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Introduction

Mumford-Tate groups are the fundamental symmetry groups in Hodge theory.
They were introduced in the papers [M1] and [M2] by Mumford. As stated
there the purpose was to interpret and extend results of Shimura and Kuga
([Sh1], [Sh2], and [Ku]). Since then they have played an important role in
Hodge theory, both in the formal development of the subject and in the use of
Hodge theory to address algebro-geometric questions, especially those that are
arithmetically motivated. The informative sets of notes by Moonen [Mo1] and
[Mo2] and the recent treatment in [PS] are two general accounts of the subject.

We think it is probably fair to say that much, if not most, of the use of
Mumford-Tate groups has been in the study of abelian varieties or, what is
essentially the same, polarized Hodge structures of level one1 and those con-
structed from this case. The papers [De1], [De2], and [De3] formulated the
definitions and basic properties of Mumford-Tate groups in what is now the
standard way, a formulation that provides a setting in which Mumford-Tate
groups were particularly suited for the study of Shimura varieties, which play
a central role in arithmetic geometry. Noteworthy is the use of Mumford-Tate
groups and Shimura varieties in Deligne’s proof [DMOS] that Hodge classes
are absolute in the case of abelian varieties, and their role in formulating con-
jectures concerning motivic Galois groups (cf. [Se]). See [Mi2] for a useful and
comprehensive account and [R] for a recent treatment of Shimura varieties, and
[Ke] for a Hodge-theoretic approach.

As will be explained, the perspective in this monograph is in several ways
complementary to that in the literature. Before discussing these, we begin by
noting that Chapter I is an introductory one in which we give the basic defini-
tions and properties of Mumford-Tate groups in both the case of Hodge struc-
tures and of mixed Hodge structures. Section II.A is also introductory where
we review the definitions of period domains and their compact duals as well as
the canonical exterior differential system on them.

1Level one means a Tate twist of a polarized Hodge structure of effective weight one. In gen-
eral for n = 1, a Hodge structure has effective weight n if the non-zero Hodge (p, q) components
with p + q = n have p = 0, q = 0. When no confusion seems likely, we shall omit the term
effective.
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As will be shown, Mumford-Tate groups M will be reductive algebraic
groups over Q such that the derived or adjoint subgroup of the associated real
Lie group MR contains a compact maximal torus. In order to keep the state-
ments of the results as simple as possible, we will emphasize the case when
MR itself is semi-simple. The extension to the reductive case will be usually
left to the reader.

Before turning to a discussion of the remaining contents in this mono-
graph, we first note that throughout we shall use the notation V for a Q-vector
space and Q : V ⊗ V → Q for a non-degenerate form satisfying Q(u, v) =
(−1)nQ(v, u) where n is the weight of the Hodge structure under considera-
tion. In many cases there will be given a lattice VZ with V = VZ ⊗Q.

One way in which our treatment is complementary is that we have used
throughout the interpretation of Mumford-Tate groups in the setting of period
domains D and their compact duals qD. The latter are rational, homogeneous
varieties defined over Q. Variations of Hodge structure are integral manifolds
of a canonical exterior differential system (EDS), defined on all of qD, and also
on quotients of D by discrete subgroups. This leads to a natural extension of
the definition of the Mumford-Tate group Mϕ of a Hodge structure ϕ ∈ D
to the Mumford-Tate group MF • associated the Hodge filtration given by a
point F • ∈ qD, and to the Mumford-Tate group M(F •,E) of an integral element
E ⊂ TF • qD of the EDS. Both of these extensions will be seen to have important
geometric and arithmetic implications.

A second complementary perspective involves the emphasis throughout on
Mumford-Tate domains DMϕ (cf. Section (II.B)), defined as the orbit of the
point ϕ ∈ D by the group Mϕ(R) of real points of the Mumford-Tate group
Mϕ.2 One subtlety, discussed in Section IV.G, is that the Mumford-Tate domain
depends on its particular representation as a homogeneous complex manifold.
The same underlying complex manifold may appear in multiple, and quite dif-
ferent, ways as a Mumford-Tate domain.

For later reference we note that Mumford-Tate domains will have compact
duals, which are rational, homogeneous varieties that as homogeneous varieties
are defined over a number field.

We shall denote byMϕ(R)0 the identity component ofMϕ(R) in the classi-
cal topology and byD0

Mϕ
the component ofDMϕ through ϕ. To a point ϕ ∈ D,

i.e., a polarized Hodge structure Vϕ on V , is associated the algebra of Hodge
tensors Hg•,•ϕ ⊂ T •,• := ⊕

k,l
V ⊗k ⊗ qV ⊗l.

2Later in this monograph when discussing the geometry of Mumford-Tate domains, when
confusion seems unlikely, we shall not distinguish between the R-algebraic group MR and its
real points M(R) and the corresponding real Lie group MR.
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For reasons discussed below, it is our opinion that the classical Noether-
Lefschetz loci (cf. Section (II.C)), defined traditionally by the condition on ϕ∈
D that a vector ζ ∈ V be a Hodge class, should be replaced by the Noether-
Lefschetz locus NLϕ associated to ϕ ∈ D, where by definition

NLϕ =
{
ψ ∈ D : Hg•,•ϕ ⊆ Hg•,•ψ

}
.3

We will then prove the

(II.C.1) THEOREM: The component D0
Mϕ

of the Mumford-Tate domain DMϕ is
the component of NLϕ through ϕ ∈ D.

An application of this result is the estimate given in theorem (III.C.5) for the
codimension of the Noether-Lefschetz locus, in the extended form suggested
above, in the parameter space of a variation of Hodge structure. This estimate
seems to be unlike anything appearing classically; it illustrates both the role of
Mumford-Tate groups and, especially, the integrability condition in the EDS in
“dimension counts.”

For a simple first illustration of this, since qD is a projective variety defined
over Q we may speak of a Q-generic point F • ∈ qD, meaning that the Q-
Zariski closure of F • is qD. In the literature there are various criteria, some of
them involving genericity of one kind or another, that imply that Mϕ is equal
to the Q-algebraic group G = Aut(V,Q). We show that, except when the
weight n = 2p is even and the only non-zero Hodge number is hp,p, if F • is
a Q-generic point of qD, then the Mumford-Tate group MF • is equal to G. A
converse will also be discussed. These issues will also be addressed in a more
general context in Section VI.A (cf. (VI.A.5)).

A remark on terminology: For Hodge structures of weight one, what we
are here calling Mumford-Tate domains have been introduced in [M2] and used
in [De2], [De3]. For reasons to be explained in Section II.B, we shall define
Shimura domains to be the special case of Mumford-Tate domains where Mϕ

can be described as the group fixing a set of Hodge tensors in degrees one and
two.4 There are then strict inclusions of sets(

period
domains

)
⊂
(

Shimura
domains

)
⊂
(

Mumford-Tate
domains

)
.

3In the classical weight n = 1 this point of view is taken in the original papers [M1] and
[M2] on the subject, as well as in [De2].

