Climate Change Biological and Human Aspects Second Edition

The second edition of this acclaimed text has been fully updated and substantially expanded to include the considerable developments (since publication of the first edition) in our understanding of the science of climate change, its impacts on biological and human systems, and developments in climate policy. As well as being completely revised throughout, major updates include:

Considerable expansion of the sections on climate impacts on early societies in history, and biological impacts;

Updated data and graphs on energy production and consumption;

Completely new chapter sections on: climate thresholds; the Kyoto II conference; Canadian, Australian and New Zealand energy and climate policy;

A new appendix on 'Further thoughts for consideration' to encourage discussion by students and others.

Written in an accessible style, this book provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology, human ecology and Earth system science. It has been written to speak across disciplines. It will again prove to be invaluable to a wide range of readers, from students in the life sciences who need a brief overview of the basics of climate science, to atmospheric science, geography, geoscience and environmental science students who need to understand the biological and human ecological implications of climate change. It is also a valuable reference text for those involved in environmental monitoring, conservation and policy-making seeking to appreciate the science underpinning climate change and its implications.

The United Nations Environment Programme (UNEP) cited the first edition as one of the top climate change science books of the 21st century.

Jonathan Cowie has spent many years conveying the views of learned societies in the biological sciences to policy-makers, and in science communication (promotion, publishing, and press liaison). His earlier postgraduate studies related to energy and the environment. He is a former Head of Science Policy and Books at the Institute of Biology (UK). He is also author of *Climate and Human Change: Disaster or Opportunity?* (1998).

Praise for this edition:

"A comprehensive review of the science of climate change, the impacts of climate change on biological and human systems, and their interrelatedness. An excellent contribution to the growing recognition that knowledge of biological and human systems is needed to understand climate change."

Gordon Bonan, National Center for Atmospheric Research

"... readers gain an appreciation of the wide-ranging consequences of climate change with many examples and analogies ... it is a book a climate scientist, or any concerned citizen of the world, should read."

Paul A. Dirmeyer, George Mason University

Praise for the First Edition:

"... a fine treatment of global climate change and interactions with biological systems... everyone is likely to gain a fresh perspective or learn something new."

EOS

"... reader-friendly, quantitative, authoritative, but above all, stimulating; the pages dare you not to turn them over and read further."

The Biologist

"... measured, informative, balanced, scientifically sound, and as up-to-date as a book can possibly be in these days of rapid information accretion."

Bulletin of the British Ecological Society

"There is so much to gain from Cowie's book ... I know of no other source ... that brings together the breadth and depth of material that this book does.... the bottom line is that anyone who wants to understand climate change and its impacts ... should buy this book.... Cowie does a brilliant job of weaving together the evolution of life with the evolution of Earth's climate."

Bioscience

"... an impressive endeavor... the strength of this contribution is precisely the interdisciplinary approach taken to such a multifaceted challenge."

Global Environmental Politics

Climate Change

Biological and Human Aspects Second Edition

JONATHAN COWIE

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9781107603561

© Jonathan Cowie 2007, 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2007 Second edition 2013

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Cowie, Jonathan. Climate change : biological and human aspects / Jonathan Cowie. – 2nd ed. p. cm. Includes bibliographical references and index. ISBN 978-1-107-60356-1 (paperback)

 $1. \ Climatic \ changes - History. \quad 2. \ Paleoclimatology. \quad 3. \ Climatic \ changes - Environmental \ aspects.$

Human beings – Effect of environment on.
Physical anthropology.
Mass extinctions.
Title.

QC903.C69 2013

551.6-dc23 2012013138

ISBN 978-1-107-60356-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> In memory of Harry Harrison Making room

(12th March 1925–15th August 2012)

