

METHODS OF APPLIED MATHEMATICS FOR ENGINEERS AND SCIENTISTS

Based on course notes from more than twenty years of teaching engineering and physical sciences at Michigan Technological University, Tomas B. Co's engineering mathematics textbook is rich with examples, applications, and exercises. Professor Co uses analytical approaches to solve smaller problems to provide mathematical insight and understanding, and numerical methods for large and complex problems. The book emphasizes applying matrices with strong attention to matrix structure and computational issues such as sparsity and efficiency. Chapters on vector calculus and integral theorems are used to build coordinate-free physical models, with special emphasis on orthogonal coordinates. Chapters on ordinary differential equations and partial differential equations cover both analytical and numerical approaches. Topics on analytical solutions include similarity transform methods, direct formulas for series solutions, bifurcation analysis, Lagrange-Charpit formulas, and shocks/rarefaction. Topics on numerical methods include stability analysis, differential algebraic equations, highorder finite-difference formulas, and Delaunay meshes. MATLAB implementations of the methods and concepts are fully integrated.

Tomas B. Co is an associate professor of chemical engineering at Michigan Technological University. After completing his PhD in chemical engineering at the University of Massachusetts at Amherst, he was a postdoctoral researcher at Lehigh University, a visiting researcher at Honeywell Corp., and a visiting professor at Korea University. He has been teaching applied mathematics to graduate and advanced undergraduate students at Michigan Tech for more than twenty years. His research areas include advanced process control, including plantwide control, nonlinear control, and fuzzy logic. His journal publications span broad areas in such journals as *IEEE Transactions in Automatic Control, Automatica, AIChE Journal, Computers in Chemical Engineering*, and *Chemical Engineering Progress*. He has been nominated twice for the Distinguished Teaching Award at Michigan Tech and is a member of the Michigan Technological University Academy of Teaching Excellence.

Methods of Applied Mathematics for Engineers and Scientists

Tomas B. Co

Michigan Technological University

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9781107004122

© Tomas B. Co 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Co, Tomas B., 1959-

Methods of applied mathematics for engineers and scientists / Tomas B. Co., Michigan Technological University.

pages cm

Includes bibliographical references and index.

ISBN 978-1-107-00412-2 (hardback)

 $\begin{array}{ll} 1.\ Matrices. & 2.\ Differential\ equations-Numerical\ solutions. & I.\ Title.\\ QA188.C63 & 2013 \end{array}$

512.9'434-dc23 2012043979

ISBN 978-1-107-00412-2 Hardback

Additional resources for this publication at www.cambridge.org/co

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface

I	MAT	RIX THEORY	
1	Mat	rix Algebra	3
	1.1	Definitions and Notations	4
	1.2	Fundamental Matrix Operations	6
	1.3	Properties of Matrix Operations	18
	1.4	Block Matrix Operations	30
	1.5	Matrix Calculus	31
	1.6	Sparse Matrices	39
	1.7	Exercises	41
2	Solu	ution of Multiple Equations	54
	2.1	Gauss-Jordan Elimination	55
	2.2	LU Decomposition	59
	2.3	Direct Matrix Splitting	65
	2.4	Iterative Solution Methods	66
	2.5	Least-Squares Solution	71
	2.6	QR Decomposition	77
	2.7	Conjugate Gradient Method	78
	2.8	GMRES	79
	2.9	Newton's Method	80
	2.10	Enhanced Newton Methods via Line Search	82
	2.11	Exercises	86
3	Mat	rix Analysis	99
	3.1	Matrix Operators	100
	3.2	Eigenvalues and Eigenvectors	107
	3.3	Properties of Eigenvalues and Eigenvectors	113
	3.4	Schur Triangularization and Normal Matrices	116
	3.5	Diagonalization	117
		Jordan Canonical Form	118
	3.7	Functions of Square Matrices	120