4The degree of t ∈ V ⊗
k

⊗ qV ⊗l is k + l.
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We remark that a Shimura domain and a Mumford-Tate domain may be consid-
ered as period domains with additional structures. When that additional data is
trivial we have the traditional notion of a period domain.5

Another result relating Mumford-Tate groups and period domains, the struc-
ture theorem stated below, largely follows from results in the literature (cf.
[Schm1], [A1]) and the use of Mumford-Tate domains. To state it, we consider
a global variation of Hodge structure (cf. Section (III.A))

Φ : S → Γ\D

where S is smooth and quasi-projective. We assume that the Q-vector space V
has an integral structure VZ and for GZ = G ∩Aut(VZ) we denote by Γ ⊂ GZ
the monodromy group. As explained below, we consider Φ up to finite data,
which in effect means that we consider Φ up to isogeny, meaning that we can
replace S by a finite covering and take the induced variation of Hodge structure.
We also denote by MΦ the Mumford-Tate group associated to the variation of
Hodge structure. It is also a reductive Q-algebraic group, and we denote by

MΦ = M1 × · · · ×M` ×A

the almost product decomposition of MΦ into its Q-simple factors Mi and
abelian part A. We also denote by Di ⊂ D the Mi(R)-orbit of a lift to D
of the image Φ(η) of a very general point η ∈ S. Thus Di is a Mumford-Tate
domain for Mi. Then we have the

(III.A.1) THEOREM: (i) The Di are homogeneous complex submanifolds of D.
(ii) Up to finite data, the monodromy group splits as an almost direct product
Γ = Γ1 × · · · × Γk, k 5 l, where for 1 5 i 5 k the Q-Zariski closure ΓQi
= Mi. (iii) Up to finite data, the global variation of Hodge structure is given
by

Φ : S → Γ1 \D1 × · · · × Γk \Dk ×D′

where D′ = Dk+1 × · · · ×D` is the part where the monodromy is trivial.

A consequence of the proof will be that

The tensor invariants of Γ coincide with those of the arithmetic
group M1,Z × · · · ×Mk,Z where Mi,Z = Mi ∩GZ.

5The motivation for the terminology is that for us this case needs to be distinguished from
the general case, when the algebra of Hodge tensors is not generated in degrees one and two. In
weight one it is the case originally introduced by Shimura in the 1960’s. The somewhat subtle
distinctions in terminology will be explained when we discuss what is meant in this work by the
“classical and non-classical” cases.
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It is known (cf. [De-M1], [De5]) that Γ need not be an arithmetic group,6 i.e.,
a group commensurable with M1,Z × · · · ×Mk,Z. However, from the point of
view of its tensorial invariants it is indistinguishable from that group.

Because of this result and the arithmetic discussion in Chapters V–VIII it
is our feeling that Mumford-Tate domains are natural objects for the study of
global variations of Hodge structure. In particular, the Cattani-Kaplan-Schmid
study of limiting mixed Hodge structures in several variables [CKS] and the
recent Kato-Usui construction [KU] of extensions, or partial compactifications,
of the moduli space of equivalence classes of polarized Hodge structures might
be carried out in the context of Mumford-Tate domains. A previously noted
subtlety here is that as a complex homogeneous manifold, the same complex
manifold D may have several representations D = GR,i/Hi as a homogeneous
space. It is reasonable that the extension of the Kato-Usui theory will depend
on the particular Q-algebraic group Gi. For this reason, as well as for material
needed later in this monograph, in Section I.C we give a brief introduction to
the Mumford-Tate groups associated to mixed Hodge structures.

Classically there is considerable literature (cf. [Mo1] and [Mo2]) on the
question: What are the possible Mumford-Tate groups of polarized Hodge
structures whose corresponding period domain is Hermitian symmetric?7 In
those works the question, “What are the possible Mumford-Tate groups?” is
also posed.

In Chapter IV for general polarized Hodge structures we discuss and pro-
vide some answers to the questions:

(i) Which semi-simple Q-algebraic groups M can be Mumford-Tate groups
of polarized Hodge structures?8

and, more importantly,

(ii) What can one say about the different realizations of M as a Mumford-
Tate group?

(iii) What is the relationship among the corresponding Mumford-Tate do-
mains?

To address these questions, we use a third aspect in which this study differs
from previous ones in that we invert the first question. For this we use the notion

6So far as we know, all non-arithmetic monodromy groups are subgroups of SU(n, 1). A
question of which we are not aware if there is an answer to is whether Γ is arithmetic in case the
real Lie group associated to ΓQ has no simple factors of real rank one. In this regard we note the
paper [Kl4]

7In this regard we call attention to the papers [Z1] and [Z2] where this question is addressed.
8A variant of this question over R is treated in [Simp1] — see footnote 12.
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of a Hodge representation (M,ρ, ϕ), which is given by a reductiveQ-algebraic
group M , a representation

ρ : M → Aut(V,Q),

and a circle

ϕ : U(R)→M(R),

where U(R) is a maximal compact subgroup of the real algebraic group S =:
ResC/RGm,9 such that (V,Q, ρ ◦ ϕ) gives a polarized Hodge structure.10 For
any Hodge representation, the circle ϕ(U(R)) lies in a maximal compact torus
T ⊂M(R) whose compact centralizerHϕ is the subgroup ofM(R) preserving
the polarized Hodge structure (V,Q, ρ ◦ ϕ).

We shall say that a representation ρ : M → Aut(V ) leads to a Hodge
representation if there is a Q and ϕ such that (V,Q, ρ ◦ ϕ) is a Hodge repre-
sentation. We define a Hodge group to be a reductiveQ-algebraic groupM that
has a Hodge representation. In Chapter IV our primary interest will be in the
case where M is semi-simple. The other extreme case when M is an algebraic
torus will be discussed in Chapter V.

Given a Hodge representation (M,ρ, ϕ) when M is semi-simple, we ob-
serve that there is an associated Hodge representation (Ma,Ad, ϕ) where the
polarized Hodge structure on (m, B,Adϕ) is induced from the inclusion m ⊂
EndQ(V ), noting that the Cartan-Killing form B is induced by Q. Here, Ma

is the adjoint group, which is a finite quotient of M by its center. For the con-
jugate ϕm = m−1ϕm by a generic m ∈ Ma(R), it is shown that Ma is the
Mumford-Tate group of (m, B,Adϕm). Thus, at least up to finite coverings,11

the issue is to use the standard theory of roots and weights to give criteria to
have a Hodge representation, and then to apply these criteria in examples.

Because the real points M(R) map to

M(R)
ρ−→ Aut(VR, Q),

9See Section I.A for a discussion of the Deligne torus.
10Without essential loss of generality, we assume as part of the definition that the induced

representation ρ∗ : m→ End(V,Q) is injective.
11The issue of finite coverings and the related faithfulness of Hodge representations is in-

teresting in its own right; it will be analyzed in the text. The point is that irreducible Hodge
representations of M will be parameterized by pairs (λ, ϕ) where λ is the highest weight of an
irreducible summand of the mC-module VC. Given λ there are conditions on the lattice of groups
with Lie algebra m that λ be the highest weight of a representation of a particular M in the
lattice. To be a Hodge representation will impose conditions on the pair (λ, ϕ).
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the issue arises early on of what the real form M(R) can be.12 The first result
is that:

(1) If (M,ρ, ϕ) is a Hodge representation, then as noted above M(R) con-
tains a compact real maximal torus T with dimT = rankCMC. We will
abbreviate this by saying that M(R) contains a compact maximal torus.
Furthermore,

(2) If M is semi-simple, then the condition (1) is sufficient; indeed, the ad-
joint representation of M leads to a Hodge representation.

The natural starting point for an analysis of Hodge representations is the
well-developed theory of complex representations of complex semi-simple Lie
algebras. To pass from the theory of irreducible complex representations of a
complex semi-simple Lie algebra to the theory of irreducible real representa-
tions of real semi-simple Lie groups,13 there are three elements that come in:

(i) The theory of real forms of complex simple Lie algebras. These were
classified by Cartan, and there is now the beautiful tool of Vogan diagrams with
an excellent exposition in [K].

