
Preface

Mathematical modeling
The modeling of a complex system can be decomposed into three phases. Phase I
consists in identifying its functions (most organs in the human body have more than
one), to introduce quantities that are relevant with respect to those functions, and
to design relations (equations) between those quantities in order to obtain a math-
ematical problem. Among those quantities some are called unknowns, or variables,
and some are data (their values are supposed to be known). Note that there might be
different levels of models for the same phenomena, and that a quantity may happen
to be an unknown in some model, and a data in another one. Once a mathematical
model is obtained (see below some remarks on this very phase of elaboration), its
suitability from a mathematical standpoint can be investigated, or analyzed (phase
II): does it admit a solution, is this solution unique and stable with respect to pertur-
bations of the data1? Once this well-posedness has been established2, the model has
to be confronted with the reality that it is intended to reproduce in some way (phase
III). This delicate phase of the modeling process can be mathematical in nature, e.g.
by proving that the solution can be shown rigorously to behave in some manner
that is consistent with observations. Validation of the model can be complemented
by direct comparisons of experimental measurements with analytical or computed
solution to the mathematical model. This confrontation phase can be extremely dif-
ficult because it usually amounts to answering two questions at the same time:

• is the model valid?
• assuming that the model is valid, which set of data best corresponds to reality?

It is in particular well known that a “rich” model (with many parameters) confronted
to a “poor” reality (experimental data are parcimonious) is likely to answer success-
fully the second question, in the sense that one will be able to find a set of parameters

1 This feature is essential for the model to be considered as relevant, since, especially in the domain
of life sciences, the data are usually not known exactly, and may vary from one individual to the
other. It is known as Stability in the sense of Hadamard.
2 This well-posedness provides satisfaction to the mathematician, but it does not usually say any-
thing on the adequacy of the model with the underlying phenomenon. It just provides a sound
framework for the third phase.
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which allows to reproduce the experimental data, even if the model itself does not
contain the important features of the underlying phenomena.

The overall process is not mathematical as a whole, although it may involve
sophisticated mathematical tools (in phase II, or in phase III, to compute approx-
imations of the exact solution in an appropriate way, or to identify parameters). The
first phase is the core of the modeling process, as it conditions the content of the other
two. The term modeling quite commonly refers to this very phase of elaboration of
the mathematical equations.

Two main types of strategies can be followed to elaborate mathematical models,
which are commonly referred to as Bottom Up (BU) and Top Down (TD) strategies.
The BU approach consists in starting from the finest level at which the reality can
be described by basic, unquestionable laws (like Newton’s law for mechanical sys-
tems). In the context of lung modeling it could consist in writing equations at the
level of alveoli, or capillaries if one is interested in perfusion. This is likely to lead
to a huge number of unknowns, to call for knowledge of several parameters, etc. …
Modeling in this context consists in performing some type of homogenization pro-
cess, i.e. in attempting to replace those multiple unknowns and complex data by
average quantities, or at least quantities defined at a coarser level of description. On
the other hand, the Top Down approach consists in directly introducing global quan-
tities, even if their link with actual quantities at the microscopic level does not make a
clear sense at first, and try to identify some functional relations between those quan-
tities, keeping as respectful as possible of the underlying expected phenomena. The
approach then consists in confronting the model with reality, and in trying to enrich
it. Considering the 3-phase approach that we presented, it consists in performing
phase I, trying to find the simplest model (i.e. with the least unknowns, with the sim-
plest equations), then performing phases II and III, and then starting again from I by
adding some sophistication to the first model if necessary, and so on. This approach
is usually based on representations of simplified versions of the reality (which are
also called models, although this is not in the sense of the mathematical model we
presented previously).

As an example, air flow through the lung is driven by negative pressures at the
300 million alveoli. The Top Down approach (which is detailed in Chapter 2) con-
sists in mentally replacing those alveoli by a single balloon, in which the pressure is
uniform. Note that such a model could be elaborated in a BU approach, by making
some assumptions on the regularity of the geometry, on the uniformity of the col-
lection of 300 million values, etc. … But the balloon model makes sense per se, and
was actually introduced at a time where most data on the microscopic structure of the
lung were not yet available. Note that TD approach is commonly based on quanti-
ties that are accessible to measurements, which makes comparison with experiments
straightforward.

In the actual modeling process a mixture of both TD and BU strategies is usually
followed. In the present book, the overall process is of the TD type3, but the steps

3 It presents the advantage to lead to a progressive increase in terms of complexity, which makes
the beginning of this book accessible to undergraduate students.
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of enrichment of the model present some BU characteristics: addition of a feature
to obtain the next level model is usually based on a description of the reality at a
finer scale.

