
Chapter One

Introduction

1.1 Large-Scale Interconnected Dynamical Systems

Modern complex dynamical systems1 are highly interconnected and mutu-
ally interdependent, both physically and through a multitude of information
and communication network constraints. The sheer size (i.e., dimensional-
ity) and complexity of these large-scale dynamical systems often necessitates
a hierarchical decentralized architecture for analyzing and controlling these
systems. Specifically, in the analysis and control-system design of complex
large-scale dynamical systems it is often desirable to treat the overall system
as a collection of interconnected subsystems. The behavior of the aggregate
or composite (i.e., large-scale) system can then be predicted from the behav-
iors of the individual subsystems and their interconnections. The need for
decentralized analysis and control design of large-scale systems is a direct
consequence of the physical size and complexity of the dynamical model. In
particular, computational complexity may be too large for model analysis
while severe constraints on communication links between system sensors,
actuators, and processors may render centralized control architectures im-
practical. Moreover, even when communication constraints do not exist,
decentralized processing may be more economical.

In an attempt to approximate high-dimensional dynamics of large-
scale structural (oscillatory) systems with a low-dimensional diffusive (non-
oscillatory) dynamical model, structural dynamicists have developed ther-
modynamic energy flow models using stochastic energy flow techniques.
In particular, statistical energy analysis (SEA) predicated on averaging
system states over the statistics of the uncertain system parameters have
been extensively developed for mechanical and acoustic vibration prob-
lems [109,119,129,163,173]. Thermodynamic models are derived from large-
scale dynamical systems of discrete subsystems involving stored energy flow
among subsystems based on the assumption of weak subsystem coupling or
identical subsystems. However, the ability of SEA to predict the dynamic
behavior of a complex large-scale dynamical system in terms of pairwise
subsystem interactions is severely limited by the coupling strength of the
remaining subsystems on the subsystem pair. Hence, it is not surprising

1Here we have in mind large flexible space structures, aerospace systems, electric power
systems, network systems, communications systems, transportation systems, economic
systems, and ecological systems, to cite but a few examples.
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that SEA energy flow predictions for large-scale systems with strong cou-
pling can be erroneous.

Alternatively, a deterministic thermodynamically motivated energy
flow modeling for large-scale structural systems is addressed in [113–115].
This approach exploits energy flow models in terms of thermodynamic en-
ergy (i.e., ability to dissipate heat) as opposed to stored energy and is not
limited to weak subsystem coupling. Finally, a stochastic energy flow com-
partmental model (i.e., a model characterized by conservation laws) pred-
icated on averaging system states over the statistics of stochastic system
exogenous disturbances is developed in [21]. The basic result demonstrates
how compartmental models arise from second-moment analysis of state space
systems under the assumption of weak coupling. Even though these results
can be potentially applicable to large-scale dynamical systems with weak
coupling, such connections are not explored in [21].

An alternative approach to analyzing large-scale dynamical systems
was introduced by the pioneering work of Šiljak [159] and involves the no-
tion of connective stability. In particular, the large-scale dynamical system is
decomposed into a collection of subsystems with local dynamics and uncer-
tain interactions. Then, each subsystem is considered independently so that
the stability of each subsystem is combined with the interconnection con-
straints to obtain a vector Lyapunov function for the composite large-scale
dynamical system, guaranteeing connective stability for the overall system.

Vector Lyapunov functions were first introduced by Bellman [14] and
Matrosov2 [133] and further developed by Lakshmikantham et al. [118],
with [65, 127, 131, 132, 136, 159, 160] exploiting their utility for analyzing
large-scale systems. Extensions of vector Lyapunov function theory that in-
clude matrix-valued Lyapunov functions for stability analysis of large-scale
dynamical systems appear in the monographs by Martynyuk [131,132]. The
use of vector Lyapunov functions in large-scale system analysis offers a very
flexible framework for stability analysis since each component of the vector
Lyapunov function can satisfy less rigid requirements as compared to a sin-
gle scalar Lyapunov function. Weakening the hypothesis on the Lyapunov
function enlarges the class of Lyapunov functions that can be used for an-
alyzing the stability of large-scale dynamical systems. In particular, each
component of a vector Lyapunov function need not be positive definite with
a negative or even negative-semidefinite derivative. The time derivative

