

CAMBRIDGE LIBRARY COLLECTION

Books of enduring scholarly value

Mathematics

From its pre-historic roots in simple counting to the algorithms powering modern desktop computers, from the genius of Archimedes to the genius of Einstein, advances in mathematical understanding and numerical techniques have been directly responsible for creating the modern world as we know it. This series will provide a library of the most influential publications and writers on mathematics in its broadest sense. As such, it will show not only the deep roots from which modern science and technology have grown, but also the astonishing breadth of application of mathematical techniques in the humanities and social sciences, and in everyday life.

Theory of Groups of Finite Order

The British mathematician William Burnside (1852–1927) and Ferdinand Georg Frobenius (1849–1917), Professor at Zurich and Berlin universities, are considered to be the founders of the modern theory of finite groups. Not only did Burnside prove many important theorems, but he also laid down lines of research for the next hundred years: two Fields Medals have been awarded for work on problems suggested by him. *Theory of Groups of Finite Order*, originally published in 1897, was the first major textbook on the subject. The 1911 second edition (reissued here) contains an account of Frobenius's character theory, and remained the standard reference for many years.

Cambridge University Press has long been a pioneer in the reissuing of out-of-print titles from its own backlist, producing digital reprints of books that are still sought after by scholars and students but could not be reprinted economically using traditional technology. The Cambridge Library Collection extends this activity to a wider range of books which are still of importance to researchers and professionals, either for the source material they contain, or as landmarks in the history of their academic discipline.

Drawing from the world-renowned collections in the Cambridge University Library and other partner libraries, and guided by the advice of experts in each subject area, Cambridge University Press is using state-of-the-art scanning machines in its own Printing House to capture the content of each book selected for inclusion. The files are processed to give a consistently clear, crisp image, and the books finished to the high quality standard for which the Press is recognised around the world. The latest print-on-demand technology ensures that the books will remain available indefinitely, and that orders for single or multiple copies can quickly be supplied.

The Cambridge Library Collection brings back to life books of enduring scholarly value (including out-of-copyright works originally issued by other publishers) across a wide range of disciplines in the humanities and social sciences and in science and technology.

Theory of Groups of Finite Order

WILLIAM BURNSIDE

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paolo, Delhi, Mexico City

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781108050326

© in this compilation Cambridge University Press 2012

This edition first published 1911 This digitally printed version 2012

ISBN 978-1-108-05032-6 Paperback

This book reproduces the text of the original edition. The content and language reflect the beliefs, practices and terminology of their time, and have not been updated.

Cambridge University Press wishes to make clear that the book, unless originally published by Cambridge, is not being republished by, in association or collaboration with, or with the endorsement or approval of, the original publisher or its successors in title.

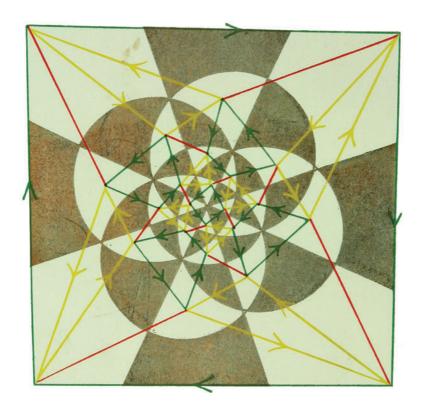
The original edition of this book contains a number of colour plates, which have been reproduced in black and white. Colour versions of these images can be found online at www.cambridge.org/9781108050326

THEORY OF GROUPS OF FINITE ORDER

CAMBRIDGE UNIVERSITY PRESS **London: FETTER LANE, E.C. C. F. CLAY, MANAGER

Edinburgh: 100, PRINCES STREET Berlin: A. ASHER AND CO. Leipzig: F. A. BROCKHAUS Aew York: G. P. PUTNAM'S SONS Bombay and Calcuita: MACMILLAN AND CO., Ltd.

All rights reserved



The octohedral group represented as a colour-group

THEORY OF GROUPS

OF

FINITE ORDER

BY

W. BURNSIDE, M.A., F.R.S.

D.Sc. (Dublin), LL.D. (Edinburgh)

HONORARY FELLOW OF PEMBROKE COLLEGE, CAMBRIDGE
PROFESSOR OF MATHEMATICS AT THE ROYAL NAVAL COLLEGE, GREENWICH

SECOND EDITION

Cambridge at the University Press

Cambridge:

PRINTED BY JOHN CLAY, M.A. AT THE UNIVERSITY PRESS.