(ii) By Schur’s lemma, irreducible real representations VR of a real Lie al-
gebra mR break into three cases depending on whether

12In [Simp1] a variant of this question is studied and solved. Namely Simpson defines the
notion of a Hodge type, which by a result in his paper is given by the pair consisting of a real,
semi-simple Lie group MR together with a circle S1 in MR whose centralizer ZMR(S1) = H
is a compact subgroup of MR. For a Hodge group (M,ϕ) as defined in this monograph, the
associated real Lie group M(R) and image of ϕ : S1 → M(R) give a Hodge type. He shows
that for a Hodge group the adjoint representation gives a real polarized Hodge structure. As
discussed in Section IV.F, a Hodge type gives a homogeneous complex manifold and these are
exactly those that are discussed in [GS].

Simpson also proves an existence theorem ([Simp1], Theorem 3 and Corollary 46), which
roughly stated implies that if X is a compact Kähler manifold and ρ : π1(X) → MR is a
homomorphism that is R-Zariski dense in MR, then MR is the real Mumford-Tate group of a
complex variation of Hodge structure and therefore MR is of Hodge type. This is a wonderful
existence result, saying informally that certain Hodge-theoretic data is “motivic over R.” We
note also the interesting papers [Kl2] and [Kl3].

13If M is a Q-simple algebraic group, then the group M(R) will be a semi-simple — but not
necessarily simple — real Lie group. An example of this is Resk/Q SL2(k) where k = Q(

`
−d)

with d a positive rational number. Then SL2(k)(R) ∼= SL2(R)×SL2(R). For ease of exposition,
we shall assume that M(R) is also simple. The analysis can, in a straightforward fashion, be
extended to the general case.

Of course we ultimately need to consider representations of M that are defined over Q. This
will be discussed in Section IV.A.
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EndmR(VR) =

R (Real case)
C (Complex case)
H (Quaternionic case).

Which case we end up in is determined by the weight λ associated to the repre-
sentation and by the real form, as encoded in its Vogan diagram.14 The possible
invariant bilinear forms Q on V depend on which case we are in. In the real
case, Q is unique up to a scalar and its parity — symmetric or alternating —
is determined, but in the complex and quaternionic cases, invariant Q’s of both
parities exist. Perhaps the most delicate point in our analysis in Chapter IV is
(IV.E.4), a theorem in pure representation theory, which we need in order to
deal with the parity of Q in the real case; this result allows us to distinguish
between real and quaternionic representations.

(iii) Given a real form mR, there is a one-to-one correspondence

Connected real Lie
groups having Lie

algebras mR
⇐⇒ Subgroups MP ′ ,

P ⊇ P ′ ⊇ R.

Here P andR are respectively the weight and root lattice. In the case of interest
to us when t ⊆ mR, the associated maximal torus in MP ′(R) is

T ∼= t/Λ where Λ ∼= Hom(P ′,Z).

The representation of mC having highest weight λ lives on MP ′(R) if, and only
if, λ ∈ P ′. Note that the center

Z(MP ′(R)) ∼= P ′/R, π1(MP ′(R)) ∼= P/P ′.

The disparity between P and R requires some analysis when λ ∈ P but λ /∈ R.
Because Mumford-Tate groups areQ-algebraic groups, the issue of describ-

ing in terms of dominant weights the irreducible representations over Q of the
simple Q-algebraic groups whose maximal torus is anisotropic arises. Here
again there is a highly developed theory. For those simple Q-algebraic groups
whose maximal torus is anisotropic the theory simplifies significantly, and those
aspects needed for this work are summarized in part III of Section IV.A. The
upshot is that for the purposes of Mumford-Tate groups as discussed in this
monograph, one may focus the detailed root-weight analysis on the real case.

The outline of the steps to be followed in our analysis of Hodge representa-
tions is given in (IV.A.3). To state the result, we need to introduce some notation

14The weight λ associated to the representation will be explained (footnote 15).
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that will be explained in the text. Given a real, simple Lie group M(R) with
Lie algebra mR having Cartan decomposition

mR = k⊕ p,

where k is the Lie algebra of a maximal compact subgroup K ⊂ M(R) con-
taining a compact maximal torus T , there is the root lattice R ⊂ ǐt and weight
lattice P ⊂ ǐt with R ⊂ P . We then define a map ψ : R→ Z/2Z by

ψ(α) =

{
0 if α is a compact root
1 if α is a non-compact root.

Since the Cartan involution is a well-defined Lie algebra homomorphism, it
follows that ψ is a homomorphism. We next define a homomorphism

Ψ : R→ Z/4Z

by Ψ = “2ψ” — i.e., Ψ(α) = 0 for compact roots and Ψ(α) = 2 for non-
compact roots. The reason for working both “mod 2” and “mod 4” will be
explained in the remark.

Given a choice of positive, simple roots there is defined a Weyl chamber
C and weights λ ∈ P ∩ C. To each λ ∈ C there is associated an irreducible
mC-module W λ, and one may define the irreducible mR-module VR associated
to λ.15 This mR-module will be seen to have an invariant form Q. As noted,
in some cases there is more than one invariant form Q and we must choose it
based on the result. One of our main results is then:

(IV.E.2) THEOREM: Assume that M is a simple Q-algebraic group that con-
tains an anisotropic maximal torus. Assume that we have an irreducible repre-
sentation

ρ : M → Aut(V )

defined overQ. We let δ be the minimal positive integer such that δλ ∈ R. Then
ρ leads to a Hodge representation if, and only if, there exists an integer m such
that

Ψ(δλ) ≡ δm (mod 4).

Implicit in this result is that the invariant form Q may be chosen to be de-
fined over Q. This and the related results and computation of examples are
expressed in terms of congruences mod 2 and mod 4. The reason for the “mod

15If ResC/RW
λ denotes the irreducible mR-module obtained by restriction of scalars, then

EndmR (ResC/RW
λ) is a division algebra and the definition of VR depends on whether this

algebra is R, C or H.
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2” is the sign in Q(u, v) = ±Q(v, u), and the reason for the “mod 4” is that the
2nd Hodge-Riemann bilinear relations

ip−qQ(v, v) > 0, v ∈ V p,q

depend on p− q mod 4.
As an illustration of the application of this analysis, we have the following

(the notations are given in the appendix to Chapter IV): The only real forms of
simple Lie algebras that give rise to Hodge representations of odd weight are

su(2p, 2q), p+ q even, compact forms included
su(2k + 1, 2l + 1)

so(4p+ 2, 2q + 1), so∗(4k)

sp(2n,R) 16

EV and EVII (real forms of E7).

A complete list of the real forms having Hodge representations is given in
the table after Corollary (IV.E.3).

At the end of Section IV.E, in the subject titled Reprise, we have summa-
rized the analysis of which pairs (M,λ) give faithful Hodge representations and
which pairs give odd weight Hodge representations. It is interesting that there
are Q-forms of some of the real, simple Lie groups that admit Hodge represen-
tations but do not have faithful Hodge representations.

In Section IV.B we turn to the adjoint representation. Here the Cartan-
Killing form B gives an invariant form Q, and as a special case of theorem
(IV.E.2) the criteria (IV.B.3) to have a Hodge representation may be easily and
explicitly formulated in terms of the compact and non-compact roots relative
to a Cartan decomposition of the Lie algebra. A number of illustrations of this
process are given. The short and direct proof of this result is also given.