٧

page xi

İ			Contents	
		3.8	Stability of Matrix Operators	124
		3.9	•	127
			Polar Decomposition	132
			Matrix Norms	135
		3.12	Exercises	138
	II	VEC	CTORS AND TENSORS	
	4	Vec	tor and Tensor Algebra and Calculus	149
		4.1	Notations and Fundamental Operations	150
		4.2	Vector Algebra Based on Orthonormal Basis Vectors	154
		4.3	Tensor Algebra	157
		4.4	Matrix Representation of Vectors and Tensors	162
		4.5	*	164
		4.6	1.1	165
		4.7	1	169
		4.8		184
		4.9	Orthogonal Curvilinear Coordinates	189
		4.10	Exercises	196
	5	Vec	tor Integral Theorems	204
		5.1	Green's Lemma	205
		5.2	Divergence Theorem	208
		5.3	Stokes' Theorem and Path Independence	210
		5.4	Applications	215
		5.5	Leibnitz Derivative Formula	224
		5.6	Exercises	225
	III	OR	DINARY DIFFERENTIAL EQUATIONS	
	6	Ana	lytical Solutions of Ordinary Differential Equations	235
		6.1	First-Order Ordinary Differential Equations	236
		6.2	Separable Forms via Similarity Transformations	238
		6.3	Exact Differential Equations via Integrating Factors	242
		6.4	Second-Order Ordinary Differential Equations	245
		6.5	Multiple Differential Equations	250
		6.6	Decoupled System Descriptions via Diagonalization	258
		6.7	Laplace Transform Methods	262
		6.8	Exercises	263
	7	Nun	nerical Solution of Initial and Boundary Value Problems	273
		7.1	Euler Methods	274
		7.2	Runge Kutta Methods	276
		7.3	Multistep Methods	282
		7.4	Difference Equations and Stability	291
		7.5	Boundary Value Problems	299
		7.6	Differential Algebraic Equations	303
		7.7		305

> 8.1 Existence and Uniqueness 312 8.2 Autonomous Systems and Equilibrium Points 313 8.3 Integral Curves, Phase Space, Flows, and Trajectories 314 8.4 Lyapunov and Asymptotic Stability 317 8.5 Phase-Plane Analysis of Linear Second-Order **Autonomous Systems** 321 8.6 Linearization Around Equilibrium Points 327 8.7 Method of Lyapunov Functions 330 8.8 Limit Cycles 332 8.9 Bifurcation Analysis 340 8.10 Exercises 340 9 Series Solutions of Linear Ordinary Differential Equations 347 9.1 Power Series Solutions 347 9.2 Legendre Equations 358 9.3 Bessel Equations 363 9.4 Properties and Identities of Bessel Functions and Modified Bessel Functions 369 9.5 Exercises 371 IV PARTIAL DIFFERENTIAL EQUATIONS 10 First-Order Partial Differential Equations and the Method of 10.1 The Method of Characteristics 380 10.2 Alternate Forms and General Solutions 387 10.3 The Lagrange-Charpit Method 389 10.4 Classification Based on Principal Parts 393 10.5 Hyperbolic Systems of Equations 397 10.6 Exercises 399 11.1 Linear Partial Differential Operator 406 11.2 Reducible Linear Partial Differential Equations 408 11.3 Method of Separation of Variables 411 11.4 Nonhomogeneous Partial Differential Equations 431 11.5 Similarity Transformations 439 11.6 Exercises 443 12.1 General Integral Transforms 451 12.2 Fourier Transforms 452 12.3 Solution of PDEs Using Fourier Transforms 459 12.4 Laplace Transforms 464 12.5 Solution of PDEs Using Laplace Transforms 474 12.6 Method of Images 476 12.7 Exercises 477

