

STOCHASTIC CALCULUS AND DIFFERENTIAL EQUATIONS FOR PHYSICS AND FINANCE

Stochastic calculus provides a powerful description of a specific class of stochastic processes in physics and finance. However, many econophysicists struggle to understand it. This book presents the subject simply and systematically, giving graduate students and practitioners a better understanding and enabling them to apply the methods in practice.

The book develops Ito calculus and Fokker–Planck equations as parallel approaches to stochastic processes, using those methods in a unified way. The focus is on nonstationary processes, and statistical ensembles are emphasized in time series analysis. Stochastic calculus is developed using general martingales. Scaling and fat tails are presented via diffusive models. Fractional Brownian motion is thoroughly analyzed and contrasted with Ito processes. The Chapman–Kolmogorov and Fokker–Planck equations are shown in theory and by example to be more general than a Markov process. The book also presents new ideas in financial economics and a critical survey of econometrics.

JOSEPH L. McCAULEY is Professor of Physics at the University of Houston. During his career he has contributed to several fields, including statistical physics, superfluids, nonlinear dynamics, cosmology, econophysics, economics, and finance theory.

STOCHASTIC CALCULUS AND DIFFERENTIAL EQUATIONS FOR PHYSICS AND FINANCE

JOSEPH L. McCAULEY

University of Houston

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

 $www. cambridge. org\\ Information on this title: www. cambridge. org/9780521763400$

© Joseph L. McCauley 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and bound in the United Kingdom by the MPG Books Group

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data
McCauley, Joseph L.
Stochastic calculus and differential equations for physics and finance / Joseph L. McCauley,
University of Houston.

pages cm

ISBN 978-0-521-76340-0

1. Stochastic processes. 2. Differential equations. 3. Statistical physics.

4. Finance – Mathematical models. I. Title.

QC20.7.S8M39 2012

519.2 - dc23 2012030955

ISBN 978-0-521-76340-0 Hardback

Additional resources for this publication at www.cambridge.org/9780521763400

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> For our youngest ones, Will, Justin, Joshua, Kayleigh, and Charlie

Contents

	Abbreviations		page xi		
	Introd	Introduction			
1	Random variables and probability distributions		5		
	1.1	Particle descriptions of partial differential equations	5		
	1.2	Random variables and stochastic processes	7		
	1.3	The n-point probability distributions	9		
	1.4	Simple averages and scaling	10		
	1.5	Pair correlations and 2-point densities	11		
	1.6	Conditional probability densities	12		
	1.7	Statistical ensembles and time series	13		
	1.8	When are pair correlations enough to identify a stochastic			
		process?	16		
		Exercises	17		
2	Marti	ngales, Markov, and nonstationarity	18		
	2.1	Statistically independent increments	18		
	2.2	Stationary increments	19		
	2.3	Martingales	20		
	2.4	Nonstationary increment processes	21		
	2.5	Markov processes	22		
	2.6	Drift plus noise	22		
	2.7	Gaussian processes	23		
	2.8	Stationary vs. nonstationary processes	24		
		Exercises	26		
3	Stochastic calculus		28		
	3.1	The Wiener process	28		
	3.2	Ito's theorem	29		
			vii		

V111		Contents	
	3.3	Ito's lemma	30
	3.4	Martingales for greenhorns	31
	3.5	First-passage times	33
		Exercises	35
4	Ito processes and Fokker–Planck equations		37
	4.1	Stochastic differential equations	37
	4.2	Ito's lemma	39
	4.3	The Fokker–Planck pde	39
	4.4	The Chapman–Kolmogorov equation	41
	4.5	Calculating averages	42
	4.6	Statistical equilibrium	43
	4.7	An ergodic stationary process	45
	4.8	Early models in statistical physics and finance	45
	4.9	Nonstationary increments revisited	48
		Exercises	48
5	Selfsimilar Ito processes		50
	5.1	Selfsimilar stochastic processes	50
	5.2	Scaling in diffusion	51
	5.3	Superficially nonlinear diffusion	53
	5.4	Is there an approach to scaling?	54
	5.5	Multiaffine scaling	55
		Exercises	56
6	Fractional Brownian motion		57
	6.1	Introduction	57
	6.2	Fractional Brownian motion	57
	6.3	The distribution of fractional Brownian motion	60
	6.4	Infinite memory processes	61
	6.5	The minimal description of dynamics	62
	6.6	Pair correlations cannot scale	63
	6.7	Semimartingales	64
		Exercises	65
7	Kolmogorov's pdes and Chapman–Kolmogorov		66
	7.1	The meaning of Kolmogorov's first pde	66
	7.2	An example of backward-time diffusion	68
	7.3	Deriving the Chapman-Kolmogorov equation for	
		an Ito process	68
		Exercise	70