Contents

Figures	oage xiii
Acknowledgements for the first edition	xix
Acknowledgements for the second edition	xxi
Introduction	1
1. An introduction to climate change	4
1.1 Weather or climate	5
1.2 The greenhouse effect	5
1.3 The carbon cycle	14
1.4 Natural changes in the carbon cycle	23
1.5 Pacemaker of the glacial-interglacial cycles	24
1.6 Non-greenhouse influences on climate	31
1.7 The water cycle, climate change and biology	33
1.8 From theory to reality	35
1.9 References	37
2. Principal indicators of past climates	40
2.1 Terrestrial biotic climatic proxies	42
2.1.1 Tree-ring analysis (dendrochronology)	42
2.1.2 Isotopic dendrochronology	45
2.1.3 Leaf shape (morphology)	47
2.1.4 Leaf physiology	48
2.1.5 Pollen and spore analysis	49
2.1.6 Species as climate proxies	52
2.2 Marine biotic climatic proxies	54
2.2.1 ¹⁸ O Isotope analysis of forams and corals	54
2.2.2 Alkenone analysis	58
2.3 Non-biotic indicators	59
2.3.1 Isotopic analysis of water	59
2.3.2 Boreholes	61
2.3.3 Carbon dioxide and methane records as palaeoclimatic forcin	g
agents	61
2.3.4 Dust as an indicator of dry-wet hemispheric climates	62
2.4 Other indicators	62
2.5 Interpreting indicators	63
2.6 Conclusions	63
2.7 References	64

vii

viii	Contents	
	3. Past climate change	66
	3.1 Early biology and climate of the Hadean and Archeaen eons	
	(4.6–2.5 bya)	66
	3.1.1 The pre-biotic Earth (4.6–3.8 bya)	66
	3.1.2 The early biotic Earth (3.8–2.3 bya)	67
	3.2 Major bio-climatic events of the Proterozoic eon (2.5–0.542 bya)	71
	3.2.1 Earth in the anaerobic–aerobic transition (2.6–1.7 bya)	71
	3.2.2 The aerobic Earth (from 1.7 bya)	74
	3.3 Major bio-climatic events of the pre-Quaternary Phanerozoic	
	(542–2 mya)	80
	3.3.1 Late-Ordovician extinction (455–435 mya)	80
	3.3.2 Late-Devonian extinction (365–363.5 mya)	81
	3.3.3 Vascular plants and the atmospheric depletion of carbon	
	dioxide (350–275 mya)	81
	3.3.4 Permo–Carboniferous glaciation (330–250 mya)	84
	3.3.5 End-Permian extinction (251 mya)	85
	3.3.6 End-Triassic extinction (205 mya)	87
	3.3.7 Toarcian extinction (183 mya)	88
	3.3.8 Cretaceous–Tertiary extinction (65.5 mya)	89
	3.3.9 The Eocene (55–34 mya) and the Initial Eocene Thermal	
	Maximum (~55 mya)	92
	3.3.10 Eocene–Oligocene extinction (approximately 35 mya; or	
	33.9 mya?)	106
	3.3.11 Late-Miocene expansion of C_4 grasses (14–9 mya)	107
	3.4 Summary	112
	3.5 References	113
	4. The Oligocene to the Quaternary: climate and biology	119
	4.1 The Oligocene (33.9–23.03 mya)	119
	4.2 The end Miocene (9–5.3 mya)	121
	4.3 The Pliocene (5.3–2.6 mya)	122
	4.4 The current ice age	126
	4.5 The last glacial	132
	4.5.1 Overview of temperature, carbon dioxide and timing	132
	4.5.2 Ice and sea level	135
	4.5.3 Temperature changes within the glacial	135
	4.5.4 Biological and environmental impacts of the last glacial	147
	4.6 Interglacials and the present climate	156
	4.6.1 Previous interglacials	156
	4.6.2 The Allerød, Bølling and Younger Dryas (14 600–11 600	
	years ago)	160
	4.6.3 The Holocene (11 700 years ago–the Industrial Revolution)	166
	4.6.4 Biological response to the last glacial, LGM and Holocene	1.50
	transition	178
	4.7 Summary	189
	4.8 References	190