Contents

νii

viii Contents

13	Finite Difference Methods	. 483
	13.1 Finite Difference Approximations	484
	13.2 Time-Independent Equations	491
	13.3 Time-Dependent Equations	504
	13.4 Stability Analysis	512
	13.5 Exercises	519
14	Method of Finite Elements	. 523
	14.1 The Weak Form	524
	14.2 Triangular Finite Elements	527
	14.3 Assembly of Finite Elements	533
	14.4 Mesh Generation	539
	14.5 Summary of Finite Element Method	541
	14.6 Axisymmetric Case	546
	14.7 Time-Dependent Systems	547
	14.8 Exercises	552
Bib	liography	B-1
nd	ex	I-1
A	Additional Details and Fortification for Chapter 1	. 561
	A.1 Matrix Classes and Special Matrices	561
	A.2 Motivation for Matrix Operations from Solution of Equations	568
	A.3 Taylor Series Expansion	572
	A.4 Proofs for Lemma and Theorems of Chapter 1	576
	A.5 Positive Definite Matrices	586
В	Additional Details and Fortification for Chapter 2	. 589
	B.1 Gauss Jordan Elimination Algorithm	589
	B.2 SVD to Determine Gauss-Jordan Matrices Q and W	594
	B.3 Boolean Matrices and Reducible Matrices	595
	B.4 Reduction of Matrix Bandwidth	600
	B.5 Block LU Decomposition	602
	B.6 Matrix Splitting: Diakoptic Method and Schur	
	Complement Method	605
	B.7 Linear Vector Algebra: Fundamental Concepts	611
	B.8 Determination of Linear Independence of Functions	614
	B.9 Gram-Schmidt Orthogonalization	616
	B.10 Proofs for Lemma and Theorems in Chapter 2	617
	B.11 Conjugate Gradient Algorithm	620
	B.12 GMRES Algorithm	629
	B.13 Enhanced-Newton Using Double-Dogleg Method	635
	B.14 Nonlinear Least Squares via Levenberg-Marquardt	639
C	Additional Details and Fortification for Chapter 3	. 644
	C.1 Proofs of Lemmas and Theorems of Chapter 3	644
	C.2 QR Method for Eigenvalue Calculations	649
	C.3 Calculations for the Jordan Decomposition	655

> **Contents** ix C.4 Schur Triangularization and SVD 658 C.5 Sylvester's Matrix Theorem 659 C.6 Danilevskii Method for Characteristic Polynomial 660 D.1 Proofs of Identities of Differential Operators 664 D.2 Derivation of Formulas in Cylindrical Coordinates 666 D.3 Derivation of Formulas in Spherical Coordinates 669 E Additional Details and Fortification for Chapter 5...... . 673 E.1 Line Integrals 673 E.2 Surface Integrals 678 E.3 Volume Integrals 684 E.4 Gauss-Legendre Quadrature 687 E.5 Proofs of Integral Theorems 691 F Additional Details and Fortification for Chapter 6 700 F.1 Supplemental Methods for Solving First-Order ODEs 700 F.2 Singular Solutions 703 F.3 Finite Series Solution of $d\mathbf{x}/dt = A\mathbf{x} + \mathbf{b}(t)$ 705 F.4 Proof for Lemmas and Theorems in Chapter 6 708 G.1 Differential Equation Solvers in MATLAB 715 G.2 Derivation of Fourth-Order Runge Kutta Method 718 G.3 Adams-Bashforth Parameters 722 G.4 Variable Step Sizes for BDF 723 G.5 Error Control by Varying Step Size 724 G.6 Proof of Solution of Difference Equation, Theorem 7.1 730 G.7 Nonlinear Boundary Value Problems 731 G.8 Ricatti Equation Method 734 H.1 Bifurcation Analysis 738 Details on Series Solution of Second-Order Systems 745 I.2 Method of Order Reduction 748 I.3 Examples of Solution of Regular Singular Points 750 Series Solution of Legendre Equations 753 Series Solution of Bessel Equations 757 I.5 I.6 Proofs for Lemmas and Theorems in Chapter 9 761 J.1 Shocks and Rarefaction 771 Classification of Second-Order Semilinear Equations: n > 2J.2 781 Classification of High-Order Semilinear Equations