2Even though the theory of vector Lyapunov functions was discovered independently
by Bellman and Matrosov, their formulation was quite different in the way that the com-
ponents of the Lyapunov functions were defined. In particular, in Bellman’s formulation
the components of the vector Lyapunov functions correspond to disjoint subspaces of the
state space, whereas Matrosov allows for the components to be defined in the entire state
space. The latter formulation allows for the components of the vector Lyapunov functions
to capture the whole state space and, hence, account for interconnected dynamical systems
with overlapping subsystems.
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of the vector Lyapunov function need only satisfy an element-by-element
vector inequality involving a vector field of a certain comparison system.
Moreover, in large-scale systems several Lyapunov functions arise naturally
from the stability properties of each subsystem. An alternative approach to
vector Lyapunov functions for analyzing large-scale dynamical systems is an
input-output approach, wherein stability criteria are derived by assuming
that each subsystem is either finite gain, passive, or conic [5, 122,123,168].

In more recent research, Šiljak [161] developed new and original con-
cepts for modeling and control of large-scale complex systems by addressing
system dimensionality, uncertainty, and information structure constraints.
In particular, the formulation in [161] develops control law synthesis archi-
tectures using decentralized information structure constraints while address-
ing multiple controllers for reliable stabilization, decentralized optimization,
and hierarchical and overlapping decompositions. In addition, decomposi-
tion schemes for large-scale systems involving system inputs and outputs as
well as dynamic graphs defined on a linear space as one-parameter groups
of invariant transformations of the graph space are developed in [178].

Graph theoretic concepts have also been used in stability analysis and
decentralized stabilization of large-scale interconnected systems [34, 45]. In
particular, graph theory [51, 63] is a powerful tool in investigating struc-
tural properties and capturing connectivity properties of large-scale systems.
Specifically, a directed graph can be constructed to capture subsystem in-
terconnections wherein the subsystems are represented as nodes and en-
ergy, matter, or information flow is represented by edges or arcs. A related
approach to graph theory for modeling large-scale systems is bond-graph
modeling [35, 107], wherein connections between a pair of subsystems are
captured by a bond and energy, matter, or information is exchanged be-
tween subsystems along connections. More recently, a major contribution
to the analysis and design of interconnected systems is given in [172]. This
work builds on the work of bond graphs by developing a modeling behavioral
methodology wherein a system is viewed as an interconnection of interacting
subsystems modeled by tearing, zooming, and linking.

In light of the fact that energy flow modeling arises naturally in large-
scale dynamical systems and vector Lyapunov functions provide a powerful
stability analysis framework for these systems, it seems natural that dissipa-
tivity theory [170,171] on the subsystem level, can play a key role in unifying
these analysis methods. Specifically, dissipativity theory provides a funda-
mental framework for the analysis and design of control systems using an
input, state, and output description based on system energy3 related consid-
erations [70, 170]. The dissipation hypothesis on dynamical systems results
in a fundamental constraint on their dynamic behavior wherein a dissipative
dynamical system can deliver to its surroundings only a fraction of its energy

3Here the notion of energy refers to abstract energy for which a physical system energy
interpretation is not necessary.
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and can store only a fraction of the work done to it. Such conservation laws
are prevalent in large-scale dynamical systems such as aerospace systems,
power systems, network systems, structural systems, and thermodynamic
systems.

Since these systems have numerous input, state, and output proper-
ties related to conservation, dissipation, and transport of energy, extending
dissipativity theory to capture conservation and dissipation notions on the
subsystem level would provide a natural energy flow model for large-scale
dynamical systems. Aggregating the dissipativity properties of each of the
subsystems by appropriate storage functions and supply rates would allow
us to study the dissipativity properties of the composite large-scale system
using vector storage functions and vector supply rates. Furthermore, since
vector Lyapunov functions can be viewed as generalizations of composite en-
ergy functions for all of the subsystems, a generalized notion of dissipativity,
namely, vector dissipativity, with appropriate vector storage functions and
vector supply rates, can be used to construct vector Lyapunov functions for
nonlinear feedback large-scale systems by appropriately combining vector
storage functions for the forward and feedback large-scale systems. Finally,
as in classical dynamical system theory [70], vector dissipativity theory can
play a fundamental role in addressing robustness, disturbance rejection, sta-
bility of feedback interconnections, and optimality for large-scale dynamical
systems.