PREFACE TO THE SECOND EDITION

VERY considerable advances in the theory of groups of finite order have been made since the appearance of the first edition of this book. In particular the theory of groups of linear substitutions has been the subject of numerous and important investigations by several writers; and the reason given in the original preface for omitting any account of it no longer holds good.

In fact it is now more true to say that for further advances in the abstract theory one must look largely to the representation of a group as a group of linear substitutions. There is accordingly in the present edition a large amount of new matter. Five Chapters, XIII to XVII, are devoted to the theory of groups of linear substitutions, including their invariants. In Chapter IV, which is also new, certain properties of abstract groups, to which no reference was made in the first edition, are dealt with; while Chapter XII develops more completely the investigation of the earlier sections of Chapter IX of the first edition.

All the chapters dealing with the abstract theory, including that of the group of isomorphisms, have been brought together in the earlier part of the book; while from Chapter X onwards various special modes of representing a group are investigated. The last Chapter of the first edition has none to correspond to it in the present, but all results of importance which it contained are given in connections in which they naturally occur. With this exception there are no considerable changes in the matter of the first edition though there is some re-arrangement, and in places additions have been made.

vi PREFACE

A number of special questions, most of which could not have been introduced in the text without somewhat marring the scheme of the work, have been dealt with in the notes.

Some of the examples, especially in the earlier part of the book, are suitable exercises for those to whom the subject is new. The examples as a whole, however, have not been inserted with this object, but rather (i) to afford further illustration of points dealt with in the text, (ii) where references are given, to call attention to points of importance not mentioned in the text, and (iii) to suggest subjects of investigation.

A separate index to the definitions of all technical terms has been prepared which it is hoped may be of considerable service to readers.

I owe my best thanks to the Rev. Alfred Young, M.A., Rector of Birdbrook, Essex, and formerly Fellow of Clare College, Cambridge, who read the whole of the book as it passed through the press. His careful criticism has saved me from many errors and his suggestions have been of great help to me. Mr Harold Hilton, M.A., Lecturer in Mathematics at Bedford College, University of London, and formerly Fellow of Magdalen College, Oxford, gave me great assistance by reading and criticising the chapters on groups of linear substitutions; and Dr Henry Frederick Baker, F.R.S., Fellow of St John's College, Cambridge, helped me with most valuable suggestions on the chapter dealing with invariants. To both these gentlemen I offer my sincere thanks. I must further not omit to thank correspondents, both English and American, for pointing out to me errors in the first edition. All these have, I hope, been corrected.

Finally I would again express my gratitude to the officers and staff of the University Press for their courtesy and for the care with which the printing has been carried out.

W. BURNSIDE

March 1911

PREFACE TO THE FIRST EDITION

THE theory of groups of finite order may be said to date from the time of Cauchy. To him are due the first attempts at classification with a view to forming a theory from a number of isolated facts. Galois introduced into the theory the exceedingly important idea of a self-conjugate sub-group, and the corresponding division of groups into simple and composite. Moreover, by shewing that to every equation of finite degree there corresponds a group of finite order on which all the properties of the equation depend, Galois indicated how far reaching the applications of the theory might be, and thereby contributed greatly, if indirectly, to its subsequent developement.

Many additions were made, mainly by French mathematicians, during the middle part of the century. The first connected exposition of the theory was given in the third edition of M. Serret's "Cours d'Algèbre Supérieure," which was published in 1866. This was followed in 1870 by M Jordan's "Traité des substitutions et des équations algébriques." The greater part of M. Jordan's treatise is devoted to a developement of the ideas of Galois and to their application to the theory of equations.

No considerable progress in the theory, as apart from its applications, was made till the appearance in 1872 of Herr Sylow's memoir "Théorèmes sur les groupes de substitutions" in the fifth volume of the Mathematische Annalen. Since the date of this memoir, but more especially in recent years, the theory has advanced continuously.

viii PREFACE TO THE FIRST EDITION

In 1882 appeared Herr Netto's "Substitutionentheorie und ihre Anwendungen auf die Algebra," in which, as in M. Serret's and M. Jordan's works, the subject is treated entirely from the point of view of groups of substitutions. Last but not least among the works which give a detailed account of the subject must be mentioned Herr Weber's "Lehrbuch der Algebra," of which the first volume appeared in 1895 and the second in 1896. In the last section of the first volume some of the more important properties of substitution groups are given. In the first section of the second volume, however, the subject is approached from a more general point of view, and a theory of finite groups is developed which is quite independent of any special mode of representing them.