784

x Contents

K	Add	litional Details and Fortification for Chapter 11	. 786
	K.1	d'Alembert Solutions	786
		Proofs of Lemmas and Theorems in Chapter 11	791
L	Add	litional Details and Fortification for Chapter 12	. 795
	L.1	The Fast Fourier Transform	795
	L.2	Integration of Complex Functions	799
		Dirichlet Conditions and the Fourier Integral Theorem	819
	L.4	Brief Introduction to Distribution Theory and Delta Distributions	820
	L.5	Tempered Distributions and Fourier Transforms	830
	L.6	Supplemental Lemmas, Theorems, and Proofs	836
	L.7	More Examples of Laplace Transform Solutions	840
	L.8	Proofs of Theorems Used in Distribution Theory	846
M	Additional Details and Fortification for Chapter 13		
	M.1	Method of Undetermined Coefficients for Finite	
		Difference Approximation of Mixed Partial Derivative	851
	M.2	Finite Difference Formulas for 3D Cases	852
	M.3	Finite Difference Solutions of Linear Hyperbolic Equations	855
	M.4	Alternating Direction Implicit (ADI) Schemes	863
N	Add	litional Details and Fortification for Chapter 14	. 867
		Convex Hull Algorithm	867
		Stabilization via Streamline-Upwind Petrov-Galerkin (SUPG)	870

Preface

This book was written as a textbook on applied mathematics for engineers and scientist, with the expressed goal of merging both analytical and numerical methods more tightly than other textbooks. The role of applied mathematics has continued to grow increasingly important with advancement of science and technology, ranging from modeling and analysis of natural phenomenon to simulation and optimization of man-made systems. With the huge and rapid advances of computing technology, larger and more complex problems can now be tackled and analyzed in a very timely fashion. In several cases, what used to require supercomputers can now be solved using personal computers. Nonetheless, as the technological tools continue to progress, it has become even more imperative that the results can be understood and interpreted clearly and correctly, as well as the need for a deeper knowledge behind the strengths and limitations of the numerical methods used. This means that we cannot forgo the analytical techniques because they continue to provide indispensable insights on the veracity and meaning of the results. The analytical tools continue to be of prime importance for basic understanding for building mathematical models and data analysis. Still, when it comes to solving large and complex problems, numerical methods are needed.

The level of exposition in this book is aimed at graduate students, advanced undergraduate students, and researchers in the engineering and science field. Thus the topics were mostly chosen to continue several topics found in most undergraduate textbooks in applied mathematics. We have focused on advanced concepts and implementation of various mathematical tools to solve the problems that most graduate students are likely to face in their research work and other advanced courses.

The contents of the book can be divided into four main parts: matrix theory, vectors and tensors, ordinary differential equations, and partial differential equations. We begin the book with matrix theory because the tools developed in matrix theory form the crucial foundations used in the rest of the book. The next part centers on the concepts used in vector and tensor theory, including the application of tensor calculus and integral theorems to develop mathematical models of physical systems, often resulting in several differential equations. The last two parts focus on the solution of ordinary and partial differential equations. It can be argued that the primary needs of applied mathematics in engineering and the physical sciences are to obtain models for a system or phenomena in the form of differential equations

xii Preface

and then to be able to "solve" them to predict and understand the effects of changes in model parameters, boundary conditions, or initial conditions.

Although the methods of applied mathematics are independent of computing platform and programs, we have chosen to use MATLAB as a particular platform under which we investigate the mathematical methods, techniques, and ideas so that the approaches can be tested and the results can be visualized. The supplied MATLAB codes are all included on the book's website, and the reader can modify the codes for their own use. There are several excellent MATLAB toolboxes supplied by third-party software developers, and they have been optimized for speed, efficiency, and user-friendliness. However, the unintended consequences of user-friendly tools can sometimes render the users to be "button pushers." We contend that students in applied mathematics still need to discover the mechanism and ideas behind the full-blown programs – at least to apply them to simple test problems and gain some basic understanding of the various approaches. The links to the supplemental MATLAB programs and files can be accessed through the link: www.cambridge.org/Co.

The appendices are collected as chapter fortifications. They include proofs, advanced topics, additional tables, and examples. The reader should be able to access these materials through the web via the link: www.cambridge.org/Co. The index also contains topics that can be found in the appendices, and they are given page numbers that continue the count from the main text.

Several colleagues and students have helped tremendously in the writing of this textbook. Mostly, I want to thank my best friend and wife, Faith Morrison, for the support and encouragement and the sacrifice she's made so that I could finish this extended and personally significant project. I hope the textbook will contain useful information for the readers, enough for them to share in the continued exploration of the methods and applications of mathematics to further improve the understanding and conditions of our world.

Tomas B. Co Houghton, MI