
Performance Modeling and Design of Computer Systems

Computer systems design is full of conundrums:

� Given a choice between a single machine with speed s, or n machines each with
speed s/n, which should we choose?

� If both the arrival rate and service rate double, will the mean response time stay the
same?

� Should systems really aim to balance load, or is this a convenient myth?
� If a scheduling policy favors one set of jobs, does it necessarily hurt some other jobs,

or are these “conservation laws” being misinterpreted?
� Do greedy, shortest-delay, routing strategies make sense in a server farm, or is what

is good for the individual disastrous for the system as a whole?
� How do high job size variability and heavy-tailed workloads affect the choice of a

scheduling policy?
� How should one trade off energy and delay in designing a computer system?
� If 12 servers are needed to meet delay guarantees when the arrival rate is 9 jobs/sec,

will we need 12,000 servers when the arrival rate is 9,000 jobs/sec?

Tackling the questions that systems designers care about, this book brings queueing theory
decisively back to computer science. The book is written with computer scientists and
engineers in mind and is full of examples from computer systems, as well as manufacturing
and operations research. Fun and readable, the book is highly approachable, even for
undergraduates, while still being thoroughly rigorous and also covering a much wider span
of topics than many queueing books.

Readers benefit from a lively mix of motivation and intuition, with illustrations, examples,
and more than 300 exercises – all while acquiring the skills needed to model, analyze,
and design large-scale systems with good performance and low cost. The exercises are an
important feature, teaching research-level counterintuitive lessons in the design of computer
systems. The goal is to train readers not only to customize existing analyses but also to
invent their own.

Mor Harchol-Balter is an Associate Professor in the Computer Science Department at
Carnegie Mellon University. She is a leader in the ACM Sigmetrics Conference on Measure-
ment and Modeling of Computer Systems, having served as technical program committee
chair in 2007 and conference chair in 2013.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

Performance Modeling and
Design of Computer Systems

Queueing Theory in Action

Mor Harchol-Balter
Carnegie Mellon University, Pennsylvania

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org
Information on this title: www.cambridge.org/9781107027503

C© Mor Harchol-Balter 2013

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2013

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Harchol-Balter, Mor, 1966–
Performance modeling and design of computer systems : queueing theory in
action / Mor Harchol-Balter.

pages cm
Includes bibliographical references and index.
ISBN 978-1-107-02750-3
1. Transaction systems (Computer systems) – Mathematical models. 2. Computer
systems – Design and construction – Mathematics. 3. Queueing theory.
4. Queueing networks (Data transmission) I. Title.
QA76.545.H37 2013
519.8′2–dc23 2012019844

ISBN 978-1-107-02750-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party Internet websites referred to in this publication and
does not guarantee that any content on such websites is, or will remain, accurate or
appropriate.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

To my loving husband Andrew, my awesome son Danny,
and my parents, Irit and Micha

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

I have always been interested in finding better designs for computer systems, designs
that improve performance without the purchase of additional resources. When I look
back at the problems that I have solved and I look ahead to the problems I hope to
solve, I realize that the problem formulations keep getting simpler and simpler, and my
footing less secure. Every wisdom that I once believed, I have now come to question:
If a scheduling policy helps one set of jobs, does it necessarily hurt some other jobs,
or are these “conservation laws” being misinterpreted? Do greedy routing strategies
make sense in server farms, or is what is good for the individual actually disastrous for
the system as a whole? When comparing a single fast machine with n slow machines,
each of 1/nth the speed, the single fast machine is typically much more expensive – but
does that mean that it is necessarily better? Should distributed systems really aim to
balance load, or is this a convenient myth? Cycle stealing, where machines can help
each other when they are idle, sounds like a great idea, but can we quantify the actual
benefit? How much is the performance of scheduling policies affected by variability
in the arrival rate and service rate and by fluctuations in the load, and what can we do
to combat variability? Inherent in these questions is the impact of real user behaviors
and real-world workloads with heavy-tailed, highly variable service demands, as
well as correlated arrival processes. Also intertwined in my work are the tensions
between theoretical analysis and the realities of implementation, each motivating the
other. In my search to discover new research techniques that allow me to answer
these and other questions, I find that I am converging toward the fundamental core
that defines all these problems, and that makes the counterintuitive more believable.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

Contents

Preface xvii
Acknowledgments xxiii

I Introduction to Queueing

1 Motivating Examples of the Power of Analytical Modeling 3
1.1 What Is Queueing Theory? 3
1.2 Examples of the Power of Queueing Theory 5