		Contents	1X
8	Non-Markov Ito processes		71
	8.1	Finite memory Ito processes?	71
	8.2	A Gaussian Ito process with 1-state memory	72
	8.3	McKean's examples	74
	8.4	The Chapman–Kolmogorov equation	78
	8.5	Interacting system with a phase transition	79
	8.6	The meaning of the Chapman–Kolmogorov equation	81
		Exercise	82
9	Black-Scholes, martingales, and Feynman-Kac		83
	9.1	Local approximation to sdes	83
	9.2	Transition densities via functional integrals	83
	9.3	Black–Scholes-type pdes	84
		Exercise	85
10	Stochastic calculus with martingales		86
	10.1	Introduction	86
	10.2	Integration by parts	87
	10.3	An exponential martingale	88
	10.4	Girsanov's theorem	89
	10.5	An application of Girsanov's theorem	91
	10.6	Topological inequivalence of martingales with Wiener	
		processes	93
	10.7	Solving diffusive pdes by running an Ito process	96
	10.8	First-passage times	97
	10.9	Martingales generally seen	102
		Exercises	105
11	Statistical physics and finance: A brief history of each		106
	11.1	Statistical physics	106
	11.2	·	110
		Exercise	115
12	Introduction to new financial economics		117
	12.1	Excess demand dynamics	117
	12.2	Adam Smith's unreliable hand	118
	12.3	Efficient markets and martingales	120
	12.4	Equilibrium markets are inefficient	123
	12.5	Hypothetical FX stability under a gold standard	126
	12.6	Value	131

X		Contents	
	12.7	Liquidity, reversible trading, and fat tails vs. crashes	132
	12.8	Spurious stylized facts	143
	12.9	An sde for increments	146
		Exercises	147
13	Statistical ensembles and time-series analysis		148
	13.1	Detrending economic variables	148
	13.2	Ensemble averages and time series	149
	13.3	Time-series analysis	152
	13.4	Deducing dynamics from time series	162
	13.5	Volatility measures	167
		Exercises	168
14	Econometrics		169
	14.1	Introduction	169
	14.2	Socially constructed statistical equilibrium	172
	14.3	Rational expectations	175
	14.4	Monetary policy models	177
	14.5	The monetarist argument against government intervention	179
	14.6	Rational expectations in a real, nonstationary market	180
	14.7	Volatility, ARCH, and GARCH	192
		Exercises	195
15	Semimartingales		196
	15.1	Introduction	196
	15.2	Filtrations	197
	15.3	Adapted processes	197
	15.4	Martingales	198
	15.5	Semimartingales	198
		Exercise	199
	References		200
	Index		204

Abbreviations

B(t), Wiener process

x(t) or X(t), random variable at time t in a stochastic process

 $f_n(x_n,t_n;\ldots;x_1,t_1)$, n-point density of a continuous random variable x at n different times $t_1 \leq t_2 \leq \ldots \leq t_n$.

 $p_2(x,t|y,s)$, conditional density to get x at time t, given that y was observed at time s < t.

 $\langle x(t) \rangle_c = \int dx x p_2(x,t|y,s)$, avg. of x at time t conditioned on having observed y at time s. Using a bracket to denote an average is standard in physics since the time of Dirac.

A(x, t), dynamical variable, meaning a function of a random variable x and also the time t.

 $\langle A(t) \rangle = \int dx A(x, t) f_1(x, t)$, absolute average of a dynamical variable A.

 $\langle x(t)y(s)\rangle = \int dxdyxyf_2(x,t;y,s)$, pair correlation function

 $\langle x(t) \rangle = \int dx dy x p_2(x,t|y,s) \, f_1(y,s)$, absolute average of x at time t; $\langle x(t) \rangle = \int dx \, A(x) \, f_1(x,t)$ since $\int dy p_2(x,t|y,s) = 1$.

 $\langle \mathbf{x}(t)\rangle_{c} = \int d\mathbf{x} \mathbf{x} \mathbf{p}_{2}(\mathbf{x}, t|\mathbf{y}, \mathbf{s}) = \mathbf{y}$, martingale process

x(t, T) = x(t + T) - x(t), an increment/displacement/difference

 $\langle x^2(t,T)\rangle$, mean square fluctuation about an arbitrary point x observed at time t.

dX = R(X, t)dt + b(X, s)dB(t), Ito process;

 $b^2(x, t) = D(x, t)$ is the diffusion coefficient

M(t), a martingale in Ito calculus, $dM(t) = \pm \sqrt{D(M, t)} dB(t)$

 $\{X\} = \int d(X)^2$ where $(dX)^2 = D(X, t)dt^1$

 ${X, Y} = \frac{1}{4}({X + Y} - {X - Y})$

fBm, fractional Brownian motion, a mathematical model with stationary increments and long-time correlations

ratex, rational expectations, a mathematized ideology

хi

¹ This is a special notation used in Chapter 10 where stochastic calculus is extended to martingales dX = b(X, t)dB(t). It differs from Durrett's notation because we use his bracket symbol $\langle \rangle$ to denote averages.