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Covering point process theory, random geometric graphs, and coverage processes,

this rigorous introduction to stochastic geometry will enable you to obtain pow-

erful, general estimates and bounds of wireless network performance, and make

good design choices for future wireless architectures and protocols that efficiently

manage interference effects.

Practical engineering applications are integrated with mathematical theory,

with an understanding of probability the only prerequisite. At the same time,

stochastic geometry is connected to percolation theory and the theory of random

geometric graphs, and is accompanied by a brief introduction to the R statistical

computing language.

Combining theory and hands-on analytical techniques, this is a comprehensive

guide to the spatial stochastic models essential for modeling and analysis of

wireless network performance.
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“Stochastic geometry is a rigorous mathematical basis for a number of applica-

tions. It has recently been applied to wireless networking concepts and design,

and it is fair to say that it forms a valuable anchor of scientific support for the

somewhat chaotic field of ad hoc networking. This monograph does a superior

job in explaining the theory and demonstrating its use. It is the most complete,

readable, and useful document to date that illuminates the intricate web of wire-

less networks and transforms it from a ‘dark art’ to a solid engineering discipline

with a scientific foundation.”

Anthony Ephremides, University of Maryland
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Preface

The performance of wireless systems depends strongly on the locations of the

users or nodes. In modern networks, these locations are subject to considerable

uncertainty and thus need to be modeled as a stochastic process of points in the

two- or three-dimensional space.

The area of mathematics providing such models and methods to analyze their

properties is stochastic geometry, in particular point process theory. Hence wire-

less network modeling and analysis is a very natural application of stochastic

geometry, and, indeed, the last decade has witnessed a significant growth in this

area. The goal of this book is to make the mathematical theory accessible to

graduate students, researchers, and practitioners who are working in the field of

wireless networks. This not only includes a coherent presentation of the theory

as it applies to wireless networks, but also enables the reader to understand the

related research articles and to define and solve new problems. The field is young

enough to leave many opportunities for exciting and relevant new results. Indeed,

not all the theoretical concepts covered in this book have found applications to

wireless networks yet.

It is assumed that the reader has a solid background in basic probability and

perhaps has had some exposure to point processes in one dimension, most likely

in the form of traffic models for queueing theory.

While being rigorous, the book is not pedantic and does not dwell on measure-

theoretic details. The interested reader can always study these intricacies from

the mathematical literature; others may simply take measure theory for granted.

For example, while the Radon–Nikodým theorem is mentioned on several occa-

sions, it is not essential to follow the exposition. The many examples should

illustrate the theoretical concepts and help develop a good intuition. To assist in

this process, problems are included at the end of each chapter, some of which are

based on the R statistical software for simulation and numerical studies. Also,

many chapters have a dedicated applications section at the end, where the theory

in that chapter is used to solve pertinent problems in wireless networking.

To the extent that it exists, standard terminology is used. Unfortunately, the

notation is hardly consistent in the literature, which is a consequence of the fact

that researchers from many different areas have made important contributions

to the theory. Consequently, to help the reader understand books and articles
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xii Preface

with their specific terminology and definitions, different names and conventions

are mentioned as appropriate.

The first part of the book gives an introduction to stochastic geometry, in

particular point process theory. In order to be consistent with the application,

the focus is on simple point processes on the Euclidean space Rd. Particular care

is given to the functionals and their relationships, to higher-order statistics, and

Palm distributions, covered in Chapters 4, 6, and 8. These are the topics that are

perhaps the most difficult to learn from the mathematical literature. Chapter 5

is entirely devoted to important applications in wireless networks, in particular

those modeled using Poisson point processes.

The second part of the book discusses percolation theory, connectivity, and

coverage. It uses the material from Part I to model the locations of the points

or nodes, but then focuses on how or whether they are connected or whether

a certain region is covered by a set of nodes if each node can cover a certain

small area around itself. Connectivity is closely tied to percolation, which is the

question of the existence of giant components in a network. Many results for the

continuous case (for which points sit in Rd) are based on arguments from discrete

percolation, i.e., percolation on trees or lattices, which is discussed in Chapter

10. The next chapter introduces random geometric graphs and continuum per-

colation, while the last two chapters provide an introduction to connectivity and

coverage problems.

