to gently introduce topics and to develop
the framework to the point necessary for the practitioner in the field. This text tries
to cover all of the important subjects in the field of classical general relativity in a
mathematically precise way.

This is a subject which is often counterintuitive when first encountered. We have
therefore provided extensive discussions and proofs to many statements, which may
seem surprising at first glance. There are also many elegant results from theorems
which are applicable to relativity theory which, if someone is aware of them, can
save the individual practitioner much calculation (and time). We have tried to
include many of them. We have tried to steer the middle ground between brute
force and mathematical elegance in this text, as both approaches have their merits
in certain situations. In doing this, we hope that the final result is “reader friendly.”
There are some sections that are considered advanced and can safely be skipped
by those who are learning the subject for the first time. This is indicated in the
introduction of those sections.

The mathematics of the theory of general relativity is mostly derived from
tensor algebra and tensor analysis, and some background in these subjects, along
with special relativity (relativity in the absence of gravity), is required. Therefore,
in Chapter 1, we briefly provide the tensor analysis in Riemannian and pseudo-
Riemannian differentiable manifolds. These topics are discussed in an arbitrary
dimension and have many possible applications.

In Chapter 2, we review the special theory of relativity in the arena of the four-
dimensional flat space–time manifold. Then, we introduce curved space–time and
Einstein’s field equations which govern gravitational phenomena.
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In Chapter 3, we explore spherically symmetric solutions of Einstein’s equations,
which are useful, for example, in the study of nonrotating stars. Foremost among
these solutions is the Schwarzschild metric, which describes the gravitational field
outside such stars. This solution is the general relativistic analog of Newton’s
inverse-square force law of universal gravitation. The Schwarzschild metric, and
perturbations of this solution, has been utilized for many experimental verifications
of general relativity within the solar system. General solutions to the field equations
under spherical symmetry are also derived, which have application in the study of
both static and nonstatic stellar structure.

In Chapter 4, we deal with static and stationary solutions of the field equations,
both in general and under the assumption of certain important symmetries. An
important case which is examined at great length is the Kerr metric, which may
describe the gravitational field outside of certain rotating bodies.

In Chapter 5, the fascinating topic of black holes is investigated. The two
most important solutions, the Schwarzschild black hole and the axially symmetric
Kerr black hole, are explored in great detail. The formation of black holes from
gravitational collapse is also discussed.

In Chapter 6, physically significant cosmological models are pursued. (In this
arena of the physical sciences, the impact of Einstein’s theory is very deep
and revolutionary indeed!) An introduction to higher dimensional gravity is also
included in this chapter.

In Chapter 7, the mathematical topics regarding Petrov’s algebraic classification
of the Riemann and the conformal tensor are studied. Moreover, the Newman–
Penrose versions of Einstein’s field equations, incorporating Petrov’s classification,
are explored. This is done in great detail, as it is a difficult topic and we feel that
detailed derivations of some of the equations are useful.

In Chapter 8, we introduce the coupled Einstein–Maxwell–Klein–Gordon field
equations. This complicated system of equations classically describes the self-
gravitation of charged scalar wave fields. In the special arena of spherically
symmetric, static space–time, these field equations, with suitable boundary condi-
tions, yield a nonlinear eigenvalue problem for the allowed theoretical charges of
gravitationally bound wave-mechanical condensates.

Eight appendices are also provided that deal with special topics in classical
general relativity as well as some necessary background mathematics.

The notation used in this book is as follows: The Roman letters i , j , k, l , m, n,
etc. are used to denote subscripts and superscripts (i.e., covariant and contravariant
indices) of a tensor field’s components relative to a coordinate basis and span the
full dimensionality of the manifold. However, we employ parentheses around the
letters .a/; .b/; .c/; .d/; .e/; .f /, etc. to indicate components of a tensor field
relative to an orthonormal basis. Greek indices are used to denote components that
only span the dimensionality of a hypersurface. In our discussions of space–time,
these Greek indices indicate spatial components only. The flat Minkowskian metric
tensor components are denoted by dij or d.a/.b/. Numerically they are the same, but
conceptually there is a subtle difference. The signature of the space–time metric is



Preface ix

C2 and the conventions for the definitions of the Riemann, Ricci, and conformal
tensors follow the classic book of Eisenhart.

We would like to thank many people for various reasons. As there are so many
who we are indebted to, we can only explicitly thank a few here, in the hope that
it is understood that there are many others who have indirectly contributed to this
book in many, sometimes subtle, ways.

I (A. Das) learned much of general relativity from the late Professors J. L. Synge
and C. Lanczos during my stay at the Dublin Institute for Advanced Studies. Before
that period, I had as mentors in relativity theory Professors S. N. Bose (of Bose–
Einstein statistics), S. D. Majumdar, and A. K. Raychaudhuri in Kolkata. During my
stay in Pittsburgh, I regularly participated in, and benefited from, seminars organized
by Professor E. Newman. In Canada, I had informal discussions with Professors F.
Cooperstock, J. Gegenberg, W. Israel, and E. Pechlaner and Drs. P Agrawal, S.
Kloster, M. M. Som, M. Suvegas, and N. Tariq. Moreover, in many international
conferences on general relativity and gravitation, I had informal discussions with
many adept participants through the years.

I taught the theory of relativity at University College of Dublin, Jadavpur
University (Kolkata), Carnegie-Mellon University, and mostly at Simon Fraser
University (Canada). Stimulations received from the inquiring minds of students,
both graduate and undergraduate, certainly consolidated my understanding of this
subject.

Finally, I thank my wife, Mrs. Purabi Das. I am very grateful for her constant
encouragement and patience.

I (A. DeBenedictis) would like to thank all of the professors, colleagues, and
students who have taught and influenced me. As mentioned previously, there are
far too many to name them all individually. I would like to thank Professor E. N.
Glass of the University of Michigan-Ann Arbor and the University of Windsor,
who gave me my first proper introduction to this fascinating field of physics and
mathematics. I would like to thank Professor K. S. Viswanathan of Simon Fraser
University, from whom I learned, among the many things he taught me, that this field
has consequences in theoretical physics far beyond what I originally had thought.

I would also like to thank my colleagues whom I have met over the years at
various institutions and conferences. All of them have helped me, even if they do not
know it. Discussions with them, and their hospitality during my visits, are worthy
of great thanks. During the production of this work, I was especially indebted to my
colleagues in quantum gravity. They have given me the appreciation of how difficult
it is to turn the subject matter of this book into a quantum theory, and opened up a
fascinating new area of research to me. The quantization of the gravitational field is
likely to be one of the deepest, difficult, and most interesting puzzles in theoretical
physics for some time. I hope that this text will provide a solid background for half
of that puzzle to those who choose to tread down this path.

I would also like to thank the students whom I have taught, or perhaps they have
taught me. Whether it be freshman level or advanced graduate level, I can honestly
say that I have learned something from every class that I have taught.
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Not least, I extend my deepest thanks and appreciation to my wife Jennifer for
her encouragement throughout this project. I do not know how she did it.

We both extend great thanks to Mrs. Sabine Lebhart for her excellent and timely
typesetting of a very difficult manuscript.

Finally, we wish the best to all students, researchers, and curious minds who will
each in their own way advance the field of gravitation and convey this beautiful
subject to future generations. We hope that this book will prove useful to them.

Vancouver, Canada Anadijiban Das
Andrew DeBenedictis