An interesting question of Serre (see 8.8 in [Se]) is whether G2 is a motivic
Galois group. This has recently been settled by Dettweiler and Reiter [DR]
using a slight modification of the definition that replaces motives by motives
for motivated cycles.17 One has also the related (or equivalent, assuming the
Hodge conjecture) question of whether G2 is the Mumford-Tate group of a
motivic Hodge structure. This too follows from [DR], as will be explained in a
forthcoming work of the third author with G. Pearlstein [KP2].

16Our convention for the symplectic groups is that 2n is the number of variables.
17See in addition the interesting works [GS], [HNY], [Yun], and [Ka].
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In this section we also give another one of the main results in this work,
which provides a converse to the observation above about the adjoint represen-
tation:

THEOREM: Given a representation ρ : M → Aut(V,Q) defined over Q and a
circle ϕ : U(R)→M(R), (V,±Q, ρ ◦ϕ) gives a polarized Hodge structure if,
and only if, (m, B,Adϕ) gives a polarized Hodge structure.

Given a representation ρ : M → Aut(V,Q), we identify ρ∗(m) ⊂ EndQ(V )
with m. Then, as noted above, if ρ ◦ ϕ gives a polarized Hodge structure, there
is induced on (m, B) ⊂ EndQ(V ) a polarized sub-Hodge structure. The inter-
esting step is to show that conversely a polarized Hodge structure (m, B,Adϕ)
induces one for (V,±Q, ρ ◦ ϕ). This requires aspects of the structure theory of
semi-simple Lie algebras. The proof makes use of the explicit criteria (IV.B.3)
that Adϕ for a co-character ϕ : U(R) → T ⊂ M(R) give a polarized Hodge
structure on (m, B).

From our analysis we have the following conclusion: Mumford-Tate groups
are exactly the Q-algebraic groups M whose associated real Lie groups M(R)
have discrete series representation in L2(M(R)) (cf. [HC1], [HC2], [Schm2],
[Schm3]). The discrete series, and the limits of discrete series, are of arithmetic
interest as the infinite components of cuspidal automorphic representations in
L2(M(Q)\M(A). This potential connection between arithmetic issues of cur-
rent interest and Hodge theory seems to us unlikely to be accidental.

In Section IV.F we establish another fundamental result:

(IV.F.1) THEOREM: (i) The subgroupHϕ ⊂M(R) that stabilizes the polarized
Hodge structure associated to a Hodge representation (M,ρ, ϕ) is compact and
is equal to the subgroup that stabilizes the polarized Hodge structure associated
to the polarized Hodge structure (m,Ad, ϕ).

(ii) Under the resulting identification of the two Mumford-Tate domains with
the homogeneous complex manifold M(R)/Hϕ, the infinitesimal period rela-
tions coincide.

This suggests introducing the concept of a Hodge domain Dm,ϕ, which is
a homogeneous complex manifold M(R)a/Hϕ where Hϕ is the compact cen-
tralizer of a circle ϕ : U(R)→ M(R)a. Thus a Hodge domain is equivalent to
the data (M,ϕ) where ϕ satisfies the conditions in (IV.B.3). We observe that
a Hodge domain carries an invariant exterior differential system corresponding
to the infinitesimal period relation associated to the polarized Hodge structure
(m, B,Ad ◦ϕ).18 A given Hodge domain may appear, as a complex manifold,

18 In the literature there is a reference to Griffiths-Schmid domains, defined to be homo-
geneous complex manifolds of the form MR/H where MR is a real, generally non-compact

© Copyright, Princeton University Press. 
No part of this book may be distributed, posted, or reproduced in any form by 
digital or mechanical means without prior written permission of the publisher 



12

MTGPUP February 6, 2012 6x9

INTRODUCTION

in many different ways as a Mumford-Tate domain.19 Moreover, there will in
general be many relations among various Hodge domains.20 A particularly
striking illustration is the realization of each of the two G2-invariant exterior
differential systems on a 5-manifold found by E. Cartan and the Lie-Klein cor-
respondence between them (cf. [Ca] and [Br]). Other interesting low dimen-
sional examples will also be analyzed in detail at the end of Section IV.F.

A fourth aspect of this work is our emphasis throughout on the properties of
Mumford-Tate groups in what we call the non-classical case. Here we want to
make an important and somewhat subtle point of terminology. By the classical
case we shall mean the case where (i) the Hodge domain DMϕ = M(R)a/K
is Hermitian symmetric; thus, K is a maximal compact subgroup of the adjoint
group M(R)a whose center contains a circle S1

0 = {z ∈ C∗ : |z| = 1}; (ii)
only z, 1, z−1 appear as the characters of AdS1

0 acting on mC, and (iii) Ad(i) is
the Cartan involution.21 These are the Hermitian symmetric domains that may
be equivariantly embedded in Siegel’s upper-half space. The inverse limit of
quotients Γ\DMϕ by arithmetic groups are essentially the complex points of
components of Shimura varieties, about which there is a vast and rich theory
(cf. [Mi2] and [R] for general references).

The non-classical case itself separates into two classes. The first is when
DMϕ is Hermitian symmetric,22 but where condition (ii) is not satisfied. In this
case the infinitesimal period relation (IPR) may or may not be trivial. When it
is trivial, which we shall refer to as the unconstrained case, it is possible, but
does not in general seem to be known, whether (speaking informally) DMϕ is

Lie group and H is a compact subgroup that contains a compact maximal torus T ; there-
fore, dimT = rankmC. Hodge domains, as discussed in this monograph, differ in three re-
spects: First, MR are the real points M(R) of a Q-algebraic group M . Secondly, the circle
ϕ : U(R)→M(R) is included as part of the definition, the point being that several different ϕ’s
may give equivalent complex structures but inequivalent polarized Hodge structures on (m, B).
Third, the exterior differential system giving the infinitesimal period relation is also implied by
the definition.

19Again we mention the subtlety that arises in the several representations of a fixed complex
manifold D as homogeneous complex manifolds. For example, D = U(2, 1)/TU is a Mumford-
Tate domain for polarized Hodge structures of weight n = 3 and with Hodge numbers h3,0 = 1,
h2,1 = 2. ButD = SU(2, 1)/TSU is not a Mumford-Tate domain for polarized Hodge structures
of any odd weight. Here, TU and TSU are the respective maximal tori in U(2, 1) and SU(2, 1).
This issue is discussed and illustrated in Section IV.G.

20These relations may or may not be complex analytic. Both cases are of interest, the non-
holomorphic ones from the perspective of representation theory.

21There is a subtlety here in that the adjoint action of the circle S1
0 = Z(K) is the “square-

root” of a character that gives a weight two polarized Hodge structure on (m, B). This is ex-
plained in the remark at the end of Section IV.F, where the ϕ in writing DMϕ = M(R)/K will
be identified.

22We will see that all Hermitian symmetric domains are Hodge domains.
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“motivic” in the sense that it parametrizes Hodge structures that arise algebro-
geometrically.23 In any case, the quotient Γ\DMϕ by an arithmetic group is
a quasi-projective, complex algebraic variety. The story of its field of defini-
tion seems to be worked out in the most detail in the classical case when the
Mumford-Tate domain, factored by an arithmetic group, represents the solution
to a moduli problem.

There are also interesting cases where DMϕ is Hermitian symmetric but the
IPR is non-trivial. In this case it is automatically integrable; DMϕ is therefore
foliated and variations of Hodge structure lie in the leaves of the foliation. Thus
we have the situation where on the one hand DMϕ cannot be motivic, while on
the other hand for an arithmetic subgroup Γ ⊂M , Γ\DMϕ is a quasi-projective
algebraic variety.