We would like to end this general introduction on the modeling process by point-
ing out cultural differences between scientific communities. It is common in most
applied sciences to talk about numerical modeling, which denotes the process of
building a numerical procedure to compute quantities that aim at reproducing some
real process. The relevance of the approach is then asserted by comparison with
experiments or more generally unquestionable information which is available on the
real process. Mathematics impose a different standpoint, which strictly separates the
modeling process and the numerical approach. The present book is based on the latter
philosophy, which consists in elaborating equations, we shall say continuous equa-
tions 4 (time, and space whenever it is relevant, are considered as continuous param-
eters). These equations can be studied as mathematical objects, it can be of great
interest for example to establish some properties of the solutions which are known
to hold true for the real observable quantities. As no analytic solution5 exists in gen-
eral, quantitative knowledge of these solutions calls for numerical discretization, i.e.
reduction of the unknowns to a finite number, accessible to computer simulation, in
a way that the computed solution can be expected to approximate the exact one. It
raises of course a fundamental issue, which pertains to the correctness of the approx-
imation process. The questions raised by this process are of mathematical nature, and
it is a research domain per se, called Numerical Analysis. The typical contribution
of Numerical Analysis consists in providing a fully rigorous result asserting that, as
the discretization parameter goes to zero (e.g. the time step used in Ordinary Differ-
ential Equations), the computed solution converges to the exact one6. This approach
may seem more rigorous than the integrated one (which does not give rise to math-
ematical treatment), and we advocate for it in the present book. Yet, we must insist
on the fact that performing a full and rigorous numerical analysis does not provide
any information on the model in terms of relevance and adequacy to reality, it sim-
ply enables to trust the discretization process, and thereby to consider the computed
solution as reflecting the behavior of the continuous equations, without bias.

Mathematical modeling in life sciences
Most phenomena described in this book are of standard physical nature, in the
sense that they follow well-known physical principles, mainly borrowed from Clas-
sical Mechanics. This raises the question: can the respiratory system be considered
and described as an industrial process would be? More generally, in the context of
mechanical modeling, is there a reason to make a strict distinction between living

4 These are called Ordinary Differential Equations (ODE) when it consists in following a finite
number of quantities over the time, and Partial Differential Equations (PDE) when more than one
variable is present, typically the time plus one or more space variables.
5 It roughly means that there is no way to explicitly write the solutions by means of standard,
well-known functions.
6 It means that it can be made arbitrarily close to the exact solution.
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organisms or inert material? As we shall see, a great amount of the tools developed
in the context of industrial processes (like hydraulic pumps) are directly applicable
to some parts of the ventilation process. Yet, modeling in life sciences presents some
particular features that makes the modeling approach obey different rules, and even
calls for new mathematical or numerical developments. We would like to describe
here some of these particular features:

1. The microscopic reality is so complex that a direct Bottom Up approach, to use the
terminology which we introduced previously, is out of the question. Most body
tissues are irrigated by blood vessel of different sizes and shapes, large molecules
like proteins (e.g. collagen or elastin) are likely to influence the mechanical
behavior, and the matter itself is in constant change or renewal. It calls in most
cases for a Top Down approach: macroscopic parameters are measured and their
definition itself relies on models which are inferred by the experiment on observ-
able effects, and not deduced from a sound microscopic basis.

2. All parameters that can be defined in the modeling process are highly variable.
Even for a given subject, relevant parameters may vary in time. Experimental
measurements give values with uncertainty, and different measurement protocols
are likely to yield different values. All those sources of uncertainty or variability
necessitate to pay a special attention to the effect of variations of the parameters
upon the model outcomes.

3. Different phenomena are entangled, so that it is hardly possible to model single
processes separately. As a direct modeling of the global system (the living organ-
ism as a whole) is usually out of reach, it calls for introducing multi-compartment
models, with different levels of descriptions to achieve tractability of the obtained
system, while keeping track of the most significant interactions between compart-
ments.

4. Many biological processes, such as the ventilation process, can be seen as periodi-
cally forced dynamical systems. In the context of Ordinary Differential Equations
or Partial Differential Equations, mathematicians have given a central place to the
so called Cauchy problem, or initial value problem, which consists in describing
the system at an instant considered as initial, and wonder whether a solution to
the problem can be defined starting from the prescribed state, study its long time
behavior, etc. … The problem here is different: the initial value problem does not
make much sense: more relevant are questions regarding to periodic solutions:
do they exist, are they unique, are they stable with respect to the data?