2 Queueing Theory Terminology 13
2.1 Where We Are Heading 13
2.2 The Single-Server Network 13
2.3 Classification of Queueing Networks 16
2.4 Open Networks 16
2.5 More Metrics: Throughput and Utilization 17
2.6 Closed Networks 20

2.6.1 Interactive (Terminal-Driven) Systems 21
2.6.2 Batch Systems 22
2.6.3 Throughput in a Closed System 23

2.7 Differences between Closed and Open Networks 24
2.7.1 A Question on Modeling 25

2.8 Related Readings 25
2.9 Exercises 26

II Necessary Probability Background

3 Probability Review 31
3.1 Sample Space and Events 31
3.2 Probability Defined on Events 32
3.3 Conditional Probabilities on Events 33
3.4 Independent Events and Conditionally Independent Events 34
3.5 Law of Total Probability 35
3.6 Bayes Law 36
3.7 Discrete versus Continuous Random Variables 37
3.8 Probabilities and Densities 38

3.8.1 Discrete: Probability Mass Function 38
3.8.2 Continuous: Probability Density Function 41

3.9 Expectation and Variance 44
3.10 Joint Probabilities and Independence 47

vii

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

viii contents

3.11 Conditional Probabilities and Expectations 49
3.12 Probabilities and Expectations via Conditioning 53
3.13 Linearity of Expectation 54
3.14 Normal Distribution 57

3.14.1 Linear Transformation Property 58
3.14.2 Central Limit Theorem 61

3.15 Sum of a Random Number of Random Variables 62
3.16 Exercises 64

4 Generating Random Variables for Simulation 70
4.1 Inverse-Transform Method 70

4.1.1 The Continuous Case 70
4.1.2 The Discrete Case 72

4.2 Accept-Reject Method 72
4.2.1 Discrete Case 73
4.2.2 Continuous Case 75
4.2.3 Some Harder Problems 77

4.3 Readings 78
4.4 Exercises 78

5 Sample Paths, Convergence, and Averages 79
5.1 Convergence 79
5.2 Strong and Weak Laws of Large Numbers 83
5.3 Time Average versus Ensemble Average 84

5.3.1 Motivation 85
5.3.2 Definition 86
5.3.3 Interpretation 86
5.3.4 Equivalence 88
5.3.5 Simulation 90
5.3.6 Average Time in System 90

5.4 Related Readings 91
5.5 Exercise 91

III The Predictive Power of Simple Operational Laws: “What-If”
Questions and Answers

6 Little’s Law and Other Operational Laws 95
6.1 Little’s Law for Open Systems 95
6.2 Intuitions 96
6.3 Little’s Law for Closed Systems 96
6.4 Proof of Little’s Law for Open Systems 97

6.4.1 Statement via Time Averages 97
6.4.2 Proof 98
6.4.3 Corollaries 100

6.5 Proof of Little’s Law for Closed Systems 101
6.5.1 Statement via Time Averages 101
6.5.2 Proof 102

6.6 Generalized Little’s Law 102

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

contents ix

6.7 Examples Applying Little’s Law 103
6.8 More Operational Laws: The Forced Flow Law 106
6.9 Combining Operational Laws 107

6.10 Device Demands 110
6.11 Readings and Further Topics Related to Little’s Law 111
6.12 Exercises 111

7 Modification Analysis: “What-If” for Closed Systems 114
7.1 Review 114
7.2 Asymptotic Bounds for Closed Systems 115
7.3 Modification Analysis for Closed Systems 118
7.4 More Modification Analysis Examples 119
7.5 Comparison of Closed and Open Networks 122
7.6 Readings 122
7.7 Exercises 122

IV From Markov Chains to Simple Queues

8 Discrete-Time Markov Chains 129
8.1 Discrete-Time versus Continuous-Time Markov Chains 130
8.2 Definition of a DTMC 130
8.3 Examples of Finite-State DTMCs 131

8.3.1 Repair Facility Problem 131
8.3.2 Umbrella Problem 132
8.3.3 Program Analysis Problem 132

8.4 Powers of P: n-Step Transition Probabilities 133
8.5 Stationary Equations 135
8.6 The Stationary Distribution Equals the Limiting Distribution 136
8.7 Examples of Solving Stationary Equations 138