The design and implementation of control law architectures for large-
scale interconnected dynamical systems is a nontrivial control engineering
task involving considerations of weight, size, power, cost, location, type,
specifications, and reliability, among other design considerations. All these
issues are directly related to the properties of the large-scale system to be
controlled and the system performance specifications. For conceptual and
practical reasons, the control processor architectures in systems composed
of interconnected subsystems are typically distributed or decentralized in
nature. Distributed control refers to a control architecture wherein the con-
trol is distributed via multiple computational units that are interconnected
through information and communication networks, whereas decentralized
control refers to a control architecture wherein local decisions are based
only on local information. In a decentralized control scheme, the large-scale
interconnected dynamical system is controlled by multiple processors oper-
ating independently, with each processor receiving a subset of the available
subsystem measurements and updating a subset of the subsystem actua-
tors. Although decentralized controllers are more complicated to design
than distributed controllers, their implementation offers several advantages.
For example, physical system limitations may render it uneconomical or
impossible to feed back certain measurement signals to particular actuators.

Since implementation constraints, cost, and reliability considerations
often require decentralized controller architectures for controlling large-scale
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systems, decentralized control has received considerable attention in the lit-
erature [17,22,48,96–99,104,125,126,145,150,154,158–160,162]. A straight-
forward decentralized control design technique is that of sequential opti-
mization [17, 48, 104], wherein a sequential centralized subcontroller design
procedure is applied to an augmented closed-loop plant composed of the
actual plant and the remaining subcontrollers. Clearly, a key difficulty with
decentralized control predicated on sequential optimization is that of di-
mensionality. An alternative approach to sequential optimization for de-
centralized control is based on subsystem decomposition with centralized
design procedures applied to the individual subsystems of the large-scale
system [96–99, 125, 126, 145, 150, 154, 158–160]. Decomposition techniques
exploit subsystem interconnection data and in many cases, such as in the
presence of very high system dimensionality, are absolutely essential for de-
signing decentralized controllers.

1.2 A Brief Outline of the Monograph

The main objective of this monograph is to develop a general stability anal-
ysis and control design framework for nonlinear large-scale interconnected
dynamical systems, with an emphasis on vector Lyapunov function methods
and vector dissipativity theory. The main contents of the monograph are
as follows. In Chapter 2, we establish notation and definitions and develop
stability theory for large-scale dynamical systems. Specifically, stability the-
orems via vector Lyapunov functions are developed for continuous-time and
discrete-time nonlinear dynamical systems. In addition, we extend the the-
ory of vector Lyapunov functions by constructing a generalized comparison
system whose vector field can be a function of the comparison system states
as well as the nonlinear dynamical system states. Furthermore, we present
a generalized convergence result which, in the case of a scalar comparison
system, specializes to the classical Krasovskii-LaSalle invariant set theorem.

In Chapter 3, we extend the notion of dissipative dynamical systems
to develop an energy flow modeling framework for large-scale dynamical sys-
tems based on vector dissipativity notions. Specifically, using vector storage
functions and vector supply rates, dissipativity properties of a composite
large-scale system are shown to be determined from the dissipativity prop-
erties of the subsystems and their interconnections. Furthermore, extended
Kalman-Yakubovich-Popov conditions, in terms of the subsystem dynam-
ics and interconnection constraints, characterizing vector dissipativeness via
vector system storage functions, are derived. In addition, these results are
used to develop feedback interconnection stability results for large-scale non-
linear dynamical systems using vector Lyapunov functions. Specialization
of these results to passive and nonexpansive large-scale dynamical systems
is also provided.

In Chapter 4, we develop connections between thermodynamics and
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large-scale dynamical systems. Specifically, using compartmental dynamical
system theory, we develop energy flow models possessing energy conserva-
tion and energy equipartition principles for large-scale dynamical systems.
Next, we give a deterministic definition of entropy for a large-scale dynam-
ical system that is consistent with the classical definition of entropy and
show that it satisfies a Clausius-type inequality leading to the law of non-
conservation of entropy. Furthermore, we introduce a new and dual notion
to entropy, namely, ectropy, as a measure of the tendency of a dynamical
system to do useful work and grow more organized, and show that conserva-
tion of energy in an isolated thermodynamic large-scale system necessarily
leads to nonconservation of ectropy and entropy. In addition, using the sys-
tem ectropy as a Lyapunov function candidate, we show that our large-scale
thermodynamic energy flow model has convergent trajectories to Lyapunov
stable equilibria determined by the system initial subsystem energies.

