
Performance Modeling and Design of Computer Systems

Computer systems design is full of conundrums:

� Given a choice between a single machine with speed s, or n machines each with
speed s/n, which should we choose?

� If both the arrival rate and service rate double, will the mean response time stay the
same?

� Should systems really aim to balance load, or is this a convenient myth?
� If a scheduling policy favors one set of jobs, does it necessarily hurt some other jobs,

or are these “conservation laws” being misinterpreted?
� Do greedy, shortest-delay, routing strategies make sense in a server farm, or is what

is good for the individual disastrous for the system as a whole?
� How do high job size variability and heavy-tailed workloads affect the choice of a

scheduling policy?
� How should one trade off energy and delay in designing a computer system?
� If 12 servers are needed to meet delay guarantees when the arrival rate is 9 jobs/sec,

will we need 12,000 servers when the arrival rate is 9,000 jobs/sec?

Tackling the questions that systems designers care about, this book brings queueing theory
decisively back to computer science. The book is written with computer scientists and
engineers in mind and is full of examples from computer systems, as well as manufacturing
and operations research. Fun and readable, the book is highly approachable, even for
undergraduates, while still being thoroughly rigorous and also covering a much wider span
of topics than many queueing books.

Readers benefit from a lively mix of motivation and intuition, with illustrations, examples,
and more than 300 exercises – all while acquiring the skills needed to model, analyze,
and design large-scale systems with good performance and low cost. The exercises are an
important feature, teaching research-level counterintuitive lessons in the design of computer
systems. The goal is to train readers not only to customize existing analyses but also to
invent their own.

Mor Harchol-Balter is an Associate Professor in the Computer Science Department at
Carnegie Mellon University. She is a leader in the ACM Sigmetrics Conference on Measure-
ment and Modeling of Computer Systems, having served as technical program committee
chair in 2007 and conference chair in 2013.
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I have always been interested in finding better designs for computer systems, designs
that improve performance without the purchase of additional resources. When I look
back at the problems that I have solved and I look ahead to the problems I hope to
solve, I realize that the problem formulations keep getting simpler and simpler, and my
footing less secure. Every wisdom that I once believed, I have now come to question:
If a scheduling policy helps one set of jobs, does it necessarily hurt some other jobs,
or are these “conservation laws” being misinterpreted? Do greedy routing strategies
make sense in server farms, or is what is good for the individual actually disastrous for
the system as a whole? When comparing a single fast machine with n slow machines,
each of 1/nth the speed, the single fast machine is typically much more expensive – but
does that mean that it is necessarily better? Should distributed systems really aim to
balance load, or is this a convenient myth? Cycle stealing, where machines can help
each other when they are idle, sounds like a great idea, but can we quantify the actual
benefit? How much is the performance of scheduling policies affected by variability
in the arrival rate and service rate and by fluctuations in the load, and what can we do
to combat variability? Inherent in these questions is the impact of real user behaviors
and real-world workloads with heavy-tailed, highly variable service demands, as
well as correlated arrival processes. Also intertwined in my work are the tensions
between theoretical analysis and the realities of implementation, each motivating the
other. In my search to discover new research techniques that allow me to answer
these and other questions, I find that I am converging toward the fundamental core
that defines all these problems, and that makes the counterintuitive more believable.
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Preface

The ad hoc World of Computer System Design

The design of computer systems is often viewed very much as an art rather than a
science. Decisions about which scheduling policy to use, how many servers to run,
what speed to operate each server at, and the like are often based on intuitions rather
than mathematically derived formulas. Specific policies built into kernels are often
riddled with secret “voodoo constants,”1 which have no explanation but seem to “work
well” under some benchmarked workloads. Computer systems students are often told
to first build the system and then make changes to the policies to improve system
performance, rather than first creating a formal model and design of the system on
paper to ensure the system meets performance goals.