8.7.1 Repair Facility Problem with Cost 138
8.7.2 Umbrella Problem 139

8.8 Infinite-State DTMCs 139
8.9 Infinite-State Stationarity Result 140

8.10 Solving Stationary Equations in Infinite-State DTMCs 142
8.11 Exercises 145

9 Ergodicity Theory 148
9.1 Ergodicity Questions 148
9.2 Finite-State DTMCs 149

9.2.1 Existence of the Limiting Distribution 149
9.2.2 Mean Time between Visits to a State 153
9.2.3 Time Averages 155

9.3 Infinite-State Markov Chains 155
9.3.1 Recurrent versus Transient 156
9.3.2 Infinite Random Walk Example 160
9.3.3 Positive Recurrent versus Null Recurrent 162

9.4 Ergodic Theorem of Markov Chains 164

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

x contents

9.5 Time Averages 166
9.6 Limiting Probabilities Interpreted as Rates 168
9.7 Time-Reversibility Theorem 170
9.8 When Chains Are Periodic or Not Irreducible 171

9.8.1 Periodic Chains 171
9.8.2 Chains that Are Not Irreducible 177

9.9 Conclusion 177
9.10 Proof of Ergodic Theorem of Markov Chains∗ 178
9.11 Exercises 183

10 Real-World Examples: Google, Aloha, and Harder Chains∗ 190
10.1 Google’s PageRank Algorithm 190

10.1.1 Google’s DTMC Algorithm 190
10.1.2 Problems with Real Web Graphs 192
10.1.3 Google’s Solution to Dead Ends and Spider Traps 194
10.1.4 Evaluation of the PageRank Algorithm 195
10.1.5 Practical Implementation Considerations 195

10.2 Aloha Protocol Analysis 195
10.2.1 The Slotted Aloha Protocol 196
10.2.2 The Aloha Markov Chain 196
10.2.3 Properties of the Aloha Markov Chain 198
10.2.4 Improving the Aloha Protocol 199

10.3 Generating Functions for Harder Markov Chains 200
10.3.1 The z-Transform 201
10.3.2 Solving the Chain 201

10.4 Readings and Summary 203
10.5 Exercises 204

11 Exponential Distribution and the Poisson Process 206
11.1 Definition of the Exponential Distribution 206
11.2 Memoryless Property of the Exponential 207
11.3 Relating Exponential to Geometric via δ-Steps 209
11.4 More Properties of the Exponential 211
11.5 The Celebrated Poisson Process 213
11.6 Merging Independent Poisson Processes 218
11.7 Poisson Splitting 218
11.8 Uniformity 221
11.9 Exercises 222

12 Transition to Continuous-Time Markov Chains 225
12.1 Defining CTMCs 225
12.2 Solving CTMCs 229
12.3 Generalization and Interpretation 232

12.3.1 Interpreting the Balance Equations for the CTMC 234
12.3.2 Summary Theorem for CTMCs 234

12.4 Exercises 234

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

contents xi

13 M/M/1 and PASTA 236
13.1 The M/M/1 Queue 236
13.2 Examples Using an M/M/1 Queue 239
13.3 PASTA 242
13.4 Further Reading 245
13.5 Exercises 245

V Server Farms and Networks: Multi-server, Multi-queue Systems

14 Server Farms: M/M/k and M/M/k/k 253
14.1 Time-Reversibility for CTMCs 253
14.2 M/M/k/k Loss System 255
14.3 M/M/k 258
14.4 Comparison of Three Server Organizations 263
14.5 Readings 264
14.6 Exercises 264

15 Capacity Provisioning for Server Farms 269
15.1 What Does Load Really Mean in an M/M/k? 269
15.2 The M/M/∞ 271

15.2.1 Analysis of the M/M/∞ 271
15.2.2 A First Cut at a Capacity Provisioning Rule for the M/M/k 272

15.3 Square-Root Staffing 274
15.4 Readings 276
15.5 Exercises 276

16 Time-Reversibility and Burke’s Theorem 282
16.1 More Examples of Finite-State CTMCs 282

16.1.1 Networks with Finite Buffer Space 282
16.1.2 Batch System with M/M/2 I/O 284

16.2 The Reverse Chain 285
16.3 Burke’s Theorem 288
16.4 An Alternative (Partial) Proof of Burke’s Theorem 290
16.5 Application: Tandem Servers 291
16.6 General Acyclic Networks with Probabilistic Routing 293
16.7 Readings 294
16.8 Exercises 294

17 Networks of Queues and Jackson Product Form 297
17.1 Jackson Network Definition 297
17.2 The Arrival Process into Each Server 298
17.3 Solving the Jackson Network 300
17.4 The Local Balance Approach 301
17.5 Readings 306
17.6 Exercises 306