The present treatise is intended to introduce to the reader the main outlines of the theory of groups of finite order apart from any applications. The subject is one which has hitherto attracted but little attention in this country; it will afford me much satisfaction if, by means of this book, I shall succeed in arousing interest among English mathematicians in a branch of pure mathematics which becomes the more fascinating the more it is studied.

Cayley's dictum that "a group is defined by means of the laws of combination of its symbols" would imply that, in dealing purely with the theory of groups, no more concrete mode of representation should be used than is absolutely necessary. It may then be asked why, in a book which professes to leave all applications on one side, a considerable space is devoted to substitution groups; while other particular modes of representation, such as groups of linear transformations, are not even referred to. My answer to this question is that while, in the present state of our knowledge, many results in the pure theory are arrived at most readily by dealing with properties of substitution groups, it would be difficult to find a result that could be most directly obtained by the consideration of groups of linear transformations.

The plan of the book is as follows. The first Chapter has been devoted to explaining the notation of substitutions. As

PREFACE TO THE FIRST EDITION

ix

this notation may not improbably be unfamiliar to many English readers, some such introduction is necessary to make the illustrations used in the following chapters intelligible. Chapters II to VII deal with the more important properties of groups which are independent of any special form of representation. The notation and methods of substitution groups have been rigorously excluded in the proofs and investigations contained in these chapters; for the purposes of illustration, however, the notation has been used whenever convenient. Chapters VIII to X deal with those properties of groups which depend on their representation as substitution groups. Chapter XI treats of the isomorphism of a group with itself. Here, though the properties involved are independent of the form of representation of the group, the methods of substitution groups are partially employed. Graphical modes of representing a group are considered in Chapters XII and XIII. In Chapter XIV the properties of a class of groups, of great importance in analysis, are investigated as a general illustration of the foregoing theory. The last Chapter contains a series of results in connection with the classification of groups as simple, composite, or soluble.

A few illustrative examples have been given throughout the book. As far as possible I have selected such examples as would serve to complete or continue the discussion in the text where they occur.

In addition to the works by Serret, Jordan, Netto and Weber already referred to, I have while writing this book consulted many original memoirs. Of these I may specially mention, as having been of great use to me, two by Herr Dyck published in the twentieth and twenty-second volumes of the Mathematische Annalen with the title "Gruppentheoretische Studien"; three by Herr Frobenius in the Berliner Sitzungsberichte for 1895 with the titles, "Ueber endliche Gruppen," "Ueber auflösbare Gruppen," and "Verallgemeinerung des Sylow'schen Satzes"; and one by Herr Hölder in the fortysixth volume of the Mathematische Annalen with the title "Bildung zusammengesetzter Gruppen." Whenever a result

в. *b*

X

Cambridge University Press 978-1-108-05032-6 - Theory of Groups of Finite Order William Burnside Frontmatter More information

PREFACE TO THE FIRST EDITION

is taken from an original memoir I have given a full reference; any omission to do so that may possibly occur is due to an oversight on my part.

To Mr A. R. Forsyth, Sc.D., F.R.S., Fellow of Trinity College, Cambridge, and Sadlerian Professor of Mathematics, and to Mr G. B. Mathews, M.A., F.R.S., late Fellow of St John's College, Cambridge, and formerly Professor of Mathematics in the University of North Wales, I am under a debt of gratitude for the care and patience with which they have read the proofsheets. Without the assistance they have so generously given me, the errors and obscurities, which I can hardly hope to have entirely escaped, would have been far more numerous. I wish to express my grateful thanks also to Prof. O. Hölder of Königsberg who very kindly read and criticized parts of the last chapter. Finally I must thank the Syndics of the University Press of Cambridge for the assistance they have rendered in the publication of the book, and the whole Staff of the Press for the painstaking and careful way in which the printing has been done.

W. BURNSIDE

July 1897

CONTENTS

CHAPTER I.

ON PERMUTATIONS.

§§		PAGE
1	Object of the chapter	1
. 2	Definition of a permutation	1
36	Notation for permutations; cycles; products of permutations	1-4
7, 8	Identical permutation; inverse permutations; order of	
	a permutation	46
9, 10	Circular, regular, similar and permutable permutations	7, 8
11	Transpositions; representation of a permutation as a	,
	product of transpositions; odd and even permuta-	
	tions; Examples	9, 10

CHAPTER II.

THE DEFINITION OF A GROUP.