Blood and air networks
A huge and multidisciplinary literature (physiology, physics, mathematics, com-
puter science) has been dedicated to the modeling of the blood network, from the
heart to the smaller vessels, and this domain provides some tools to handle the res-
piratory system. The respiratory and vascular systems raise indeed some common
issues in terms of modeling. First of all, the complexity of both networks calls for
a decomposition into subsystems, and the coupling between those subsystems (e.g.
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coupling between Navier-Stokes and Poiseuille’s models for the lung, fluid-structure
interaction problem coupled with a one-dimensional Shallow Water-like equation
in the vascular context), presents some common features. Yet, both problems have
their own characteristics: the density of the blood is similar to that of the surround-
ing medium, which leads to strongly coupled fluid structure interaction problems,
whereas the mechanical coupling between the solid part of the lung and the air is
essentially one-way because of the relative lightness of air. Besides, the blood trans-
port system relies on a closed loop network (some substances can be exchanged with
the outside world, like oxygen of carbon dioxide, but the fluid system is closed),
whereas the respiratory system is, in essence, open.

Context, scope of the book
The modeling of respiration is still a domain of active research, and many aspects
remain controversial, or at least not fully understood. Let us give a few examples of
unresolved issues:

1. When a parameter is introduced in the context of lung modeling, a difference
is usually made between the morphometric approach and the physiological one.
The morphometric approach consists in using direct measurement of geometri-
cal data and physical parameters to estimate the value of a quantity. From the
physiological standpoint, the quantity is defined through a model, the output of
which is accessible to direct measurement, and the value is determined by fitting
the model output to the actual measurement. As an example, the capillary vol-
ume Vc is the volume of blood available, at some instant, for gas exchange. It
can be seen as the volume of blood contained in the capillaries in the neighbor-
hood of the alveoli, and its value can be estimated from the morphometric data
pertaining to capillary number, capillary dimensions, number of alveoli, etc. …
On the other hand, from a physiological standpoint, this volume quantifies the
amount of oxygen which can be uptaken by blood. Both standpoints may lead
to different values, and thereby induce questions about the very definition of the
capillary volume. For example, the fact that the morphometric value is larger than
the physiological one may lead us to consider that some part of the volume, in the
morphometric sense, is actually not available for gas exchanges, due to defects
in the ventilation, or impairing of the alveolo-capillary membrane. This issue is
present at all stages of the modeling process, and a discrepancy between the two
approaches generally suggests that some aspects of the considered phenomenon
have not been properly accounted for in the model. According to the classifica-
tion that we introduced previously, the morphometric standpoint corresponds to
a bottom-up approach, whereas the physiological one, which focuses on global
quantities, is of the top-down type.

2. To instantiate the previous general considerations, let us mention the question
of diffusing capacity (also called transfer factor) of the respiratory system. This
quantity is defined using a relation between the transfer rate of oxygen (or any
other substance like carbon monoxide) and the difference between oxygen partial
pressures in the alveolar air and in the blood. For more than sixty years, this dif-
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fusion capacity has been considered as the sum of two contributions. The first one
pertains to the membrane itself, and its definition follows Fick’s law of passive
diffusion; the second one accounts for the complex interactions between oxygen
and hemoglobin, together with possible kinetic limitation effects. The latter is not
directly accessible to measurement, it cannot be estimated according to a morpho-
metric approach, and its physiological interpretation is not fully understood. Yet
most quantities pertaining to the modeling of the transfer process (such as the
capillary volume that we mentioned previously) are defined and estimated within
this framework.

3. In the context of spirometry, the patient is required to perform a deep inspiration,
followed by a maximally forced expiration. Volumes and fluxes are measured
dynamically during the maneuver, and the corresponding plot (flux rate vs. vol-
ume) is used by the pneumologist to identify diseases that may affect the patient
(like asthma, emphysema, fibrosis …). The pressures involved in the expiration
phase are much larger than those in the case of a ventilation at rest, and the com-
pliance of the respiratory tract (the fact that it may deform under external forcing)
is known to play a determinant role, in particular in the first instants of the forced
expiration phase. The manner a strong external pressure is likely to decrease the
diameter of branches, thereby inducing an increase of the resistance which tends
to limit the peak flow, cannot be fully described, in a quantitative way, by the
existing mechanical models.

4. The role of the smooth muscle, which tends to decrease the diameters of the
branches, is controversial. Its importance as a selective advantage is questioned
in the medical literature, as it may harm the ventilation process e.g. in patients
with asthmatic conditions, while its positive influence for healthy subjects is not
clearly proven.

It would be highly presumptuous to claim that this monograph gives a definite
response to all issues pertaining to this research area, and in particular to the points
which we made above. We rather propose here a collection of theoretical and numer-
ical tools to address the different aspects of this complex process. This book is also
meant as an introduction to mathematical modeling, in the particular context of the
respiratory system. We describe in details the process of building equations out of
an observable reality together with measurable phenomena, and we investigate how
the mathematical properties of those equations shed a light on the phenomenon that
they aim at describing. We have tried to be as true to reality as possible, and we
hope that some of the approaches presented here will serve in the future to improve
knowledge of this fascinating organ, but we must confess that the pleasure to create
models and to play with them may have driven us, in some occasions, quite far away
from the clinical and experimental realities.