18 Classed Network of Queues 311
18.1 Overview 311
18.2 Motivation for Classed Networks 311

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

xii contents

18.3 Notation and Modeling for Classed Jackson Networks 314
18.4 A Single-Server Classed Network 315
18.5 Product Form Theorems 317
18.6 Examples Using Classed Networks 322

18.6.1 Connection-Oriented ATM Network Example 322
18.6.2 Distribution of Job Classes Example 325
18.6.3 CPU-Bound and I/O-Bound Jobs Example 326

18.7 Readings 329
18.8 Exercises 329

19 Closed Networks of Queues 331
19.1 Motivation 331
19.2 Product-Form Solution 333

19.2.1 Local Balance Equations for Closed Networks 333
19.2.2 Example of Deriving Limiting Probabilities 335

19.3 Mean Value Analysis (MVA) 337
19.3.1 The Arrival Theorem 338
19.3.2 Iterative Derivation of Mean Response Time 340
19.3.3 An MVA Example 341

19.4 Readings 343
19.5 Exercises 343

VI Real-World Workloads: High Variability and Heavy Tails

20 Tales of Tails: A Case Study of Real-World Workloads 349
20.1 Grad School Tales . . . Process Migration 349
20.2 UNIX Process Lifetime Measurements 350
20.3 Properties of the Pareto Distribution 352
20.4 The Bounded Pareto Distribution 353
20.5 Heavy Tails 354
20.6 The Benefits of Active Process Migration 354
20.7 Pareto Distributions Are Everywhere 355
20.8 Exercises 357

21 Phase-Type Distributions and Matrix-Analytic Methods 359
21.1 Representing General Distributions by Exponentials 359
21.2 Markov Chain Modeling of PH Workloads 364
21.3 The Matrix-Analytic Method 366
21.4 Analysis of Time-Varying Load 367

21.4.1 High-Level Ideas 367
21.4.2 The Generator Matrix, Q 368
21.4.3 Solving for R 370
21.4.4 Finding �π0 371
21.4.5 Performance Metrics 372

21.5 More Complex Chains 372
21.6 Readings and Further Remarks 376
21.7 Exercises 376

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

contents xiii

22 Networks with Time-Sharing (PS) Servers (BCMP) 380
22.1 Review of Product-Form Networks 380
22.2 BCMP Result 380

22.2.1 Networks with FCFS Servers 381
22.2.2 Networks with PS Servers 382

22.3 M/M/1/PS 384
22.4 M/Cox/1/PS 385
22.5 Tandem Network of M/G/1/PS Servers 391
22.6 Network of PS Servers with Probabilistic Routing 393
22.7 Readings 394
22.8 Exercises 394

23 The M/G/1 Queue and the Inspection Paradox 395
23.1 The Inspection Paradox 395
23.2 The M/G/1 Queue and Its Analysis 396
23.3 Renewal-Reward Theory 399
23.4 Applying Renewal-Reward to Get Expected Excess 400
23.5 Back to the Inspection Paradox 402
23.6 Back to the M/G/1 Queue 403
23.7 Exercises 405

24 Task Assignment Policies for Server Farms 408
24.1 Task Assignment for FCFS Server Farms 410
24.2 Task Assignment for PS Server Farms 419
24.3 Optimal Server Farm Design 424
24.4 Readings and Further Follow-Up 428
24.5 Exercises 430

25 Transform Analysis 433
25.1 Definitions of Transforms and Some Examples 433
25.2 Getting Moments from Transforms: Peeling the Onion 436
25.3 Linearity of Transforms 439
25.4 Conditioning 441
25.5 Distribution of Response Time in an M/M/1 443
25.6 Combining Laplace and z-Transforms 444
25.7 More Results on Transforms 445
25.8 Readings 446
25.9 Exercises 446

26 M/G/1 Transform Analysis 450
26.1 The z-Transform of the Number in System 450
26.2 The Laplace Transform of Time in System 454
26.3 Readings 456
26.4 Exercises 456

27 Power Optimization Application 457
27.1 The Power Optimization Problem 457
27.2 Busy Period Analysis of M/G/1 459
27.3 M/G/1 with Setup Cost 462

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

xiv contents

27.4 Comparing ON/IDLE versus ON/OFF 465
27.5 Readings 467
27.6 Exercises 467

VII Smart Scheduling in the M/G/1

28 Performance Metrics 473
28.1 Traditional Metrics 473
28.2 Commonly Used Metrics for Single Queues 474
28.3 Today’s Trendy Metrics 474
28.4 Starvation/Fairness Metrics 475
28.5 Deriving Performance Metrics 476
28.6 Readings 477