12	Definition of a group	11, 12
13	The identical operation	12
14	Continuous, mixed, and discontinuous groups	13
15, 16	Order of an operation; product of operations; every operation of order mn , m and n relatively prime,	
	can be expressed in just one way as the product	1. 10
	of permutable operations of orders m and n .	14—16
17	Examples of groups of operations; multiplication table	
	of a group	17—19
18, 19	Generating operations of a group; defining relations;	
	simply isomorphic groups	20 - 22
20	Representation of a group of order N as a group of	
	regular permutations of N symbols	22 - 24
21	Various modes of representing groups	24
		b 2

xii

CONTENTS

CHAPTER III.

ON	THE SIMPLER PROPERTIES OF A GROUP WHICH .	ARE
	INDEPENDENT OF ITS MODE OF REPRESENTATION	
§ §		PAGE
22	Sub-groups; the order of a sub group is a factor of the order of the group containing it; various notations connected with a group and its sub-groups.	25—27
23	Common sub-group of two groups; further notations.	27, 28
24	Transforming one operation by another; conjugate operations and sub-groups; self-conjugate operations and self-conjugate sub-groups; Abelian groups; simple and composite groups.	29, 20
25	The operations of a group which are permutable with	,
	a given operation or sub-group form a group .	31, 32
26 27	Complete conjugate sets of operations and sub-groups Theorems concerning self-conjugate sub-groups; maximum self-conjugate sub-groups; maximum sub-	33, 34
	groups	34 - 36
28 - 31	Multiply isomorphic groups; factor-groups; direct pro-	
	duct of two groups	37—40
32	General isomorphism between two groups	41
33, 34	Permutable groups; the group generated by two self- conjugate sub-groups of a given group; Examples	4245
	CHAPTER IV.	
FURTH:	ER PROPERTIES OF A GROUP WHICH ARE INDEPE	NDENT
	OF 1TS MODE OF REPRESENTATION.	
35	If p^m (p prime) divides the order of a group, there is a sub-group of order p^m .	46, 47
36	Groups of order p^2 and pq	48
37	The number of operations of a group of order N whose n th powers are conjugate to a given operation is zero or a multiple of the highest common factor of N and n	4953
3840	Commutators; commutator sub-group or derived group; series of derived group; soluble groups; metabelian	
41—43	groups	5457
4447	inverse set	5760
	from it	60 - 63

CONTENTS xiii

CHAPTER V.

on	THE	COMPOSITION-S	ERIES	OF	A	GROUP
ON.	1111	COMPROSITION-9.	ERIES	or.	n.	GROUI

§§		PAGE
48	The composition-series, composition-factors and factor- groups of a given group.	64, 65
49, 50	Invariance of the factor-groups for different composition-	,
	series	65 - 68
51	Chief composition-series; invariance of its factor-groups	68 , 69
52, 53	Nature of the factor-groups of a chief-series; minimum self-conjugate sub-groups	6971
54	Construction of a composition-series to contain a given	
	chief-series	71
55, 56	Examples of composition-series	72, 73
57, 58	Theorems concerning composition-series	74, 75
59	Groups of order p^2q	76-80

CHAPTER VI.

ON THE ISOMORPHISM OF A GROUP WITH ITSELF.

60	Object of the chapter	81
61	Definition of an isomorphism; identical isomorphism.	82
62	The group of isomorphisms of a group	82, 83
63	Inner and outer isomorphisms; the inner isomorphisms	
	constitute a self-conjugate sub-group of the group	
	of isomorphisms	84, 85
64	The holomorph of a group	8688
65, 66	Isomorphisms which permute the conjugate sets .	8890
67	Permutation of sub-groups by the group of isomor-	
	phisms	91, 92
68	Definition of a characteristic sub-group; nature of a	
	group with no characteristic sub-group	92
69	Characteristic-series of a group	93
70	Definition of a complete group; a group with a com-	
	plete group as a self-conjugate sub-group must be	
	a direct product	93, 94
71, 72	Theorems concerning complete groups	
73	The orders of certain isomorphisms; Examples	97, 98

xiv CONTENTS

CHAPTER VII.

ON ABELIAN GROUPS.