ix	Contents	
	5. Present climate and biological change	198
	5.1 Recent climate change	198
	5.1.1 The latter half of the Little Ice Age	198
	5.1.2 20th-century climate	202
	5.1.3 21st-century climate	203
	5.1.4 The Holocene interglacial beyond the 21st century	203
	5.1.5 Holocene summary	207
	5.2 Human change arising from the Holocene climate	208
	5.2.1 Climatic impacts on early human civilisations	208
	5.2.2 The Little Ice Age's human impact	216
	5.2.3 Increasing 20th-century human climatic insulation	224
	5.3 Climate and business as usual in the 21st century	225
	5.3.1 The IPCC Business-as-Usual scenario	225
	5.3.2 Uncertainties and the IPCC's conclusions	240
	5.4 Current human influences on the carbon cycle	249
	5.4.1 Carbon dioxide	250
	5.4.2 Methane	253
	5.4.3 Halocarbons	256
	5.4.4 Nitrous oxide	256
	5.5 References	257
	6. Current warming and likely future impacts	262
	6.1 Current biological symptoms of warming	262
	6.1.1 Current boreal dendrochronological response	262
	6.1.2 Current tropical rainforest response	264
	6.1.3 Some biological dimensions of the climatic change fingerprint	266
	6.1.4 Phenology	273
	6.1.5 Biological communities and species shift	278
	6.2 Case study: climate and natural systems in the USA and Canada	297
	6.3 Case study: climate and natural systems in the UK	312
	6.4 Case study: climate and natural systems in Australasia	324
	6.5 Biological responses to greenhouse trends beyond the 21st century	328
	6.6 Possible surprise responses to greenhouse trends in the 21st century	
	and beyond	329
	6.6.1 Extreme weather events	330
	6.6.2 Greenhouse gases	333
	6.6.3 Sea-level rise	334
	6.6.4 Methane hydrates (methane clathrates)	342
	6.6.5 Volcanoes	346
	6.6.6 Oceanic and atmospheric circulation	349
	6.6.7 Ocean acidity	353
	6.6.8 Climate thresholds	355
	6.6.9 The probability of surprises	358
	6.7 References	359

x		Contents	
7	The human ecology	of climate change	367
1	7.1 Population (p	ast present and future) and its environmental impact	367
	7.1 1 Popula	tion and environmental impact	367
	7.1.1 Topula 7.1.2 Past ar	ad present population	375
	7.1.2 Future	population	378
	7.1.5 Future 7.1.4 Food	population	380
	7.1.4 1000	t on other species	382
	7.2 Energy supply		385
	7.2 Energy Suppry	v supply: the historical context	385
	7.2.2 Future	energy supply	391
	7 3 Human health	and climate change	395
	7.3.1 Health	and weather extremes	398
	7.3.2 Climat	te change and disease	404
	7.3.3 Floodi	ng and health	412
	7.3.4 Droug	hts	421
	7.4 Climate chang	ze and food security	422
	7.4.1 Past fo	bod security	422
	7.4.2 Presen	t and future food security and climate change	425
	7.5 The biology o	f reducing anthropogenic climate change	432
	7.5.1 Terrest	trial photosynthesis and soil carbon	433
	7.5.2 Manip	ulating marine photosynthesis	438
	7.5.3 Biofue	els	439
	7.6 Summary and	conclusions	442
	7.7 References		443
8	Sustainability and p	olicy	449
	8.1 Key developm	nents of sustainability policy	450
	8.1.1 UN Co	onference on the Human Environment (1972)	450
	8.1.2 The Cl	lub of Rome's Limits to Growth (1972)	452
	8.1.3 World	Climate Conference (1979)	453
	8.1.4 The We	orld Conservation Strategy (1980)	453
	8.1.5 The Bi	randt Report: Common Crisis North-South (1980)	454
	8.1.6 The Br	rundtland, World Commission on Environment and	
	Develo	opment Report (1987)	455
	8.1.7 United	Nations' Conference on the Environment and	
	Develo	opment: Rio de Janeiro (1992)	456
	8.1.8 The Ky	yoto Protocol (1997)	457
	8.1.9 Johann	nesburg Summit: UNCED+10 (2002)	459
	8.1.10 2002-2	2007	460
	8.1.11 The ru	n-up to Kyoto II (2008–2011)	461
	8.2 Global energy	v sustainability and carbon	463
	8.2.1 Prospe	ects for savings from changes in land use	465
	8.2.2 Prospe	ects for savings from improvements in energy efficiency	466
	8.2.3 Prospe	ects for fossil carbon savings from renewable energy	470
	8.2.4 Prospe	ects for carbon-capture technology	472