29 Scheduling: Non-Preemptive, Non-Size-Based Policies 478
29.1 FCFS, LCFS, and RANDOM 478
29.2 Readings 481
29.3 Exercises 481

30 Scheduling: Preemptive, Non-Size-Based Policies 482
30.1 Processor-Sharing (PS) 482

30.1.1 Motivation behind PS 482
30.1.2 Ages of Jobs in the M/G/1/PS System 483
30.1.3 Response Time as a Function of Job Size 484
30.1.4 Intuition for PS Results 487
30.1.5 Implications of PS Results for Understanding FCFS 487

30.2 Preemptive-LCFS 488
30.3 FB Scheduling 490
30.4 Readings 495
30.5 Exercises 496

31 Scheduling: Non-Preemptive, Size-Based Policies 499
31.1 Priority Queueing 499
31.2 Non-Preemptive Priority 501
31.3 Shortest-Job-First (SJF) 504
31.4 The Problem with Non-Preemptive Policies 506
31.5 Exercises 507

32 Scheduling: Preemptive, Size-Based Policies 508
32.1 Motivation 508
32.2 Preemptive Priority Queueing 508
32.3 Preemptive-Shortest-Job-First (PSJF) 512
32.4 Transform Analysis of PSJF 514
32.5 Exercises 516

33 Scheduling: SRPT and Fairness 518
33.1 Shortest-Remaining-Processing-Time (SRPT) 518
33.2 Precise Derivation of SRPT Waiting Time∗ 521

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

contents xv

33.3 Comparisons with Other Policies 523
33.3.1 Comparison with PSJF 523
33.3.2 SRPT versus FB 523
33.3.3 Comparison of All Scheduling Policies 524

33.4 Fairness of SRPT 525
33.5 Readings 529

Bibliography 531
Index 541

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

Preface

The ad hoc World of Computer System Design

The design of computer systems is often viewed very much as an art rather than a
science. Decisions about which scheduling policy to use, how many servers to run,
what speed to operate each server at, and the like are often based on intuitions rather
than mathematically derived formulas. Specific policies built into kernels are often
riddled with secret “voodoo constants,”1 which have no explanation but seem to “work
well” under some benchmarked workloads. Computer systems students are often told
to first build the system and then make changes to the policies to improve system
performance, rather than first creating a formal model and design of the system on
paper to ensure the system meets performance goals.

Even when trying to evaluate the performance of an existing computer system, students
are encouraged to simulate the system and spend many days running their simulation
under different workloads waiting to see what happens. Given that the search space of
possible workloads and input parameters is often huge, vast numbers of simulations
are needed to properly cover the space. Despite this fact, mathematical models of the
system are rarely created, and we rarely characterize workloads stochastically. There is
no formal analysis of the parameter space under which the computer system is likely to
perform well versus that under which it is likely to perform poorly. It is no wonder that
computer systems students are left feeling that the whole process of system evaluation
and design is very ad hoc. As an example, consider the trial-and-error approach to
updating resource scheduling in the many versions of the Linux kernel.

Analytical Modeling for Computer Systems

But it does not have to be this way! These same systems designers could mathematically
model the system, stochastically characterize the workloads and performance goals,
and then analytically derive the performance of the system as a function of workload
and input parameters. The fields of analytical modeling and stochastic processes have
existed for close to a century, and they can be used to save systems designers huge
numbers of hours in trial and error while improving performance. Analytical modeling
can also be used in conjunction with simulation to help guide the simulation, reducing
the number of cases that need to be explored.

1 The term “voodoo constants” was coined by Prof. John Ousterhout during his lectures at the University of
California, Berkeley.

xvii

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

xviii preface

Unfortunately, of the hundreds of books written on stochastic processes, almost none
deal with computer systems. The examples in those books and the material covered are
oriented toward operations research areas such as manufacturing systems, or human
operators answering calls in a call center, or some assembly-line system with different
priority jobs.

In many ways the analysis used in designing manufacturing systems is not all that
different from computer systems. There are many parallels between a human operator
and a computer server: There are faster human operators and slower ones (just as
computer servers); the human servers sometimes get sick (just as computer servers
sometimes break down); when not needed, human operators can be sent home to save
money (just as computer servers can be turned off to save power); there is a startup
overhead to bringing back a human operator (just as there is a warmup cost to turning
on a computer server); and the list goes on.