Even when trying to evaluate the performance of an existing computer system, students
are encouraged to simulate the system and spend many days running their simulation
under different workloads waiting to see what happens. Given that the search space of
possible workloads and input parameters is often huge, vast numbers of simulations
are needed to properly cover the space. Despite this fact, mathematical models of the
system are rarely created, and we rarely characterize workloads stochastically. There is
no formal analysis of the parameter space under which the computer system is likely to
perform well versus that under which it is likely to perform poorly. It is no wonder that
computer systems students are left feeling that the whole process of system evaluation
and design is very ad hoc. As an example, consider the trial-and-error approach to
updating resource scheduling in the many versions of the Linux kernel.

Analytical Modeling for Computer Systems

But it does not have to be this way! These same systems designers could mathematically
model the system, stochastically characterize the workloads and performance goals,
and then analytically derive the performance of the system as a function of workload
and input parameters. The fields of analytical modeling and stochastic processes have
existed for close to a century, and they can be used to save systems designers huge
numbers of hours in trial and error while improving performance. Analytical modeling
can also be used in conjunction with simulation to help guide the simulation, reducing
the number of cases that need to be explored.

1 The term “voodoo constants” was coined by Prof. John Ousterhout during his lectures at the University of
California, Berkeley.

xvii
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xviii preface

Unfortunately, of the hundreds of books written on stochastic processes, almost none
deal with computer systems. The examples in those books and the material covered are
oriented toward operations research areas such as manufacturing systems, or human
operators answering calls in a call center, or some assembly-line system with different
priority jobs.

In many ways the analysis used in designing manufacturing systems is not all that
different from computer systems. There are many parallels between a human operator
and a computer server: There are faster human operators and slower ones (just as
computer servers); the human servers sometimes get sick (just as computer servers
sometimes break down); when not needed, human operators can be sent home to save
money (just as computer servers can be turned off to save power); there is a startup
overhead to bringing back a human operator ( just as there is a warmup cost to turning
on a computer server); and the list goes on.

However, there are also many differences between manufacturing systems and com-
puter systems. To start, computer systems workloads have been shown to have ex-
tremely high variability in job sizes (service requirements), with squared coefficients
of variation upward of 100. This is very different from the low-variability service times
characteristic of job sizes in manufacturing workloads. This difference in variability
can result in performance differences of orders of magnitude. Second, computer work-
loads are typically preemptible, and time-sharing (Processor-Sharing) of the CPU is
extremely common. By contrast, most manufacturing workloads are non-preemptive
(first-come-first-serve service order is the most common). Thus most books on stochas-
tic processes and queueing omit chapters on Processor-Sharing or more advanced pre-
emptive policies like Shortest-Remaining-Processing-Time, which are very much at
the heart of computer systems. Processor-Sharing is particularly relevant when analyz-
ing server farms, which, in the case of computer systems, are typically composed of
Processor-Sharing servers, not First-Come-First-Served ones. It is also relevant in any
computing application involving bandwidth being shared between users, which typi-
cally happens in a processor-sharing style, not first-come-first-serve order. Performance
metrics may also be different for computer systems as compared with manufacturing
systems (e.g., power usage, an important metric for computer systems, is not mentioned
in stochastic processes books). Closed-loop architectures, in which new jobs are not
created until existing jobs complete, and where the performance goal is to maximize
throughput, are very common in computer systems, but are often left out of queueing
books. Finally, the particular types of interactions that occur in disks, networking pro-
tocols, databases, memory controllers, and other computer systems are very different
from what has been analyzed in traditional queueing books.

The Goal of This Book

Many times I have walked into a fellow computer scientist’s office and was pleased to
find a queueing book on his shelf. Unfortunately, when questioned, my colleague was
quick to answer that he never uses the book because “The world doesn’t look like an
M/M/1 queue, and I can’t understand anything past that chapter.” The problem is that
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preface xix

the queueing theory books are not “friendly” to computer scientists. The applications
are not computer-oriented, and the assumptions used are often unrealistic for computer
systems. Furthermore, these books are abstruse and often impenetrable by anyone who
has not studied graduate-level mathematics. In some sense this is hard to avoid: If one
wants to do more than provide readers with formulas to “plug into,” then one has to
teach them to derive their own formulas, and this requires learning a good deal of math.
Fortunately, as one of my favorite authors, Sheldon Ross, has shown, it is possible to
teach a lot of stochastic analysis in a fun and simple way that does not require first
taking classes in measure theory and real analysis.