§§		PAGE
74	Introductory	99
75	Every Abelian group is the direct product of	
	Abelian groups whose orders are powers of	
	primes	100
76	Limitation of the discussion to Abelian groups	
	whose orders are powers of primes	101
77	Existence of a set of independent generating	
	operations for such a group	101103
78	The orders of certain sub-groups of such a group	103, 104
79, 80	Invariance of the orders of the generating opera-	
	tions; simply isomorphic Abelian groups;	
	symbol for Abelian group of given type .	104—106
81	Determination of all types of sub-group of a given	
	Abelian group	
82	Characteristic series of an Abelian group	
83, 84	Properties of an Abelian group of type $(1, 1,, 1)$	110, 111
85	The group of isomorphisms and the holomorph	
	of such a group	111, 112
86	The orders of the isomorphisms of an Abelian	
	group	112
87	The group of isomorphisms and the holomorph	
	of any Abelian group	113
88	The group of isomorphisms and the holomorph	
00 00	of a cyclical group	
89. 90	The linear homogeneous group. Examples	-116-119

CHAPTER VIII.

ON GROUPS WHOSE ORDERS ARE THE POWERS OF PRIMES.

91	Object of the chapter	119
92	Every group whose order is the power of a prime	
	contains self-conjugate operations	119
93	The series of self-conjugate sub-groups $H_1, H_2,,$	
	H_n , E, such that H_i/H_{i+1} is the central of	
	G/H_{i+1}	120
94, 95	The series of derived groups	

	CONTENTS	xv
§§		PAGE
96	Every sub-group is contained self-conjugately in a	
	sub-group of greater order	122
97	The operations conjugate to a given operation .	123, 124
98, 99	Illustrations of preceding paragraphs	124-126
100	Operations conjugate to powers of themselves .	
101—103	Number of sub-groups of given order is congruent	•
	to 1, mod. p	128, 129
104	Groups of order p^m with a single sub-group of	,
	order p^s are cyclical, where p is an odd prime	130, 131
105	Groups of order 2^m with a single sub-group of	•
	order 2^s are cyclical unless s is 1, in which	
	case there is just one other type	131, 132
106	The quaternion group	132, 133
107	Some characteristic sub-groups	
108, 109	Groups of order p^m with a self-conjugate cyclical	
	sub-group of order p^{m-1}	134, 135
110, 111	Groups of order p^m with a self-conjugate cyclical	
	sub-group of order p^{m-2}	136—139
112	Distinct types of groups of orders p^2 and p^3 .	139, 140
113—116	Distinct types of groups of order p^4	140-144
117, 118	Tables of groups of orders p^2 , p^3 and p^4	144146
119	Examples	146-148

CHAPTER IX.

ON SYLOW'S THEOREM.

120	Proof of Sylow's theorem	149151
121	Generalisation of Sylow's theorem	152
122	Theorem concerning the maximum common sub-	
	group of two Sylow sub-groups	153, 154
123—125	Further theorems concerning Sylow sub-groups .	154157
126	Determination of all distinct types of group of	
	order 24	157-161
127	Determination of the only group of order 60 with	
	no self-conjugate sub-group of order 5	161, 162
128, 129	Groups whose Sylow sub-groups are all cyclical;	
•	their defining relations	163166
130	Groups with properties analogous to those of	
	groups whose orders are powers of primes;	
	Examples	166, 167

xvi

CONTENTS

CHAPTER X.

ON	PERMUTATION-GROUPS: TRANSITIVE AND INTRA	ANSITIVE
	GROUPS: PRIMITIVE AND IMPRIMITIVE GROUP	PS.
§§		PAGE
131	The degree of a permutation-group	168
132	The symmetric and the alternating groups	169
133	Transitive and intransitive groups; the degree of	•
	a transitive group is a factor of the order .	170, 171
134	Transitive groups whose permutations, except	,
	identity, permute all or all but one of the	
	symbols	171-173
135	Conjugate permutations are similar; self-conjugate	
	operations and self-conjugate sub-groups of a	
	transitive group	173, 174
136	Transitive groups of which the order is equal to	,
100	the degree	174—176
137	Multiply transitive groups; the order of a k -ply	
	transitive group of degree n is divisible by	
	$n(n-1)\dots(n-k+1)$	176—178
138	Groups of degree n, which do not contain the	110 110
100	alternating group, cannot be more than	
	$(\frac{1}{3}n+1)$ -ply transitive	178—180
139	The alternating group of degree n is simple except	100
200	when n is 4	180, 181
140, 14		181—185
142—14		101 100
	general isomorphisms between two groups .	186—189
145	Tests of transitivity	189—191
146	Definition of primitivity and imprimitivity; im-	100 101
	primitive systems	191, 192
147	Test of primitivity	192, 193
148	Properties of imprimitive systems	194, 195
149	Self-conjugate sub-groups of transitive groups; a	101, 100
	self-conjugate sub-group of a primitive group	
	must be transitive	195, 196
150	Self-conjugate sub-groups of k -ply transitive groups	200, 200
	are in general $(k-1)$ -ply transitive	197, 198
15115		
	groups of multiply transitive groups; a group	
	which is at least doubly transitive must, in	
	general, either be simple or contain a simple	
	group as a self-conjugate sub-group	198202
155	Construction of a primitive group with an im-	
	primitive self-conjugate sub-group	202, 203
156	Examples	203, 204

CONTENTS xvii

CHAPTER XI.