However, there are also many differences between manufacturing systems and com-
puter systems. To start, computer systems workloads have been shown to have ex-
tremely high variability in job sizes (service requirements), with squared coefficients
of variation upward of 100. This is very different from the low-variability service times
characteristic of job sizes in manufacturing workloads. This difference in variability
can result in performance differences of orders of magnitude. Second, computer work-
loads are typically preemptible, and time-sharing (Processor-Sharing) of the CPU is
extremely common. By contrast, most manufacturing workloads are non-preemptive
(first-come-first-serve service order is the most common). Thus most books on stochas-
tic processes and queueing omit chapters on Processor-Sharing or more advanced pre-
emptive policies like Shortest-Remaining-Processing-Time, which are very much at
the heart of computer systems. Processor-Sharing is particularly relevant when analyz-
ing server farms, which, in the case of computer systems, are typically composed of
Processor-Sharing servers, not First-Come-First-Served ones. It is also relevant in any
computing application involving bandwidth being shared between users, which typi-
cally happens in a processor-sharing style, not first-come-first-serve order. Performance
metrics may also be different for computer systems as compared with manufacturing
systems (e.g., power usage, an important metric for computer systems, is not mentioned
in stochastic processes books). Closed-loop architectures, in which new jobs are not
created until existing jobs complete, and where the performance goal is to maximize
throughput, are very common in computer systems, but are often left out of queueing
books. Finally, the particular types of interactions that occur in disks, networking pro-
tocols, databases, memory controllers, and other computer systems are very different
from what has been analyzed in traditional queueing books.

The Goal of This Book

Many times I have walked into a fellow computer scientist’s office and was pleased to
find a queueing book on his shelf. Unfortunately, when questioned, my colleague was
quick to answer that he never uses the book because “The world doesn’t look like an
M/M/1 queue, and I can’t understand anything past that chapter.” The problem is that

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

preface xix

the queueing theory books are not “friendly” to computer scientists. The applications
are not computer-oriented, and the assumptions used are often unrealistic for computer
systems. Furthermore, these books are abstruse and often impenetrable by anyone who
has not studied graduate-level mathematics. In some sense this is hard to avoid: If one
wants to do more than provide readers with formulas to “plug into,” then one has to
teach them to derive their own formulas, and this requires learning a good deal of math.
Fortunately, as one of my favorite authors, Sheldon Ross, has shown, it is possible to
teach a lot of stochastic analysis in a fun and simple way that does not require first
taking classes in measure theory and real analysis.

My motive in writing this book is to improve the design of computer systems by intro-
ducing computer scientists to the powerful world of queueing-theoretic modeling and
analysis. Personally, I have found queueing-theoretic analysis to be extremely valuable
in much of my research including: designing routing protocols for networks, designing
better scheduling algorithms for web servers and database management systems, disk
scheduling, memory-bank allocation, supercomputing resource scheduling, and power
management and capacity provisioning in data centers. Content-wise, I have two goals
for the book. First, I want to provide enough applications from computer systems to
make the book relevant and interesting to computer scientists. Toward this end, almost
half the chapters of the book are “application” chapters. Second, I want to make the
book mathematically rich enough to give readers the ability to actually develop new
queueing analysis, not just apply existing analysis. As computer systems and their
workloads continue to evolve and become more complex, it is unrealistic to assume
that they can be modeled with known queueing frameworks and analyses. As a designer
of computer systems myself, I am constantly finding that I have to invent new queueing
concepts to model aspects of computer systems.

How This Book Came to Be

In 1998, as a postdoc at MIT, I developed and taught a new computer science class,
which I called “Performance Analysis and Design of Computer Systems.” The class
had the following description:

In designing computer systems one is usually constrained by certain performance
goals (e.g., low response time or high throughput or low energy). On the other hand,
one often has many choices: One fast disk, or two slow ones? What speed CPU will
suffice? Should we invest our money in more buffer space or a faster processor?
How should jobs be scheduled by the processor? Does it pay to migrate active jobs?
Which routing policy will work best? Should one balance load among servers? How
can we best combat high-variability workloads? Often answers to these questions are
counterintuitive. Ideally, one would like to have answers to these questions before
investing the time and money to build a system. This class will introduce students
to analytic stochastic modeling, which allows system designers to answer questions
such as those above.

Since then, I have further developed the class via 10 more iterations taught within
the School of Computer Science at Carnegie Mellon, where I taught versions of the

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

xx preface

class to both PhD students and advanced undergraduates in the areas of computer
science, engineering, mathematics, and operations research. In 2002, the Operations
Management department within the Tepper School of Business at Carnegie Mellon
made the class a qualifier requirement for all operations management students.