	xi	Contents	
,			
		8.2.5 Prospects for nuclear options	476
		8.2.6 Overall prospects for fossil carbon savings to 2025	480
		8.3 Energy policy and carbon	481
		8.3.1 Case study: USA	482
		8.3.2 Case study: Canada	486
		8.3.3 Case study: UK	489
		8.3.4 Case study: China and India	498
		8.3.5 Case study: Australia and New Zealand	504
		8.4 Possible future energy options	508
		8.4.1 Managing fossil carbon emissions: the scale of the problem	508
		8.4.2 Fossil futures	510
		8.4.3 Nuclear futures	511
		8.4.4 Renewable futures	512
		8.4.5 Low-energy futures	513
		8.4.6 Possible future energy options and greenhouse gases	514
		8.5 Future human and biological change	515
		8.5.1 The ease and difficulty of adapting to future impacts	518
		8.5.2 Future climate change and human health	524
		8.5.3 Future climate and human-ecology implications for wildlife	525
		8.5.4 Reducing future anthropogenic greenhouse gas emissions	526
		8.5.5 A final conclusion	528
		8.6 References	528
		Appendix 1 Glossary and abbreviations	535
		Glossary	535
		Abbreviations	539
		Appendix 2 Biogeological chronology	543
		Appendix 3 Calculations of energy demand/supply and orders of magnitude	546
		Calculations of energy demand/supply	546
		Orders of magnitude	547
		Sources	547
		Appendix 4 Further considerations: climate science and policy beyond 2013	548
		Index	551

Figures

1.1	A summary of the principal solar-energy flow and balance in the Earth's atmosphere.	page 7
1.2	The contribution from each of the principal anthropogenic	1.18
	greenhouse gases due to the change in warming (radiative forcing)	
	(a) from 1980 to 1990, (b) and for 2005.	12
1.3	Broad estimates of the principal annual carbon sources and sinks in	
	gigatonnes of carbon as well as approximate annual movements of	
	carbon about the carbon cycle in gigatonnes of carbon <i>per annum</i>	
	average for the 1990s.	15
1.4	Outline of northern hemispheric seasonality effects of atmospheric	
	carbon dioxide concentration 1958–2011 through to the early 21st	
	century.	18
1.5	The growth in atmospheric carbon dioxide.	21
1.6	Atmospheric carbon dioxide and methane palaeorecord for the past	
	glacial-interglacial cycle plotted with regional temperature change, as	
	indicated by the ice hydrogen isotope proxy.	24
1.7	Milankovitch orbital parameters of eccentricity, axial tilt and	
	precession of the equinoxes.	25
1.8	Examples of interacting positive- and negative-feedback mechanisms	
	affecting climate change.	27
2.1	Approximate, smoothed-average northern high-latitude temperature	
	changes over the past 2000 years, based originally on several	
	dendrochronological series and deviating from the 1601–1974 average	. 44
2.2	The variation in size of pollen grains from two different species of the	
	same genus may overlap, impeding identification.	51
2.3	Approximate Cenozoic–present global temperature trends compared to)
	1990. as estimated from 18 O analysis of composite benthic foram	
	records from the Atlantic Deep Sea Drilling Program sites.	57
3.1	A broad outline of Phanerozoic atmospheric carbon dioxide.	83
3.2	A sketch outline of the principal temperature changes of the Eocene	
	(55–34 mya).	93
3.3	Marine core from the early Eocene.	96
3.4	(a)The IETM/PETM CIE as revealed by the analysis of benthic	
	foraminifera. (b) ¹⁸ O climate proxy temperature analysis of	
	IETM/PETM strata. (c) Carbonate content of sediments in two cores	
	from the south Atlantic.	97
3.5	The wide diversification of ferns did not solely take place back when	
	they dominated many terrestrial biomes (as represented in panel (a))	