The second possibility in the non-classical case is when the Hodge domain
DMϕ is not Hermitian symmetric, which implies that the IPR is non-trivial with
again the resulting implication that DMϕ cannot be motivic in the above sense.
In general, when the IPR is non-trivial from the viewpoint of algebraic geom-
etry, Hodge theory is a relative subject.24 In writing this monograph we have
consistently sought to emphasize and illustrate what is different in the non-
classical case.

For clarity, we summarize this discussion: The classical case is when DMϕ

may be equivariantly embedded in the Siegel-upper-half space; equivalently,
DMϕ parametrizes abelian varieties whose algebra of Hodge tensors contains a
given algebra.25 The non-classical cases are the remaining DMϕ’s.

A fifth way in which our treatment is complementary to much of the liter-
ature is the discussion of the arithmetic aspects of Mumford-Tate domains and
Noether-Lefschetz loci in the non-classical case. Before summarizing some of
what is in the more arithmetically oriented Chapters V–VIII, we wish to make
a few general observations. For these we assume given a global variation of
Hodge structure

Φ : S(C)→ Γ\D
where S(C) are the complex points of a smooth, quasi-projective variety S
defined over a field k, D is a period domain, and Γ is the monodromy group. If

23In this regard we call attention to the very interesting recent paper [FL], where it is shown
that in the unconstrained case DMϕ is a Mumford-Tate domain parametrizing a variation of
Hodge structure of Calabi-Yau type.

24By this we mean that the basic algebro-geometric objects are variations of Hodge structure
Φ : S → Γ\DMϕ , rather than the quotients Γ\DMϕ by themselves.

25This is the case when the arithmetic aspects, especially Galois representations, of automor-
phic representation, are most highly developed. The principal reason is that in this case algebraic
geometry, specifically the action of Galois groups on l-adic cohomology, may be employed.
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one assumes a positive answer to the well-known question, “Is the spread of a
global variation of Hodge structure again a variation of Hodge structure?”, then
we can assume that k is a number field. Associated to a point p ∈ S(C) there
are then two fields:

(i) the field of definition k(p) of p ∈ S(C);

(ii) the field of definition of the Plücker coordinate of any lift of Φ(p) to qD.

Under special circumstances there are three additional fields associated to p.

(iii) the field End(Φ(p)) of endomorphisms associated to any lift of Φ(p) to
a point of D;

(iv) the field of definition of the period point Φ(p) associated to a point p ∈
S(C);

(v) the field of definition of the variety Xp.

In (iii), if we assume that the polarized Hodge structure Φ(p) is simple, then
End(Φ(p)) is a division algebra, and when it is commutative we obtain a field.
In (iv), we assume that Γ\D is a quasi-projective variety defined over a number
field. In (v) we assume that there is a family of smooth projective varieties
X → S defined over k, and Xp is the fibre over p ∈ S(C), whose period map
is Φ.

There is a vast and rich literature about the relationships among these fields
in the classical case where D is a bounded symmetric domain equivariantly
embedded in Siegel’s upper half space. This is the theory of Shimura varieties
of Hodge type (cf. [Mi1] and [R]). In the non-classical case very little seems
to be known, and one of our objectives is to begin to clarify what some inter-
esting issues and questions are, especially as they may relate to Mumford-Tate
groups.26

If we have a global variation of Hodge structure whose monodromy group
Γ is an arithmetic group, then there are arithmetic aspects associated to partic-
ular irreducible representations of G(R) in L2(Γ\G(R)), as well as their adelic
extensions. Here we have little to say other than to recall, as noted, that in
the non-classical case the discrete series representations of G(R) correspond to
automorphic cohomology on Γ\D, rather than to automorphic forms as in the

26We may think of (ii) and (iii) as reflecting arithmetic properties “upstairs”; i.e., on D or qD,
and (i), (iv), (v) as reflecting arithmetic properties “downstairs.” They are related via the tran-
scendental period mapping Φ, and the upstairs arithmetic properties of Φ(p) when p is defined
over a number field is a very rich subject. Aspects of this will be discussed in Section VI.D.
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classical case (cf. [GS] and, especially, [WW]).27 So far as we know, there is
not yet even speculation about a connection between the arithmetic aspects of
L2(Γ\G(R)) and the various arithmetic aspects, as mentioned previously, of a
global variation of Hodge structure.28

In the largely expository Chapter V we will discuss Hodge structures with
a high degree of symmetry; specifically, Hodge structures with complex mul-
tiplication or CM Hodge structures. For any Hodge structure (V, ϕ̃), defined
by ϕ̃ : S(R) → Aut(VR) and not necessarily pure, the endomorphism algebra
End(V, ϕ̃) reflects its internal symmetries. It is reasonable to expect, and is in-
deed the case as will be discussed in the text, that there is a relationship between
End(V, ϕ̃) and the Mumford-Tate group of (V, ϕ̃). For CM-Hodge structure
(V, ϕ̃) with Mumford-Tate group Mϕ̃, there is an equivalence between

• Vϕ̃ is a CM-Hodge structure;

• Mϕ̃(R) is contained in the isotropy group Hϕ̃;

• Mϕ̃ is an algebraic torus; and

• Mϕ̃(Q) is contained in the endomorphism algebra Eϕ̃ = End(Vϕ̃).

In case Vϕ̃ is a simple Hodge structure, End(V, ϕ̃) is a totally imaginary number
field of degree equal to dimV . There is a converse result in (V.3).

We broaden the notion of CM type by defining an n-orientation of a to-
tally imaginary number field (OIF(n)) and construct a precise correspondence
between these and certain important kinds of CM Hodge structures. In the clas-
sical case of weight n = 1, we recover the abelian variety associated to a CM
type.

Next, we generalize the notion of the Kubota rank and reflex field associated
to a CM Hodge structure Vϕ̃ to the OIF(n) setting. This may then be used to
compute the dimension, rational points, and Lie algebra of the Mumford-Tate
group of Vϕ̃. When the Kubota rank is maximal, the CM Hodge structure is
non-degenerate. In the classical case the corresponding CM abelian variety A
is non-degenerate, and by a result of Hazama and Murty [Mo1] all powers of A
satisfy the Hodge conjecture.

Chapter VI is devoted to the arithmetic study of Mumford-Tate domains and
Noether-Lefschetz loci, both in D and in qD. We use the notation Z ⊂ qD for the

27This issue is discussed further near the end of this introduction.
28Here we note the paper [GS] and that there are some promising special results [C1], [C2],

[C3]. The authors would like to thank Wushi Goldring for bringing this work to our attention.
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set of flags F • that fail to give Hodge structures; i.e., for which at least one of
the maps

F p ⊕ Fn−p+1 → VC

fails to be an isomorphism. Then points in qD\Z give Hodge structures that
may not be polarized. More precisely, qD \ Z is a union of open G(R)-orbits,
each connected component of which corresponds to Hodge structures having
possibly indefinite polarizations in the sense that the Hermitian forms in the
second Hodge representation bilinear relations are non-singular but may not be
positive or negative definite.29

For ϕ∈D a polarized Hodge structure with Mumford-Tate groupMϕ :=M ,
we are interested in the loci

NLM =

{
Q-polarized Hodge structures with

Mumford-Tate group contained in M

}
|NLM =

{
flags F • ∈ qD with Mumford-

Tate group contained in M

}
.

We show that no component of |NLM is contained in Z, and the components
of |NLM are indexed in terms of “Mumford-Tate Hodge orientations,” extend-
ing to non-abelian Mumford-Tate groups the CM types/orientations discussed
in Chapter V. Using this we give a computationally effective procedure to deter-
mine the components in terms of Lie algebra representations and Weyl groups.