As other faculty, including my own former PhD students, adopted my lecture notes in
teaching their own classes, I was frequently asked to turn the notes into a book. This is
“version 1” of that book.

Outline of the Book

This book is written in a question/answer style, which mimics the Socratic style that
I use in teaching. I believe that a class “lecture” should ideally be a long sequence
of bite-sized questions, which students can easily provide answers to and which lead
students to the right intuitions. In reading this book, it is extremely important to try
to answer each question without looking at the answer that follows the question. The
questions are written to remind the reader to “think” rather than just “read,” and to
remind the teacher to ask questions rather than just state facts.

There are exercises at the end of each chapter. The exercises are an integral part of the
book and should not be skipped. Many exercises are used to illustrate the application
of the theory to problems in computer systems design, typically with the purpose of
illuminating a key insight. All exercises are related to the material covered in the
chapter, with early exercises being straightforward applications of the material and
later exercises exploring extensions of the material involving greater difficulty.

The book is divided into seven parts, which mostly build on each other.

Part I introduces queueing theory and provides motivating examples from computer
systems design that can be answered using basic queueing analysis. Basic queueing
terminology is introduced including closed and open queueing models and performance
metrics.

Part II is a probability refresher. To make this book self-contained, we have included
in these chapters all the probability that will be needed throughout the rest of the book.
This includes a summary of common discrete and continuous random variables, their
moments, and conditional expectations and probabilities. Also included is some mate-
rial on generating random variables for simulation. Finally we end with a discussion of
sample paths, convergence of sequences of random variables, and time averages versus
ensemble averages.

Part III is about operational laws, or “back of the envelope” analysis. These are
very simple laws that hold for all well-behaved queueing systems. In particular, they
do not require that any assumptions be made about the arrival process or workload
(like Poisson arrivals or Exponential service times). These laws allow us to quickly
reason at a high level (averages only) about system behavior and make design decisions
regarding what modifications will have the biggest performance impact. Applications
to high-level computer system design are provided throughout.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

preface xxi

Part IV is about Markov chains and their application toward stochastic analysis of
computer systems. Markov chains allow a much more detailed analysis of systems
by representing the full space of possible states that the system can be in. Whereas
the operational laws in Part III often allow us to answer questions about the overall
mean number of jobs in a system, Markov chains allow us to derive the probability
of exactly i jobs being queued at server j of a multi-server system. Part IV includes
both discrete-time and continuous-time Markov chains. Applications include Google’s
PageRank algorithm, the Aloha (Ethernet) networking protocol, and an analysis of
dropping probabilities in finite-buffer routers.

Part V develops the Markov chain theory introduced in Part IV to allow the analysis of
more complex networks, including server farms. We analyze networks of queues with
complex routing rules, where jobs can be associated with a “class” that determines
their route through the network (these are known as BCMP networks). Part V also
derives theorems on capacity provisioning of server farms, such as the “square-root
staffing rule,” which determines the minimum number of servers needed to provide
certain delay guarantees.

The fact that Parts IV and V are based on Markov chains necessitates that certain
“Markovian” (memoryless) assumptions are made in the analysis. In particular, it is
assumed that the service requirements (sizes) of jobs follow an Exponential distribu-
tion and that the times between job arrivals are also Exponentially distributed. Many
applications are reasonably well modeled via these Exponential assumptions, allowing
us to use Markov analysis to get good insights into system performance. However,
in some cases, it is important to capture the high-variability job size distributions or
correlations present in the empirical workloads.

Part VI introduces techniques that allow us to replace these Exponential distributions
with high-variability distributions. Phase-type distributions are introduced, which allow
us to model virtually any general distribution by a mixture of Exponentials, leverag-
ing our understanding of Exponential distributions and Markov chains from Parts IV
and V. Matrix-analytic techniques are then developed to analyze systems with phase-
type workloads in both the arrival process and service process. The M/G/1 queue
is introduced, and notions such as the Inspection Paradox are discussed. Real-world
workloads are described including heavy-tailed distributions. Transform techniques
are also introduced that facilitate working with general distributions. Finally, even
the service order at the queues is generalized from simple first-come-first-served ser-
vice order to time-sharing (Processor-Sharing) service order, which is more common
in computer systems. Applications abound: Resource allocation (task assignment) in
server farms with high-variability job sizes is studied extensively, both for server farms
with non-preemptive workloads and for web server farms with time-sharing servers.
Power management policies for single servers and for data centers are also studied.