We must add that, at the end of the reading of this book, the reader will probably
join the author in being left with much more questions than answers.
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Intended audience
Most chapters of this book start with quite elementary considerations that only
require a elementary knowledge of basic mathematics, in particular in differential
calculus. A little experience in numerics may help to follow some sections deal-
ing with those aspects. As for physiology, no prior knowledge is expected, but non
specialist readers are strongly encouraged to carefully read Chapter 1. It gives a
description of the respiratory system and some elements on the modeling approach.
As a consequence, most of the book is accessible to motivated undergraduate stu-
dents, with the exception of Chapters 4 and 6, which rely on infinite dimensional
spaces (functional spaces to formulate Partial Differential Equations in Chapter 4,
infinite networks for Chapter 6). Chapter 5 also contains some developments based
on PDE’s.

Exercises are proposed in all chapters to help the reader familiarize with the var-
ious concepts and techniques. Solutions are collected in Appendix A. Appendix B
contains some basics (Ordinary Differential Equations, Partial Differential Equa-
tions, and Finite Element Method) that are mostly used in Chapters 2 and 4. To
illustrate some of the numerical approaches that are described, some additional files
(mainly Matlab and Freefem++ code files) are proposed to the reader. They can be
downloaded from the Springer Extra Material platform (http://extras.springer.com).

All chapters are intended to be self-contained, with the exception of discussions
on the existing literature and potential extensions of the presented material, which
have been put at the end of chapters.

Outline of the book
Chapter 1 gives a general presentation of the respiratory system, orders of magnitude,
most relevant mechanisms, and gives some ingredients for lung modeling.

The book goes on, in a more formal way, with different approaches which can
be taken in an increasing order in terms of complexity. At the bottom of this hierar-
chy, we have the so-called lumped models, based on a small number of parameters
(Chapter 2). As for mechanical aspects the simplest model relies on the sole volume
of air contained in the lungs, and takes the form of a dissipative spring-mass system
with dissipation. This framework allows to account for many complex phenomena
which influence the respiratory process, like the nonlinear behavior of the underly-
ing mechanical structure (parenchyma), inertial effects, the influence of the smooth
muscle, surface tension … This chapter is of central importance in this book: it can
be read without any prior knowledge of the underlying phenomena, with minimal
mathematical background.We placed it at the beginning of this book, thereby favor-
ing a Top Down approach; but it also expresses in a condensed way a large part of
what is contained in other chapters.

The next level of description (Chapter 3) consists in addressing the tree-like struc-
ture of the respiratory tract, with possible account of non-homogeneous perturba-
tions (variables like pressure or flux may take different values within a generation).
We shall define in a precise way the notion of global resistance, and introduce a
mathematical object corresponding to the ventilation process, which consists in pre-
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scribing negative pressures at the leafs of a resistive tree to trigger air flow through
the tree.

We will enter the Partial Differential Equation framework in Chapter 4, giving an
overview of the problems raised by attempting to model the motion of a fluid obeying
the Navier-Stokes equations in an “open” domain, i.e. with inlet/outlet boundaries.
This concerns the upper part of the respiratory system, where the so called Reynolds
number, which quantifies the importance of inertial effects and thereby the nonlinear
character of the flow, is high. Beyond the theoretical problems raised by the fact that
the system is not closed (kinetic energy is likely to enter or exit the system), we shall
focus on the different ways that have been proposed in the Bioengineering literature
to couple the Navier-Stokes model with alternate ones, possibly lower dimension
models. We shall then describe the various ways to articulate the different levels of
descriptions presented previously, and address the theoretical and numerical issues
raised by this multi-model description of the respiratory system.

In Chapter 5, we present various models to account for oxygen transfer from air
to blood. Again, as direct modeling is ruled out by the geometrical complexity, we
propose different levels of description that balance between numerical tractability
and accurate modeling of the underlying phenomena.

Chapter 6 collects some developments that are a bit further from the modeling of
the real lung. In particular we investigate the possibility to define an infinite coun-
terpart of the actual respiratory tract. As we shall see, such an object can be extrapo-
lated directly from the actual respiratory tract, and it sheds an interesting light on the
mathematical nature of the ventilation process. It also allows to design a new type of
fluid-structure interaction problem to represent the overall ventilation process. This
model will be obtained by embedding the ends of our infinite tree into a Euclidean
domain (the parenchyma), and considering that any local change in volume in the
structure induces some flow through the tree, therefore some dissipation.
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