A first consequence of this is that M(C) acts transitively on each compo-
nent of the locus |NLM . Another result, which contrasts the classical and non-
classical period domains, is that in the classical case NLM is a single M(R)-
orbit in D, whereas in the non-classical case this is definitely not true; there is
more than one Q-polarized Hodge type.

Next, we observe that the components of NL-loci are all defined over Q,
the reason being that each component contains CM-Hodge structures, which
as points in qD are defined over Q, and each component is an orbit in qD of
M(C) and M is a Q-algebraic subgroup of G. Thus the absolute Galois group
Gal(Q/Q) (or equivalently Gal(C/Q)) acts on |NLM permuting the compo-
nents. We then show that the normalizers of M in G are the groups stabilizing
the NL-loci. In case M is nondegenerate and |NLM contains a simple nonde-
generate CM Hodge structure, we show that:

29The orbit structure of the action of M(R) on qD is extensively discussed in [FHW]; cf. the
remarks at the end of this introduction.
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• the action of the normalizerNG(M,C) on the components of |NLM turns
out to give a “continuous envelope” for the very discontinuous action of
Gal(C/Q); and

• the endomorphism algebra of a generic ϕ ∈ |NLM is a field, and this field
contains the field of definition of each component.

In Chapter VII we develop an algorithm for determining all Mumford-Tate
subdomains of a given period domain. This result is then applied to the classi-
fication of all CM Hodge structures of rank 4 and when the weight n = 1 and
n = 3, to an analysis of their Hodge tensors and endomorphism algebras, and
the number of components of the Noether-Lefschetz loci. The result is that one
has a complex but very rich arithmetic story; e.g., the results for the n = 3 case
are summarized in the list given in Theorem (VII.F.1). We note in particular the
intricate structure of the components of the Noether-Lefschetz loci in D and in
its compact dual qD, and the two interesting cases where the Hodge tensors are
generated in degrees 2 and 4, and not just in degree 2 by End(Vϕ). One appli-
cation (cf. VII.H, type (i)) is that a particular class of period maps appearing in
mirror symmetry never has image in a proper subdomain of D.

As an observation, it is generally understood that in Hodge theory or al-
gebraic geometry — and especially at their interface — “special points” are of
particular interest. These are points with symmetries that have an internal struc-
ture that relates arithmetic and geometry. We believe that the tables in Chapter
VII give a good picture of the intricacies of the Hodge-theoretic special points.
Of course, these relate directly to algebraic geometry when the weight n = 1,
but when the weight n = 3 the story is in its earliest stages.30

In Chapter VIII we discuss some arithmetic aspects of the situation

Φ : S(C)→ Γ\D

where S parametrizes a family X → S of smooth, projective varieties defined
over a number field k. We recall the notion of absolute Hodge classes (AH)
and strongly absolute classes (SAH). There are well-known conjectures (here
H denotes Hodge classes):

(i) H⇒ AH,

(ii) H⇒ SAH.

30The case considered here is when the Hodge structure is of “mirror-quintic-type.” On the
algebro-geometric side there is a vast literature, much of it motivated by the connection in
physics.
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We denote by NL a Noether-Lefschetz locus in Γ\D, and show that (cf. [Vo])

(ii) implies that Φ−1(NL) is defined over a number field.

Recalling that NL ⊂ qD is defined overQ, these observations may be thought of
as relating “arithmetic upstairs” with “arithmetic downstairs” via the transcen-
dental period map Φ. The particular case when the Noether-Lefschetz locus
consists of isolated points was alluded to in the discussion of CM Hodge struc-
tures.

A related observation [A2] is that one may formulate a variant of the
“Grothendieck conjecture” in the setting of period maps and period domains.
Informally stated, Grothendieck’s conjecture is that for a smooth projective va-
riety X defined over a number field, all of the Q-relations on the period matrix
obtained by comparing bases for the algebraic de Rham cohomology group
HnZar(Ω

•
X(k)/k) and the Betti cohomology group Hn

B(X(C),Q) are generated
by algebraic cycles on self-products of X . Again, informally stated the period
domain analog of this is (cf. (VIII.A.8))

Let p ∈ S(k) and let ϕ ∈ D be any point lying over Φ(p). Then ϕ
is a very general point in the variety qDMϕ .

Here, very general means that ϕ is a point of maximal transcendence degree
in qDMϕ , which is a subvariety of qD defined over a number field. The relation
between this and the above formulation in terms of period matrices arises when
X → S is a moduli space with the property that the fields of definition of Xp

and of p are both number fields exactly when one of them is.
A final conjecture (VIII.B.1) may be informally stated as follows:

Let E ⊂ D be a set of CM points and assume that the image
ρ(E) of E in Γ\D lies in Φ(S(C)). Then the C-Zariski closure of
ρ(E) in Φ(S(C)) is a union of unconstrained Hermitian symmetric
Mumford-Tate domains.

A geometric consequence of this would be that if S(C) contains a Zariski dense
set of CM Hodge structures, then the corresponding Mumford-Tate domain in
the structure theorem is Hermitian symmetric whose IPR is trivial.

Before turning to some concluding remarks in this introduction, we observe
that Mumford-Tate groups may be said to lie at the confluence of several sub-
jects:

(A) Geometry; specifically, algebraic geometry and variation of Hodge struc-
ture as realized by mappings to Mumford-Tate domains;

© Copyright, Princeton University Press. 
No part of this book may be distributed, posted, or reproduced in any form by 
digital or mechanical means without prior written permission of the publisher 



INTRODUCTION

MTGPUP February 6, 2012 6x9

19

(B) Representation theory; specifically, the introduction and analysis of
Hodge representations, leading among other things to the observation
that Hodge groups turn out to be exactly the reductiveQ-algebraic groups
whose associated semi-simple real Lie groups have discrete series repre-
sentations; and

(C) Arithmetic; specifically, the rich honeycomb of arithmetically defined
Noether-Lefschetz loci in a period domain.

It is certainly our sense that very interesting work should be possible at the
interfaces among these areas.

We would like to mention several topics that are not discussed in this work
and may be worth further study.

Extensions of moduli spaces of Γ-equivalence classes of polarized Hodge
structures whose generic Mumford-Tate group is M .31

This means the following: LetM be a reductiveQ-algebraic group such that
the pair (M,ϕ) gives a Hodge group together with a circle ϕ : U(R)→M(R),
and let DMϕ be the corresponding Mumford-Tate domain. Let Γ ⊂ M be an
arithmetic group and set

DMϕ(Γ) = Γ\DMϕ .

We may think of DMϕ(Γ) as the Γ-equivalence classes of polarized Hodge
structures whose generic Mumford-Tate group is M . A subtlety here is that
DMϕ may be realized in many different ways as a Mumford-Tate domain for
polarized Hodge structures of different weights and different sets of Hodge
numbers and, if n > 1, different Hodge orientations in the same period do-
main. What is common among all these realizations is that the infinitesimal
period relations given by the Pfaffian system I ⊂ T ∗DMϕ all coincide.

We let S = (∆∗)k ×∆l be a punctured polycylinder and

Φ : S → DMϕ(Γ)

a variation of Hodge structure whose monodromies are unipotent; i.e., if γi ∈
π1(S) is the circle around the origin in the ith factor of (∆∗)k, then

Φ∗(γi) = Ti ∈ Γ

is a unipotent element of M . Given any variation of Hodge structure as above,
by a result of Borel the unipotency of monodromies may be achieved by passing

31This topic was already briefly alluded to above.
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to a finite covering of S. By an extension we mean (i) a log-analytic variety
De
Mϕ

in which DMϕ ⊂ De
Mϕ

is a Zariski open set and to which the action of
Γ extends to give a log-analytic quotient variety De

Mϕ
(Γ) = Γ\De

Mϕ
; and (ii)

setting Se = ∆k ×∆l, the above variation of Hodge structure extends to give

S
Φ // DMϕ(Γ)

∩ ∩

Se
Φe// De

Mϕ
(Γ)

where Φe :Se→De
Mϕ

(Γ) is a morphism of log-analytic varieties. The issue is:

Can the Kato-Usui theory [KU] be extended to the above situation?