My motive in writing this book is to improve the design of computer systems by intro-
ducing computer scientists to the powerful world of queueing-theoretic modeling and
analysis. Personally, I have found queueing-theoretic analysis to be extremely valuable
in much of my research including: designing routing protocols for networks, designing
better scheduling algorithms for web servers and database management systems, disk
scheduling, memory-bank allocation, supercomputing resource scheduling, and power
management and capacity provisioning in data centers. Content-wise, I have two goals
for the book. First, I want to provide enough applications from computer systems to
make the book relevant and interesting to computer scientists. Toward this end, almost
half the chapters of the book are “application” chapters. Second, I want to make the
book mathematically rich enough to give readers the ability to actually develop new
queueing analysis, not just apply existing analysis. As computer systems and their
workloads continue to evolve and become more complex, it is unrealistic to assume
that they can be modeled with known queueing frameworks and analyses. As a designer
of computer systems myself, I am constantly finding that I have to invent new queueing
concepts to model aspects of computer systems.

How This Book Came to Be

In 1998, as a postdoc at MIT, I developed and taught a new computer science class,
which I called “Performance Analysis and Design of Computer Systems.” The class
had the following description:

In designing computer systems one is usually constrained by certain performance
goals (e.g., low response time or high throughput or low energy). On the other hand,
one often has many choices: One fast disk, or two slow ones? What speed CPU will
suffice? Should we invest our money in more buffer space or a faster processor?
How should jobs be scheduled by the processor? Does it pay to migrate active jobs?
Which routing policy will work best? Should one balance load among servers? How
can we best combat high-variability workloads? Often answers to these questions are
counterintuitive. Ideally, one would like to have answers to these questions before
investing the time and money to build a system. This class will introduce students
to analytic stochastic modeling, which allows system designers to answer questions
such as those above.

Since then, I have further developed the class via 10 more iterations taught within
the School of Computer Science at Carnegie Mellon, where I taught versions of the
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xx preface

class to both PhD students and advanced undergraduates in the areas of computer
science, engineering, mathematics, and operations research. In 2002, the Operations
Management department within the Tepper School of Business at Carnegie Mellon
made the class a qualifier requirement for all operations management students.

As other faculty, including my own former PhD students, adopted my lecture notes in
teaching their own classes, I was frequently asked to turn the notes into a book. This is
“version 1” of that book.

Outline of the Book

This book is written in a question/answer style, which mimics the Socratic style that
I use in teaching. I believe that a class “lecture” should ideally be a long sequence
of bite-sized questions, which students can easily provide answers to and which lead
students to the right intuitions. In reading this book, it is extremely important to try
to answer each question without looking at the answer that follows the question. The
questions are written to remind the reader to “think” rather than just “read,” and to
remind the teacher to ask questions rather than just state facts.

There are exercises at the end of each chapter. The exercises are an integral part of the
book and should not be skipped. Many exercises are used to illustrate the application
of the theory to problems in computer systems design, typically with the purpose of
illuminating a key insight. All exercises are related to the material covered in the
chapter, with early exercises being straightforward applications of the material and
later exercises exploring extensions of the material involving greater difficulty.

The book is divided into seven parts, which mostly build on each other.

Part I introduces queueing theory and provides motivating examples from computer
systems design that can be answered using basic queueing analysis. Basic queueing
terminology is introduced including closed and open queueing models and performance
metrics.

Part II is a probability refresher. To make this book self-contained, we have included
in these chapters all the probability that will be needed throughout the rest of the book.
This includes a summary of common discrete and continuous random variables, their
moments, and conditional expectations and probabilities. Also included is some mate-
rial on generating random variables for simulation. Finally we end with a discussion of
sample paths, convergence of sequences of random variables, and time averages versus
ensemble averages.