xiii

xiv		Figures	
		but extant ferns diversified later (more as represented in panel (b)),	
		filling the new environmental niches created by the angiosperms.	109
	4.1	Sea-water density and temperature.	129
	4.2	Temperature changes around Antarctica as revealed by deuterium	
		analysis of ice cores.	132
	4.3	Approximate southern extent of ice over northern North America	
		during the deepest part of late Quaternary glacials.	136
	4.4	Approximate glacial ice extent over Europe during deepest part of late	
		Quaternary glacials.	137
	4.5	Carbon dioxide and methane relate to temperature. (a) Carbon dioxide,	
		(b) temperature (as derived from isotopic composition of the ice) and	
		(c) methane. (d) Track changes in the ice's ¹⁸ O isotope.	
		(e) Milankovitch insolation as calculated for June at 65°N.	138
	4.6	(a) 18 O isotope and (b) methane records from the northern and	
		southern hemispheres (Greenland and Antarctica) smoothed.	139
	4.7	A simplified representation of the Broecker conveyor.	140
	4.8	Summary pollen diagram from Okarito Pakihi, New Zealand.	141
	4.9	The Intertropical Convergence Zone (ITCZ) and key areas of South	
		American tropical forest.	144
	4.10	Altitudinal distribution of main vegetation belts across a Colombian	
		Andean mountain.	155
	4.11	The regional temperature of the present Holocene interglacial (broken	
		line) superimposed on the one following Termination V (solid line) as $\frac{1}{2}$	1.50
	4 1 0	represented by the change in Antarctic ice-core ² H.	158
	4.12	(a) Vostok deuterium record over the past 15 000 years, reflecting	
		Antarctic regional temperature change. (b) Greenland ice-core	
		Advantia Andre and interference in the set 15 000 years reflecting North	171
	4 1 2	Atlantic Arctic precipitation, and hence indirectly temperature.	101
	4.13	(algorithm of the second secon	166
	5 1	(glacial) of a warm (interglacial) mode.	100
	5.1 5.2	Northern homienhere elimete trende over 500 veers og digeerned from	199
	5.2	instrumental dendrochronological and Greenland ice core records	200
	53	Central Greenland temperature from the beginning of the 18th century	200
	5.5	(end of the pre-industrial era) to 16 000 years ago	209
	54	Global temperature by year and also using a 3-year-smoothed filter	20)
	5.4	relative to the 1961–90 average and covering the period 1850–2010	223
	55	The 1990 IPCC Business-as-Usual (B-a-U) scenario simulating the	223
	0.0	anticipated increase in global mean temperature with best estimate	
		(thick line) and upper and lower estimates (thin lines) showing the	
		temperature rise above the 1765 value.	225
	5.6	Graphs of the IPCC 1990 scenarios.	227
	5.7	(a) The IPCC (2001b) All Special Report on Emission Scenario	
		(SRES) temperature-change forecasts, which provide an envelope of	
		predicted 21st-century global climate change relative to the 1990	
		<i>temperature</i> . (b) The IPCC (2007) principal scenarios for the 20th and	

XV	Figures	
	21st centuries based on temperatures relative to the 1980–1999 average.	228
	5.8 (a) Global temperature for 1861–2002 and IPCC 1990 B-a-U scenario for the 21st century, relative to the 1961–90 average. (b) Global	
	temperature for 1850–2010 actual measurements and the various (best estimate) IPCC B a U scenarios up to 2100 from the 1990, 1995	
	2001 and 2007 assessment reports.	229
	5.9 (a) In parts of Antarctica (mainly the east) the ice is thickening $(+)$ and in other parts the ice is thinning $(-)$. (b) Sketch after an animation	
	from European Space Agency, Canadian Space Agency and Japanese Space Agency data.	246
	5.10 The world population 1950–2002.	250
:	5.11 Sources of atmospheric methane from the 1990s to 2001.	254
	6.1 The 1959 cycle of northern hemisphere carbon dioxide superimposed on the 2010 cycle	277
	6.2 (a) Vertical migration of species and communities due to climatic	_,,
	warming is frequently not uniform. (b) Horizontal migration of species	
	is rarely uniform.	279
	6.3 Extent of the minimum Arctic sea ice at the end of the summer	
	(September).	289
	6.4 Difficulties in predicting 21st-century change in the USA, in this case	
	by the Hadley and Canadian climate models.	299
	6.5 A breakdown of US freshwater consumption in 1995.	307
	6.6 Rough sketch maps of key aspects of North American climate change	a 1 0
	for the 21st century under B-a-U scenarios.	310
	6.7 Coast and land in the UK deemed to be at risk from sea-level rise.	313
	6.8 Forecasted key aspects of climate change for the British Isles up to the 2080s.	320
	6.9 Principal areas of England and Wales at risk from river flooding as a	
	result of an extreme weather event with a 1% chance of an event	
	happening in any given year, and from the sea with a 0.5% chance in	
	any year, if there were no flood defences.	322
	6.10 Key hotspots identified for Australia and New Zealand, assuming a	
	medium emissions scenario for 2050.	327
1	6.11 (a) A near-linear relationship between two variables and a relationship with a non-critical transition. (b) A relationship between two variables	
	that includes a critical transition.	356
	7.1 Carbon emissions per person from energy production in selected	
	countries in 2002 (shaded bars) and 2009 (white bars).	369
	7.2 Worldwide average wealth (annual income) per person in 2011 US	
	dollars.	370
	7.3 The decline in household size.	371
	7.4 (a) World population over 3000 years compiled from various	
	demographic, historic estimates and future forecasts. (b) World	
	population on a logarithmic scale.	377
	1.5 The past 150 years of the 3000 years represented in Figure 7.4(a).	3/8