The point is that since Hodge domains parametrize many different types of
polarized Hodge structures, focusing on them may serve to isolate the essen-
tial algebraic group aspects of the Kato-Usui construction: the “input data” is
(M,ϕ), and not any particular Hodge representation of M .32

Ordinary cohomology. This begins with the study of

H∗(DMϕ(Γ),Q).

There are a number of refinements to this.
(i) For a local system V→ DMϕ(Γ) given by a Hodge representation ofM ,

one may study H∗(DMϕ(Γ),V).
(ii) Tensoring with C and using

H∗(DMϕ(Γ),VC) ∼= H∗DR(DMϕ(Γ),VC),

one may study the characteristic cohomology (cf. [CGG])

H∗I (DMϕ(Γ),VC)

computed from the de Rham complex of C∞ forms modulo the differential
ideal generated by the C∞ sections of I ⊕ I where I is the complex conjugate
sub-bundle to I in the complexification of the real tangent bundle. This is the
cohomology that is relevant for variations of Hodge structure.

32This is carried out in a different context and for SU(2, 1) in [C3]. Also, the example at the
end of Section IV.A suggests a positive indication that the above question may be feasible.
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(iii) We assume that Γ is neat, meaning that Γ acts freely on the Riemannian
symmetric space XM .33 The fibering

DM → XM

has rational, homogeneous projective varieties F as fibres, and therefore addi-
tively, but not multiplicatively, we have (for any coefficients, including a local
system as above)

H∗(DMϕ(Γ)) ∼= H∗(Γ\XM )⊗H∗(F ).

Now two important points arise:
(a) Using that M is a Q-algebraic group, for a suitable open compact sub-

group U ⊂M(A) the adelization

M(Q)\M(A)/U

of Γ\XM may be defined and its cohomology is the subject of considerable
arithmetic and representation-theoretic interest (see [Schw] for a recent survey).
As a set, the adelization is the limit of Γ\DM ’s or Γ′\XM ’s over the congruence
subgroups Γ′ of Γ, or some variant of these constructions — e.g., taking

M(Q)\M(A)/Kϕ

where
Kϕ = Hϕ ×

¹
Kp

is the restricted product where an element
±
Kp is in M(Zp) for almost all p.

(b) In the case discussed in [Schw], the cohomology that is of interest for the
study of cuspidal automorphic representation is H∗cusp(M(Q)\M(A)/Kϕ,V).
By virtue of the characterization of semi-simple Mumford-Tate groups as those
semi-simple Q-algebraic groups M such that M(R) contains a compact maxi-
mal torus, which by Harish-Chandra [HC1], [HC2] is equivalent to L2(M(R))
containing non-trivial discrete series representations; it is essentially known that
cuspidal cohomology may be defined in the context of Hodge domains and have
a Lie algebra cohomological description of the sort

⊕
π
H∗(mR, Hϕ;Hπ∞ ⊗ V )⊗Hπf

(see [Schw, p. 258] for explanation of notations).

33This is always possible by passing to a subgroup of finite index in Γ. Here XM =
M(R)/K where K is the maximal compact subgroup of M(R) containing the isotropy group
Hϕ.
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(iv) Combining (ii) and (iii), one may at least formally define the cuspidal
characteristic cohomology as

⊕
π
H∗(mR, Hϕ;w, Hπ∞ ⊗ V )⊗Hπf

where mR = k ⊕ p and w ⊂ p defines the infinitesimal period relation (see
[CGG] for an explanation of the notation). Especially if it could be related to
variations of Hodge structure defined over Q (or over a number field), this may
be an object of interest to study.

Coherent cohomology. Here one begins with a holomorphic, homoge-
neous vector bundle E→ DMϕ and considers the L2-cohomology groups

H∗(2)(DMϕ ,E)

and
H∗(2)(Γ\DMϕ ,E).

Again it is exactly for Hodge domains that H∗(2)(DMϕ ,E) is well-understood,
and varying ϕ and E realizes all the irreducible discrete series representations
(see [Schm4] for an excellent overview). The groups H∗(2)(Γ\DMϕ ,E) are less
well-understood, although as shown in [WW] Poincaré series do give a non-
trivial map

H∗(1)(DMϕ ,E)→ H∗(2)(Γ\DMϕ ,E).

In the classical case when DMϕ is Hermitian symmetric and the quotient
Γ\DMϕ is a component of the complex points of a Shimura variety, the adeliza-
tion ofH∗(Γ\DMϕ ,E) has been, and continues to be, the object of intense study
(cf. [H], [Mi1], [Mi2], [BHR], and [Mor]). Once again there is a Lie algebra
cohomological description of the cuspidal coherent cohomology ([H], [BHR]),
and whose existence also is related to M(R) having discrete series represen-
tations. This Lie algebra cohomological formulation makes sense for Hodge
domains with Hϕ replacing K.

In an interesting series of papers [C1], [C2], [C3] this automorphic coho-
mology is studied in detail for the Hodge domain

DMϕ = SU(2, 1)/T

where the complex structure on DMϕ is the one that does not fibre holomor-
phically or anti-holomorphically over an Hermitian symmetric space. There
the automorphic cohomology in degrees one and two is studied and shown to
correspond to automorphic representations whose archimedean component is
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a degenerate limit of discrete series, a phenomenon that cannot happen in the
classical Shimura variety case.

Two further cases that may merit further detailed study are the period do-
mains {

D1 = SO(4, 1,R)/U(2)

D2 = Sp(4,R)/U(1)× U(1),

where in the second the complex structure is again the one that does not fibre
holomorphically or anti-holomorphically over an Hermitian symmetric domain.
In the first case there is no Hermitian symmetric domain with symmetry group
SO(4, 1), so the methods of [C1] and [C2] would not seem to apply. Each
of these has algebro-geometric interest, the second because it arises in mirror
symmetry.

Cycle spaces (cf. [FHW]). Cycle spaces are the following: In a Mumford-
Tate domain DMϕ = Mϕ(R)/Hϕ, the orbit Oϕ := K · ϕ of a point ϕ ∈ D
under the maximal compact subgroup K ⊂ G(R) with Hϕ ⊂ K is a maximal
compact, complex analytic subvariety of DMϕ . The cycle space

U =
{
g · Oϕ : g ∈Mϕ(C), g · Oϕ ⊂ DMϕ

}
is the set of translates of Oϕ by those elements in the complex group that leaves
the translate in DMϕ .34 The interest in cycle spaces began with the observa-
tion ([G1], [G2]) that dimOϕ := d is the degree in which the cohomology
Hd(DMϕ ,L) of suitable homogeneous line bundles was expected to occur,
which in fact turned out to be the case [Schm5]. This suggested interpreting the
somewhat mysterious group Hd(DMϕ ,L) as holomorphic sections of a vector
bundle over U — a sort of Radon transform. For a discrete subgroup Γ ⊂ M
there is an “automorphic version” of this construction [WW], a variant of which
has been used effectively in recent years (cf. [EGW], [Gi] and [C1], [C2], [C3]).
The study of the cycle spaces themselves has turned out to be a rich subject with
applications to representation theory; a recent comprehensive account is given
in [FHW].