ON PERMUTATION-GROUPS: TRANSITIVITY AND PRIMITIVITY: (CONCLUDING PROPERTIES).

§§		PAGE
157—160	Primitive groups with transitive sub-groups of	
	smaller degree; limit to the order of a primitive	
	group of given degree	205 - 207
161	Property of the symmetric group	208, 209
162	The symmetric group of degree n is a complete	
	group except when n is 6 ; the group of	
	isomorphisms of the symmetric group of de-	
	gree 6	209, 210
163—165	Further limitations on the order of a primitive	
	group; examples of the same	210-214
166	Determination of all primitive groups whose degrees	
	do not exceed 8	214 - 221
167—169	Sub-groups of doubly transitive groups which leave	
	two symbols unchanged; complete sets of	
	triplets	221 - 224
170, 171	The most general permutation-group each of whose	
	operations is permutable with a given per-	
	mutation, or with every permutation of a	
	given group	224 - 227
172	The most general transitive group whose order	
	is the power of a prime	227229
173	Examples	229, 230

CHAPTER XII.

ON THE REPRESENTATION OF A GROUP OF FINITE ORDER AS A PERMUTATION-GROUP.

174	Definition of representation; equivalent and dis-	
	tinct representations	231, 232
175	The two representations of a group as a regular	
	permutation-group given by pre- and post-	
	multiplication are equivalent	232
176	The imprimitive systems in the representation of	
	a group as a regular permutation-group .	232, 233

xviii	CONTENTS	
§§		PAGE
177—179	To each conjugate set of sub-groups there corresponds a transitive representation; every transitive representation arises in this way.	922_926
180, 181		200200
	distinct conjugate sets of sub-groups	236-238
182, 183	The same set of permutations may give two or more distinct representations; connection with	
	outer isomorphisms	239
184, 185	Composition of representations; number of repre-	
	sentations of given degree	240, 241
186	A more general definition of equivalence	241, 242
187	Alternative process for setting up representations	242

CHAPTER XIII.

ON GROUPS OF LINEAR SUBSTITUTIONS; REDUCIBLE AND IRREDUCIBLE GROUPS.

188, 189	Linear substitutions; their determinants; groups of linear substitutions	243—245
190	Transposed groups of linear substitutions; conjugate groups of linear substitutions; gene-	
191	ralisation	245—247
	stitutions	247 - 249
192	Characteristic equation of a substitution; charac-	
	teristic of a substitution	249, 250
193	Canonical form of a linear substitution of finite order.	251, 252
194	order. Definition of an Hermitian form; definite forms;	201, 202
104	properties of a definite form	253—255
195	Existence of a definite Hermitian form which is	
	invariant for a group and its conjugate	255, 256
196	Standard form for a group of linear substitutions	
	of finite order	256, 257
197	Reducible and irreducible groups of linear sub-	
	stitutions; completely reducible groups	258
198 - 200	A group of linear substitutions of finite order is	
	either irreducible or completely reducible .	259 - 263

	CONTENTS	xix
§ §		PAGE
201	Proof of the preceding result when the coefficients are limited to a given algebraic field	264, 265
202	Substitutions permutable with every substitution of an irreducible group	265, 266
203	The group of linear substitutions permutable with every substitution of a given group of linear substitutions; Examples; Note	266—268
	CHAPTER XIV.	
ON THE	REPRESENTATION OF A GROUP OF FINITE OR	DER AS
	A GROUP OF LINEAR SUBSTITUTIONS.	
204	Definition of a manuscratation of distinct and against	
204	Definition of a representation; distinct and equiva- lent representations; Examples	269271
205	The identical representation; irreducible com-	071 070
206	ponents of a representation; reduced variables The number of linearly independent invariant	271, 272
	Hermitian forms for a representation and its	050 059
207	conjugate	272, 273
200	of a group as a transitive permutation-group	273—275
208	The completely reduced form of the representation of a group as a regular permutation-group;	
	all the irreducible representations occur in it;	
	the number of distinct irreducible representa- tions is equal to the number of conjugate sets.	276—278
209, 210	Irreducible representations with which the group	
	is multiply isomorphic; irreducible representations in a single symbol	278, 279
		,
	CHAPTER XV.	
	ON GROUP-CHARACTERISTICS.	
211	Explanation of the notation	280, 281
212	Set of group-characteristics; in conjugate repre-	-
	sentations corresponding group-characteristics are conjugate imaginaries	281, 282
		-