kvi	Figures	
7.6	(a) Developing and industrial nations' contributions to global	
	population growth. (b) Geographical distribution of the global	
	population in 1950 and as predicted for 2050.	379
7.7	Land for global food production; cropland versus intensification.	384
7.8	The proportional contribution from various fuels made to the energy	
	budget of the (a) UK and (b) USA. (c) Summary of the proportional	
	contribution from various fuels to global energy supply.	387
7.9	Broad summary of global primary energy production/consumption in	
	million tonnes of oil equivalent (mtoe).	389
7.10	(a) Outline of developed and developing nations' emissions of carbon	
	by decade from fossil-fuel burning and cement production for each	
	decade. (b) Annual (not decadal) global emissions of carbon from	
	fossil-fuel burning (excluding other minority industrial sources) since	•••
	1950, the period of most emissions.	390
7.11	Global environmental change, development and health impacts.	396
7.12	Reported cases of <i>Salmonella enteritidis</i> by month in England and	405
7 1 2	Wales in 1995–7.	405
/.13	The location of the world's 842 million undernourished people	420
714	(1999-2001).	428
/.14	Spatial map comparison of (a) national cumulative carbon dioxide	
	emissions by country for 1950–2000 and (b) the regional distribution	
	of four climate-sensitive health consequences (mataria, mainutrition,	422
7 15	the properties of some 2.2. The fitted global content stocks in soil and	432
7.13	vagetation in different terrestrial biomes	121
Q 1	(a) The improvements in energy officiancy of some household	434
0.1	(a) The improvements in energy enclency of some nousehold	
	households with selected appliances	168
82	Commercial biofuel production 2000, 2010 by world region	408
83	USA's fossil carbon domestic production and consumption trends	484
8.J 8.4	(a) Sectoral breakdown of Canadian greenhouse gas sources in 2009	-0-
0.4	(a) Sectoral of canadian greenhouse gas sources in 2009.	
	trends	488
8 5	(a) UK's fossil carbon domestic production and consumption trends	100
0.5	(b) UK's fossil carbon consumption broken down by fuel type	494
86	China's fossil carbon domestic production and consumption trends	499
8.7	India's fossil carbon domestic production and consumption trends	502
8.8	Australia's total energy consumption its fossil carbon domestic	502
0.0	production and consumption	505
89	(a) New Zealand's fossil carbon domestic production consumption	505
0.9	and overall (including non-fossil) energy for the past three decades (b)	
	New Zealand's greenhouse gas emissions by sector in 2008	506
8 10	Past, present and likely future global energy demands for 1964 2004	200
0.10	and 2044.	509
8.11	Time horizons of various human activities, natural processes and	
	atmospheric carbon dioxide.	516

xvii	xvii Figures		
	8.12 The fundamental economic problem.	518	
	8.13 (a) Crop and pasture regions of the world. (b) Regions of the world		
	likely to see an increase in precipitation in a $4^{\circ}C$ world. (c) Regions of the world likely to see an decrease in precipitation in a $4^{\circ}C$ world.	523	

Acknowledgements for the first edition

I would very much like to thank all those in UK bioscience with whom I have interacted in some way or other on climate-change matters. In particular, I should thank a good number who have been on the various Institute of Biology science committees since the 1990s. This also goes to a score or two of my fellow members of the British Ecological Society and the Geological Society of London. A special thank you goes to those who have alerted (and, as often as not, invited) me to workshops and symposia on climate and energy issues as well as on biosphere science. I have found every one useful in at least one way: many provided a number of new insights and all gave me a reality check. Thank you.

This book also owes a lot to some research bodies. In the UK we are quite bad at making data from tax-payer-funded research publicly available (even for education and policy purposes). This is not so in the USA and so I greatly valued the open access that the National Oceanic and Atmospheric Administration give to their palaeoclimate-related data (which I have used to generate a number of the figures). Interested readers can visit their website at www.ncdc.noaa.gov/oa/ncdc.html. I am also extremely appreciative of the UK Environment Agency's current (2006) Chief Executive, without whom Figure 6.5 [Figure 6.9 in the second edition] simply would not have been presented! Then there are the many who sent paper off-prints (e-mailed pdf files). There are too many to mention but be assured all are referenced.