In concluding this introduction, we would like to observe that when we be-
gan this project we were of the view that Mumford-Tate groups and Mumford-
Tate domains were primarily of interest because of their use in the period map-
pings arising from algebraic geometry. As our work has evolved, we have come
to the point of view that the objects in the title of this monograph are arguably
of equal interest in their own right, among other things for the rich arithmetic
and representation-theoretic structure that they reveal.

34It may be shown that U is an open set in the Hilbert scheme associated to Oϕ ⊂ qDMϕ .
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work. Secondly, we would like to thank Colleen Robles, J. M. Landsberg, and
Paula Cohen for valuable suggestions and helpful edits. Lastly, we would like
to express our enormous appreciation to Sarah Warren for her work in typing
the manuscript through seemingly innumerable iterations and revisions.35

Notations (the terms to be explained in the text).

• Throughout, V will denote a rational vector space. For k = R or C we
set Vk = V⊗Qk.

• S and U will denote the Deligne torus and its maximal compact subgroup
as defined in Section I.A.

• A Hodge structure on V will be denoted by (V, ϕ̃), or frequently simply
by Vϕ̃. A polarized Hodge structure will be denoted by (V,Q, ϕ) or
(Vϕ, Q).

• Eϕ̃ will denote the endomorphism algebra End(V, ϕ̃) of (V, ϕ̃).

• Polarized Hodge structures on a Q-vector space V with polarizing form
Q will be denoted by ϕ. The space of all such, with given Hodge number
hp,q, is a period domain D. The period domain is acted on transitively by
the real Lie group G(R) := Aut(VR, Q), with isotropy group of ϕ ∈ D
denoted by Hϕ, or just H if no confusion is possible.

• The compact dual qD is given by all filtrations F • on VC with dimF p =
fp =

¸
p′=p

hp
′,q′ and satisfying the first Hodge-Riemann bilinear relations.

It is a rational, homogeneous variety G(C)/P defined over Q and with
Plücker embedding qD ⊂ PN . The Plücker coordinate of F • ∈ qD will be
denoted by [F •].36

• For ϕ ∈ D, F •ϕ will denote the corresponding point in qD.

• The Mumford-Tate group of ϕ∈D will be denoted byMϕ; that of F •∈ qD
will be denoted by MF • . Sometimes, when no confusion is possible and
to minimize notational clutter, we will set M = Mϕ or M = MF • .

35The third author would also like to acknowledge partial support from EPSRC through First
Grant EP/H021159/1.

36In a few circumstances we will omit the • in F •, as including it would entail distracting
notational clutter. Examples are Hg•,•(F,W ), Hg•,•̂(F,W )

and Hg•,•(F,E).
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• Integral elements of the canonical exterior differential system on qD will
be denoted by E ⊂ TF • qD. The corresponding Mumford-Tate group will
be denoted by M(F •,E).

• Mumford-Tate domains will be denoted by DMϕ or by just DM if confu-
sion is unlikely, for ϕ ∈ D, and by qDMF• or again qDM for F • ∈ qD.

• A Hodge representation is denoted

(M,ρ, ϕ)

where
ρ : M → Aut(V,Q)

is a representation and

ϕ : U(R)→M(R)

is a circle such that (V,Q, ρ ◦ ϕ) gives a polarized Hodge structure.

• A Hodge domain is a homogeneous complex manifoldDm=Ma(R)/Hϕ

where M is a reductive Q-algebraic group and ϕ : U(R) → M(R) is a
circle such that (m, B,Ad ◦ϕ) is a Hodge representation.

• Z ⊂ qD will be the set of F • = {F p} such that some F p⊗F n−p+1 → VC
fails to be an isomorphism. The remaining points F • ∈ qD\Z will all
give indefinitely polarized Hodge structures and in Chapters V–VII will
frequently be denoted by ϕ where ϕ : S(U) → Aut(VR, Q) defines the
Hodge structure.

• We denote by G the Q-algebraic group Aut(V,Q), and for any field k⊇
Q, G(k) denotes the k-valued points of G. Similar notations will be used
for other Q-algebraic groups.

• K will denote a maximal compact subgroup of G(R). As will be seen, a
ϕ ∈ D will determine a unique K with Hϕ ⊂ K, sometimes denoted by
Kϕ.

• A Lie or algebraic group A is an almost direct product of subgroups Ai
if the intersections Ai ∩Aj are finite and the map A1×· · ·×Am → A is
finite and surjective. We denote by A0 the identity components in either
the Lie or algebraic group sense.

• We set T k,l = T k,l(V ) = (⊗kV )⊗ (⊗l qV ) and T •,• = ⊕
k,l
T k,l.
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• For either ϕ ∈ D or F • ∈ qD, we denote by Hgk,lϕ or Hgk,lF • the set of
Hodge classes in T k,l. Hg•,•ϕ = ⊕

k,l
Hgk,lϕ , and similarly Hg•,•F • , will be

the algebra of Hodge tensors. For M a group, we denote by Hg•,•M the
algebra of M -Hodge tensors, as defined in Section IV.A.

• We denote by NLϕ, |NLϕ, NLF • , NLM , |NLM the various Noether-Lef-
schetz loci, to be defined in Section II.C and Chapter VI.

• For a linear algebraic group A ⊂ GL(W ), we denote by A′ ⊂ GL(W )
the subgroup defined by

A′ =
{
a ∈ GL(W ) : a fixes all w ∈ T •,•W

that are fixed by A

}
.

• For an algebraic torus T , we denote by X∗(T ), X∗(T ) the groups of
characters, respectively co-characters of T .

• For M ⊂ G a Q-algebraic subgroup and k = R or C, we denote by
NG(M,k) the normalizer of M(k) in G(k).

• WM(T,R),WM(T,R)0, andWM(T,C) will denote various Weyl groups,
defined in Section VI.D.

• End(V, ϕ) or End(Vϕ) will denote the algebra of endomorphisms of a
Hodge structure Vϕ.

• CM-Hodge structure will be the standard abbreviation for a complex mul-
tiplication Hodge structure.

• Given a number field F , for k equal to R or C, SF (k) will denote the set
of embeddings of F in k.

• F c will denote the Galois closure of a field F . For (F,Π) an oriented CM
field associated to a polarized CM-Hodge structure (see Section V.A),
F ′ will denote the generalized reflex field (which depends on Π), and
R(F,Π) will denote the generalized Kubota rank.

• The notations OIF(n), subOIF(n), OCMF(n), ÕCMF(n), WCMHS,
and SCMHS all represent concepts associated to CM-Hodge structure;
see Section VI.B.

• Corr(A,Q) will denote the Q-correspondences of an abelian variety A;
see Section V.E.
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• AQ-quasi-unitary basis for a polarized Hodge structure VC= ⊕
p+q=n

V p,q

is given by bases ωp,i for V p,q satisfying

(i) ωn−p,i = ω̄p,i;

(ii) (
`
−1)2p−nQ(ωp,i, ω̄p,j) = δij .

• Nilpotent orbits will be denoted by Φnilp.

• The notations and terminology from the theory of Lie groups and Lie
algebras and their representations are collected in the appendix to Chapter
IV, where most of the discussion involving Lie theory takes place.

• The canonical exterior systems generated by the infinitesimal period re-
lation (IPR) will be denoted by I ⊂ T qD.

• Variations of Hodge structure will be denoted by

Φ : S → Γ\D.

• The Noether-Lefschetz locus of a variation of Hodge structure will be
denoted by

NLs0(S) ⊂ S.
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