Part III is about operational laws, or “back of the envelope” analysis. These are
very simple laws that hold for all well-behaved queueing systems. In particular, they
do not require that any assumptions be made about the arrival process or workload
(like Poisson arrivals or Exponential service times). These laws allow us to quickly
reason at a high level (averages only) about system behavior and make design decisions
regarding what modifications will have the biggest performance impact. Applications
to high-level computer system design are provided throughout.
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Part IV is about Markov chains and their application toward stochastic analysis of
computer systems. Markov chains allow a much more detailed analysis of systems
by representing the full space of possible states that the system can be in. Whereas
the operational laws in Part III often allow us to answer questions about the overall
mean number of jobs in a system, Markov chains allow us to derive the probability
of exactly i jobs being queued at server j of a multi-server system. Part IV includes
both discrete-time and continuous-time Markov chains. Applications include Google’s
PageRank algorithm, the Aloha (Ethernet) networking protocol, and an analysis of
dropping probabilities in finite-buffer routers.

Part V develops the Markov chain theory introduced in Part IV to allow the analysis of
more complex networks, including server farms. We analyze networks of queues with
complex routing rules, where jobs can be associated with a “class” that determines
their route through the network (these are known as BCMP networks). Part V also
derives theorems on capacity provisioning of server farms, such as the “square-root
staffing rule,” which determines the minimum number of servers needed to provide
certain delay guarantees.

The fact that Parts IV and V are based on Markov chains necessitates that certain
“Markovian” (memoryless) assumptions are made in the analysis. In particular, it is
assumed that the service requirements (sizes) of jobs follow an Exponential distribu-
tion and that the times between job arrivals are also Exponentially distributed. Many
applications are reasonably well modeled via these Exponential assumptions, allowing
us to use Markov analysis to get good insights into system performance. However,
in some cases, it is important to capture the high-variability job size distributions or
correlations present in the empirical workloads.

Part VI introduces techniques that allow us to replace these Exponential distributions
with high-variability distributions. Phase-type distributions are introduced, which allow
us to model virtually any general distribution by a mixture of Exponentials, leverag-
ing our understanding of Exponential distributions and Markov chains from Parts IV
and V. Matrix-analytic techniques are then developed to analyze systems with phase-
type workloads in both the arrival process and service process. The M/G/1 queue
is introduced, and notions such as the Inspection Paradox are discussed. Real-world
workloads are described including heavy-tailed distributions. Transform techniques
are also introduced that facilitate working with general distributions. Finally, even
the service order at the queues is generalized from simple first-come-first-served ser-
vice order to time-sharing (Processor-Sharing) service order, which is more common
in computer systems. Applications abound: Resource allocation (task assignment) in
server farms with high-variability job sizes is studied extensively, both for server farms
with non-preemptive workloads and for web server farms with time-sharing servers.
Power management policies for single servers and for data centers are also studied.

Part VII, the final part of the book, is devoted to scheduling. Smart scheduling is
extremely important in computer systems, because it can dramatically improve system
performance without requiring the purchase of any new hardware. Scheduling is at the
heart of operating systems, bandwidth allocation in networks, disks, databases, memory
hierarchies, and the like. Much of the research being done in the computer systems
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xxii preface

area today involves the design and adoption of new scheduling policies. Scheduling can
be counterintuitive, however, and the analysis of even basic scheduling policies is far
from simple. Scheduling policies are typically evaluated via simulation. In introducing
the reader to analytical techniques for evaluating scheduling policies, our hope is that
more such policies might be evaluated via analysis.

We expect readers to mostly work through the chapters in order, with the following
exceptions: First, any chapter or section marked with a star (*) can be skipped without
disturbing the flow. Second, the chapter on transforms, Chapter 25, is purposely moved
to the end, so that most of the book does not depend on knowing transform analysis.
However, because learning transform analysis takes some time, we recommend that
any teacher who plans to cover transforms introduce the topic a little at a time, starting
early in the course. To facilitate this, we have included a large number of exercises at
the end of Chapter 25 that do not require material in later chapters and can be assigned
earlier in the course to give students practice manipulating transforms.

Finally, we urge readers to please check the following websites for new errors/software:

http://www.cs.cmu.edu/∼harchol/PerformanceModeling/errata.html

http://www.cs.cmu.edu/∼harchol/PerformanceModeling/software.html

Please send any additional errors to harchol@cs.cmu.edu.
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