Talking of references, as mentioned in the Introduction, as far as possible I have taken either major reports, many of which are available on the internet, or used high-impact-factor journals that can be found in most university libraries (these in turn cite papers in more specialist publications). However, I have also used a number of World Health Organization (WHO) press releases. This comes from my background in science policy, and the WHO have been sending me these for the best part of two decades. You will not find these in university libraries but fortunately you too can seek these out, at www.who.int/mediacentre/news/en.

A mention also has to go to the friendly and helpful librarians of Imperial College London, whose work really is appreciated. Then there are all those who have facilitated my site and field visits in the UK and abroad, be they to power stations (fossil, hydroelectric and nuclear), sites of special scientific interest (in the literal and not just the UK technical sense of the term) and educational institutions.

A thank you also goes to Peter Tyers for the [first edition's] cover picture. This is the second time he has done this for me, but then he is a good photographer.

Finally I must specifically thank Cambridge University Press and freelance copy editor Nik Prowse for work on the manuscript. I like to think that I have long since

xix

XX

Acknowledgements for the first edition

found my feet with words, but any capability for editorial spit and polish has always eluded me. Nik has also greatly helped standardise the referencing and presentation. I therefore really do value good editors (and so should you) and especially those who appreciate those who try to do things a little differently. With luck you will notice.

Acknowledgements for the second edition

In addition to those who kindly helped with the first (2007) edition – as this book firmly builds on that work - I must thank those who helped me develop this updated and expanded second edition. For permission to use figures and data I am appreciative to the following organisations: the Intergovernmental Panel on Climate Change (IPCC), the Earth Science Research at the Laboratory of the National Oceanic and Atmospheric Administration, and the Met Office UK. For permission to reproduce figures (and a photograph), as well as providing advice on data presentation, I am indebted to Timothy Andrews, Gerd Folberth, Jonathan Patz, Pieter Tans and Jim Zachos. A tip of the hat goes to Ian Spellerberg for facilitating some of the contacts for my Australasian sojourn. Here I am most grateful to David Karoly, Rodney Keenan, Ashok Parbhu, Simon Watts and Jez Weston for being generous in affording time and their briefing on climate change impacts and policy in Australia and New Zealand. I have to confess that in this regard I feel somewhat guilty. I had hoped to give more space to climate change and policy matters in these countries. Alas the sheer volume of new science arising in the past 6 years, and the constraints in fitting this into the allocated word count, meant that I could not include nearly as much as I would have liked. Nonetheless I found their briefings most useful, not to mention fascinating, and I hope that my condensing matters down does not do them a disservice.

At this point I must make the obligatory statement that any errors with the science in this book are my own and not those of the above good folk.

I must also thank the Geological Society and British Ecological Society. Of the 'climate surprises' discussed in this book's first edition, the notion that we might at some stage cross a critical transition and climate threshold somewhat analogous to the initial Eocene carbon isotope excursion (CIE) has gained some traction: it was even identified in the IPCC's 2007 Assessment's Working Group I report (pages 442-3 of that work), although it concluded that there was still 'too much uncertainty'. What was needed was a way to bring the current knowledge on this topic together, and so I proposed to the Geological Society the idea of an international symposium on this topic. This suggestion also gained support from the British Ecological Society. In November 2010 a 2-day symposium on past carbon-induced abrupt climate change and how it might inform us regarding future change was held (the first-ever joint event between the British learned societies for geologists and ecologists). There was also an end-of-symposium evening discussion that attracted governmental policy advisors. The outcomes of this symposium have contributed to the discussion in this second edition. Here appreciation goes to my symposium co-convener Anthony Cohen who was invaluable in identifying some of the speakers and in attracting some further sponsorship, as well as Georgina Worrall of the Geological Society who was

ххі

xxii

Acknowledgements for the second edition

the event's organising secretary. Once again, any error in my attempts to convey the science are my own, and not the learned bodies involved or the symposium's speakers. Finally, as with the first edition, once again I must specifically thank Cambridge

University Press staff and freelance copy editor Nik Prowse (www.nikprowse.com) for work on the manuscript. They do what I cannot, and for that I am truly indebted.