XX CONTENTS

§§		PAGE
213—215	Proof of relations between the sets of group-characteristics	283—287
216	Two representations of a group are equivalent if, and only if, they have the same group-characteristics	287, 288
217	Relations between the representation of a group as a transitive permutation-group when the	·
218	more general definition of equivalence is used Further relations between the group-character- istics; table of relations.	288, 289 290, 291
219, 220	Composition of the irreducible representations .	291—293
221	Two distinct conjugate sets cannot have the same	201 200
421	characteristic in every representation	293
222	Case of groups of odd order	294, 295
223, 224	Determination of the characteristics from the	,
,	multiplication table of the conjugate sets;	
	Example	295-297
225	The number of variables operated on by an irre-	
	ducible representation is a factor of the order	
	of the group	297, 298
226	Property of set of irreducible representations which	
	combine among themselves by composition .	298—3 00
227	Completely reduced form of the group on the homo-	
	geneous products of the variables operated on	200 201
228	by a group of linear substitutions The irreducible representation and conjugate sets	300, 301
226	of a factor-group	301, 302
229231	The reduction of a regular permutation-group;	301, 302
220201	the complete reduction of the general group	
	$\{G, G'\}$ of § 136	302307
232	The representation of the simple groups of orders	
	60 and 168 as irreducible groups in 3 variables	307—311
233	Nature of the coefficients in a group of linear	
	substitutions of finite order	311
234	Families of irreducible representations; the number	
	of families is equal to the number of distinct	
	conjugate sets of cyclical sub-groups	311-314
235	The characteristics of a family of representations	314, 315
236	Invariant property of the multiplication table of	010 015
027	conjugate sets	316, 317
237	Similar invariant property of the composition table	917 910
238	of the irreducible representations	317, 318 318390

CONTENTS xxi

CHAPTER XVI.

SOME APPLICATIONS OF THE THEORY OF GROUPS OF LINEAR SUBSTITUTIONS AND OF GROUP-CHARACTERISTICS.

§§		PAGE
239	Introductory	321
240, 24 1	Groups of order $p^{a}q^{\beta}$ are soluble	321—323
242	Representation of a group as a group of monomial	
	substitutions	324, 325
243	Application of this representation to obtain con-	
	ditions for the existence of self-conjugate	
	sub-groups	325 , 326
244	Particular cases; a group whose order is not	
	divisible by 12 or by the cube of a prime is	
2.45	soluble	327, 328
245	Further particular cases; the order, if even, of	000 000
0.40	a simple group is divisible by 12, 16 or 56.	328—330
246	Relations between the characteristics of a group	990 991
247	and those of any sub-group A transitive permutation-group whose operations	33 0, 33 1
241	permute all or all but one of the symbols	
	has a regular self-conjugate sub-group	331334
248	Groups of isomorphisms which leave E only un-	00100-
0	changed	334—336
249	Isomorphisms which change each conjugate set	331 331
-	into itself	336338
250	The irreducible components of a transitive per-	
	mutation-group	338, 339
251	Simply transitive groups of prime degree are	
	${\bf soluble} . \qquad .$	339 —341
252	Generalisation of preceding theorem	341 - 343
253	On the result of compounding an irreducible group	
	with itself; some properties of groups of odd	
0- 4	order	343-345
254	Criterion for the existence of operations of com-	040 047
055	posite order	346, 347
255	groups	34 8
256, 257	Congruences between characteristics which indicate	940
200, 201	the existence of self-conjugate sub-groups;	
	illustrations	34935
258	Every irreducible representation of a group whose	0.10
200	order is the power of a prime can be expressed	
	as a group of monomial substitutions	351, 3 52
259	Examples	353, 354

xxii

CONTENTS

CHAPTER XVII.

ON THE	INVARIANTS OF GROUPS OF LINEAR SUBSTIT	UTIONS.
§§		PAGE
260, 261	Definition of invariants and relative invariants; condition for existence of relative invariants; invariant in the form of a rational fraction.	355—357
262	Existence of an algebraically independent set of invariants.	357
263	Formation, for a group in n variables, of a set of $n+1$ invariants in terms of which all invariants are rationally expressible	357—359
264	On the possibility of replacing the above set of $n+1$ invariants by a set of n .	360
265	The group of linear substitutions for which each of a given set of functions is invariant.	360, 361
266—268	Examples of sets of invariants for certain special groups	362—366 366, 367
269	Property of invariants of an irreducible group.	300, 307
270	Condition that an irreducible group may have a quadratic invariant	367 , 3 68
271	invariants.	369
272	Examples	370, 371
	CHAPTER XVIII.	
ON	THE GRAPHICAL REPRESENTATION OF A GRO	UP.
273 274, 275	Introductory remarks	372
276 277—280	hold between the generating operations Graphical representation of a cyclical group . Graphical representation of the general group,	373—376 376—379
201 202	when no relations connect the generating operations.	379—384
281, 282	Graphical representation of the special group when relations connect the generating operations.	384-386
283	Illustration of the preceding paragraphs	386—389
284286	Graphical representation of the special group when	900909
201-200	the generating operations are of finite order.	389394

	CONTENTS	xxiii
\$\$ 287, 288 289 290, 291	Graphical representation of a group of finite order The genus of a group Limitation on the order and on the number of defining relations of a group of given genus: Examples; Note	PAGE 394—396 397 398—401
	• •	
	CHAPTER XIX.	
	GRAPHICAL REPRESENTATION OF GROUPS: GR US ZERO AND UNITY: CAYLEY'S COLOUR-GRO	
292	The diophantine relation connecting the order, the genus, and the number and orders of the generating operations	402, 403
293296	Groups of genus zero: their defining relations and graphical representation; the dihedral, tetrahedral, octahedral and icosahedral groups.	403—409
297—302	Groups of genus unity: their defining relations and graphical representation; groups of genus two	410419
303	The graphical representation of the simple group of order 168; deduction of its defining re-	
304307	lations	419—422 423—427
	CHAPTER XX.	
	ON CONGRUENCE GROUPS.	
308	Object of the chapter: the homogeneous linear group	428, 429
309, 310	determinant unity; its self-conjugate operations	429—431
311313	Its self-conjugate sub-groups; its composition- factors; the simple group defined by it.	431—434
314	The case $n=2$; the fractional linear group.	434-436
315-320	The distribution of its operations in conjugate sets	436442
321—324	Tetrahedral, octahedral and icosahedral sub-groups contained in it.	442447
325—327	Enumeration of all types of sub-groups contained in it	447—45]
328	Generalisation of the fractional linear group .	451, 452

xxiv	CONTENTS	
§§		PAGE
329, 33 0	Representation of the simple group defined by	
	the linear homogeneous group as a doubly	
	transitive permutation-group	452455
331	Special cases of the linear homogeneous group; simple isomorphism between the alternating	
	group of degree 8 and the group of iso-	
	morphisms of an Abelian group of order 16	
	and type $(1, 1, 1, 1)$.	455-457
332, 333	Generalisation of the homogeneous linear group;	
,	Examples	457 - 459
NOTE A.	On the equation $N = h_1 + h_2 + \dots + h_r$	461
Note B.	On the group of isomorphisms of a group	463
NOTE C.	On the symmetric group	464
Note D.	On the completely reduced form of a group of	
	monomial substitutions	470
Note E.	On the irreducible representations of a group	
	which has a self-conjugate sub-group of prime index	472
NOTE F.	On groups of finite order which are simply iso-	412
11012 1.	morphic with irreducible groups of linear	
	substitutions	476
NOTE G.	On the representation of a group of finite order	
	as a group of linear substitutions with rational	
	coefficients	479
Note H.	On the group of the twenty-seven lines on a	
N T	cubic surface	485
NOTE I.	On the conditions of reducibility of a group of linear substitutions of finite order	489
Note J.	On conditions for the finiteness of the order of a	400
1,012 0.	group of linear substitutions	491
NOTE K.	On the representation of a group of finite order	
	as a group of birational transformations of	
	an algebraic curve	496
Note L.	On the group-characteristics of the fractional linear	
NT NC	group	499
NOTE M.	On groups of odd order	503
NOTE N.	On the orders of simple groups On algebraic numbers	504 505
MOIE O.	on argonaic numbers	505
INDEX OF	TECHNICAL TERMS	507
INDEX OF	AUTHORS QUOTED	508
GENERAL.	INDEX	500