The book is suitable both for self-learners and as a textbook for a graduate

course, e.g., for a one-semester course on point process theory (Part I only), or

for a course that covers both parts. In the latter case, some chapters in Part I

will probably have to be discussed in less detail. For example, it is possible to

leave out the sections on Gibbs processes, Janossy measures, and the Papangelou

conditional intensity without losing the context. In a quarter-based system, each

part could serve as a basis for a course.

Anticipating the use of the book as a textbook for a graduate course, I have

refrained from using fonts that are not easily reproduced on a black- or white-

board. As a consequence, x may denote a generic (deterministic) location in Rd

and also an element of a point process (and thus a random variable). It should

always be clear what is meant from the context and the use of the term location

on the one hand and point on the other.

I would like to thank my friends and collaborators Jeff Andrews, Radha

Krishna Ganti, Nihar Jindal, Amites Sarkar, and Steven Weber. This book ben-

efited greatly from our discussions. Also, I am grateful to Phil Meyler from

Cambridge University Press for encouraging me to undertake this endeavor. Spe-

cial thanks go to Jeff, Radha, and Amites for providing detailed comments on

parts of a draft. Of course, I am fully responsible for all mistakes that may still

be present.

M.H.
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Notation

General notation

∅ the empty set

N natural numbers {1, 2, . . .}
N0 N ∪ {0}
[n] the set {1, 2, . . . , n}
Rd d-dimensional Euclidean space

R+ non-negative real numbers

◦ concatenation of functions

⊗ product of measures

o origin of Rd

| · | ≡ νd Lebesgue measure (of appropriate dimension)

‖x‖ Euclidean metric of x ∈ Rd

	x
 largest integer smaller than or equal to x ∈ R

#{·} number of elements in set

Φ point process on Rd as random countable set or counting measure

ϕ locally finite countable subset of Rd or counting measure

N space of counting measures

N point process as random counting measure

N σ-algebra of counting measures

M mark space

Φ̂ marked point process; point process on Rd ×M

N̂ space of counting measures on Rd ×M

N̂ σ-algebra of Rd ×M

Bd Borel σ-algebra in Rd

B =B1
P,P, P probability measures

Po Palm distribution

P!
o reduced Palm distribution

Ψ non-negative random measure (possibly a point process)

M space of non-negative random measures

M σ-algebra of random measures
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xiv Notation

1(·) indicator function

1A(x) ≡ 1(x ∈ A), indicator function of condition x ∈ A

δ(x) Dirac delta function

δx(A) ≡ 1A(x) ≡
∫
A
δ(y − x)dy, Dirac measure at point x

b(x, r) d-dimensional (closed) ball of radius r centered at x

cd � |b(o, 1)|, volume of d-dimensional unit ball

Λ intensity measure (or first-order moment measure)

Λ̂ intensity measure of marked point process

λ(x) intensity function

λ(x,Φ) Papangelou conditional intensity

V [0, 1]-valued functions v with 1− v of bounded support

U non-negative-valued functions of bounded support

LX(s) Laplace transform E(e−sX) of random variable X

μ(2) second-order moment measure

α(2) second-order factorial moment measure

�(2) second moment density (or second-order product density)

g pair correlation function

	, 	̃ path loss function, radial path loss function

K reduced second moment measure

K Ripley’s K function

S[f ] sum of f(x), where x ∈ Φ

G[v] probability generating functional for v ∈ V
LΨ[u] Laplace functional for u ∈ U of random measure Ψ

V (B) vacancy indicator of B ∈ Bd
V (x) Voronoi cell of point x∑ �=

x,y∈A double sum
∑

x∈A

∑
y∈A;x �=y

Ax translation of set A by x: Ax � {y ∈ A : y + x}
A⊕B Minkowski addition {x ∈ A, y ∈ B : x+ y}
A 
 B Cartesian product of sets including only distinct points

‖x−A‖ minimum distance miny∈A{‖x− y‖}
pc critical probability in percolation models

� definition
d
= equality in distribution
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Notation xv

Abbreviations

PPP Poisson point process

BPP binomial point process

a.s. almost surely (with probability 1)

a.a.s. asymptotically almost surely

iid independent and identically distributed

fidi finite-dimensional

pdf probability density function

cdf cumulative distribution function

pgfl probability generating functional

FKG (inequality) inequality named after Fortuin, Kasteleyn, and Ginibre

BK (inequality) inequality named after van den Berg and Kesten

LR (crossing) left–right (crossing) in percolation models

TB (crossing) top–bottom (crossing) in percolation models

RGG random geometric graph

MAC medium access control (for channel access)
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