In Chapter 5, we introduce the notion of a control vector Lyapunov
function as a generalization of control Lyapunov functions [6], and show
that asymptotic stabilizability of a nonlinear dynamical system is equiva-
lent to the existence of a control vector Lyapunov function. Moreover, using
control vector Lyapunov functions, we construct a universal decentralized
feedback control law for a decentralized nonlinear dynamical system that
possesses guaranteed gain and sector margins in each decentralized input
channel. Furthermore, we establish connections between the notion of vec-
tor dissipativity developed in Chapter 3 and optimality of the proposed
decentralized feedback control law. The proposed control framework is then
used to construct decentralized controllers for large-scale nonlinear systems
with robustness guarantees against full modeling uncertainty. In Chapter 6,
we extend the results of Chapter 5 to develop a general framework for finite-
time stability analysis based on vector Lyapunov functions. Specifically, we
construct a vector comparison system whose solution is finite-time stable
and relate this finite-time stability property to the stability properties of a
nonlinear dynamical system using a vector comparison principle. Further-
more, we design a universal decentralized finite-time stabilizer for large-scale
dynamical systems that is robust against full modeling uncertainty.

Next, using the results of Chapter 5, in Chapter 7 we develop a sta-
bility and control design framework for time-varying and time-invariant sets
of nonlinear dynamical systems. We then apply this framework to the prob-
lem of coordination control for multiagent interconnected systems. Specif-
ically, by characterizing a moving formation of vehicles as a time-varying
set in the state space, a distributed control design framework for multivehi-
cle coordinated motion is developed by designing stabilizing controllers for
time-varying sets of nonlinear dynamical systems. In Chapters 8 and 9, we
present discrete-time extensions of vector dissipativity theory and system
thermodynamic connections of large-scale systems developed in Chapters 3
and 4, respectively.
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In Chapter 10, we provide generalizations of the stability results de-
veloped in Chapter 2 to address stability of impulsive dynamical systems
via vector Lyapunov functions. Specifically, we provide a generalized com-
parison principle involving hybrid comparison dynamics that are dependent
on the comparison system states as well as the nonlinear impulsive dynam-
ical system states. Furthermore, we develop stability results for impulsive
dynamical systems that involve vector Lyapunov functions and hybrid com-
parison inequalities. In addition, we develop vector dissipativity notions
for large-scale nonlinear impulsive dynamical systems. In particular, we
introduce a generalized definition of dissipativity for large-scale nonlinear
impulsive dynamical systems in terms of a hybrid vector inequality, a vector
hybrid supply rate, and a vector storage function. Dissipativity properties
of the large-scale impulsive system are shown to be determined from the
dissipativity properties of the individual impulsive subsystems making up
the large-scale system and the nature of the system interconnections. Us-
ing the concepts of dissipativity and vector dissipativity, we also develop
feedback interconnection stability results for impulsive nonlinear dynamical
systems. General stability criteria are given for Lyapunov, asymptotic, and
exponential stability of feedback impulsive dynamical systems. In the case
of quadratic hybrid supply rates corresponding to net system power and
weighted input-output energy, these results generalize the positivity and
small gain theorems to the case of nonlinear large-scale impulsive dynamical
systems.

Using the concepts developed in Chapter 10, in Chapter 11 we extend
the notion of control vector Lyapunov functions to impulsive dynamical sys-
tems. Specifically, using control vector Lyapunov functions, we construct a
universal hybrid decentralized feedback stabilizer for a decentralized affine
in the control nonlinear impulsive dynamical system that possesses guaran-
teed gain and sector margins in each decentralized input channel. These
results are then used to develop hybrid decentralized controllers for large-
scale impulsive dynamical systems with robustness guarantees against full
modeling and input uncertainty. Finite-time stability analysis and control
design extensions for large-scale impulsive dynamical systems are addressed
in Chapter 12.

In Chapter 13, a novel class of fixed-order, energy-based hybrid decen-
tralized controllers is proposed as a means for achieving enhanced energy
dissipation in large-scale vector lossless and vector dissipative dynamical
systems. These dynamic decentralized controllers combine a logical switch-
ing architecture with continuous dynamics to guarantee that the system
plant energy is strictly decreasing across switchings. The general frame-
work leads to hybrid closed-loop systems described by impulsive differential
equations [82]. In addition, we construct hybrid dynamic controllers that
guarantee that each subsystem-subcontroller pair of the hybrid closed-loop
system is consistent with basic thermodynamic principles. Special cases

Copyrighted Material



8 CHAPTER 1

of energy-based hybrid controllers involving state-dependent switching are
described, and several illustrative examples are given as well as an exper-
imental test bed is designed to demonstrate the efficacy of the proposed
approach. Finally, we draw conclusions in Chapter 14.
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