Part VII, the final part of the book, is devoted to scheduling. Smart scheduling is
extremely important in computer systems, because it can dramatically improve system
performance without requiring the purchase of any new hardware. Scheduling is at the
heart of operating systems, bandwidth allocation in networks, disks, databases, memory
hierarchies, and the like. Much of the research being done in the computer systems

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

xxii preface

area today involves the design and adoption of new scheduling policies. Scheduling can
be counterintuitive, however, and the analysis of even basic scheduling policies is far
from simple. Scheduling policies are typically evaluated via simulation. In introducing
the reader to analytical techniques for evaluating scheduling policies, our hope is that
more such policies might be evaluated via analysis.

We expect readers to mostly work through the chapters in order, with the following
exceptions: First, any chapter or section marked with a star (*) can be skipped without
disturbing the flow. Second, the chapter on transforms, Chapter 25, is purposely moved
to the end, so that most of the book does not depend on knowing transform analysis.
However, because learning transform analysis takes some time, we recommend that
any teacher who plans to cover transforms introduce the topic a little at a time, starting
early in the course. To facilitate this, we have included a large number of exercises at
the end of Chapter 25 that do not require material in later chapters and can be assigned
earlier in the course to give students practice manipulating transforms.

Finally, we urge readers to please check the following websites for new errors/software:

http://www.cs.cmu.edu/∼harchol/PerformanceModeling/errata.html

http://www.cs.cmu.edu/∼harchol/PerformanceModeling/software.html

Please send any additional errors to harchol@cs.cmu.edu.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

Acknowledgments

Writing a book, I quickly realized, is very different from writing a research paper, even
a very long one. Book writing actually bears much more similarity to teaching a class.
That is why I would like to start by thanking the three people who most influenced my
teaching. Manuel Blum, my PhD advisor, taught me the art of creating a lecture out
of a series of bite-sized questions. Dick Karp taught me that you can cover an almost
infinite amount of material in just one lecture if you spend enough time in advance
simplifying that material into its cleanest form. Sheldon Ross inspired me by the depth
of his knowledge in stochastic processes (a knowledge so deep that he never once
looked at his notes while teaching) and by the sheer clarity and elegance of both his
lectures and his many beautifully written books.

I would also like to thank Carnegie Mellon University, and the School of Computer
Science at Carnegie Mellon, which has at its core the theme of interdisciplinary re-
search, particularly the mixing of theoretical and applied research. CMU has been the
perfect environment for me to develop the analytical techniques in this book, all in
the context of solving hard applied problems in computer systems design. CMU has
also provided me with a never-ending stream of gifted students, who have inspired
many of the exercises and discussions in this book. Much of this book came from the
research of my own PhD students, including Sherwin Doroudi, Anshul Gandhi, Varun
Gupta, Yoongu Kim, David McWherter, Takayuki Osogami, Bianca Schroeder, Adam
Wierman, and Timothy Zhu. In addition, Mark Crovella, Mike Kozuch, and particu-
larly Alan Scheller-Wolf, all longtime collaborators of mine, have inspired much of
my thinking via their uncanny intuitions and insights.

A great many people have proofread parts of this book or tested out the book and
provided me with useful feedback. These include Sem Borst, Doug Down, Erhun
Ozkan, Katsunobu Sasanuma, Alan Scheller-Wolf, Thrasyvoulos Spyropoulos, Jarod
Wang, and Zachary Young. I would also like to thank my editors, Diana Gillooly and
Lauren Cowles from Cambridge University Press, who were very quick to answer my
endless questions, and who greatly improved the presentation of this book. Finally, I am
very grateful to Miso Kim, my illustrator, a PhD student at the Carnegie Mellon School
of Design, who spent hundreds of hours designing all the fun figures in the book.

On a more personal note, I would like to thank my mother, Irit Harchol, for making
my priorities her priorities, allowing me to maximize my achievements. I did not know
what this meant until I had a child of my own. Lastly, I would like to thank my
husband, Andrew Young. He won me over by reading all my online lecture notes and
doing every homework problem – this was his way of asking me for a first date. His
ability to understand it all without attending any lectures made me believe that my
lecture notes might actually “work” as a book. His willingness to sit by my side every
night for many months gave me the motivation to make it happen.

xxiii

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-1-107-02750-3 - Performance Modeling and Design of Computer Systems: Queueing Theory in Action
Mor Harchol-Balter
Frontmatter
More information

http://www.cambridge.org/9781107027503
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9781107027503:

