
 



Chapter 1

Introduction and Preliminaries

Location problems are concerned with the location of (physical or nonphysi-
cal) resources in some given space. Competitive location models additionally
incorporate the fact that location decisions have been or will be made by in-
dependent decision-makers who will subsequently compete with each other,
e.g. for market share when we think of locating facilities such as gas stations
or supermarkets (see Plastria, 2001; ReVelle and Eiselt, 2005, for similar def-
initions). The location space under consideration does not necessarily need
to be of geographical nature: political parties, for example, are concerned
with locating in issue spaces; products may be positioned in characteristics
spaces.

The practical relevance of analyzing competitive location models arises
from the fact that, when locating resources in competitive environments,
enterprises typically make strategic decisions that play a crucial role for their
long-term success or failure. In the context of an industrial enterprise, for
example, the choice of locations for production facilities influences the long-
term structure of the logistics network, as relocating will, in general, induce
high cost. After making its locational decisions, the enterprise will have face
up to the competition.

This thesis takes a mathematical perspective (or, more specifically, an
operations research perspective) on location theory. Well known non-com-
petitive frameworks in this field are, for example, concerned with the choice
of optimal points in networks according to the minimization or maximization
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of the sum of weighted distances to the vertices (median or antimedian prob-
lems) or the minimization of the maximum or maximization of the minimum
weighted distance to any vertex (center or anticenter problems). Classi-
cal competitive location problems include the (r|p)-centroid or the (r|Xp)-
medianoid problem. This research analyzes extensions to and variations of
these latter problems. It focuses on incorporating proportional choice rules,
non-discrete demand, or additional pricing decisions of firms. Furthermore, it
provides insights into the computational complexity of some of the resulting
problems and proposes adequate solution methods.

1.1 Basic Notation and Definitions

In this thesis we will denote the set of natural numbers including zero by N,
the set of positive natural numbers by N+, the set of rational (real) numbers
by Q (R), the set of positive rational (real) numbers by Q+ (R+) and the set
of nonnegative rational (real) numbers by Q+

0 (R
+
0 ).

We assume the reader to be familiar with the fundamental concepts of
operations research. The basic graph-theoretic definitions, along with the
corresponding notation used throughout this thesis, however, are introduced
in Section 1.1.1. Most of the definitions are taken from Alstrup et al. (2004);
Bandelt (1985); Bauer et al. (1993); Garbe (1995); Gross and Yellen (2004);
Swamy and Thulasiraman (1981). Similarly, Sections 1.1.2 and 1.1.3 are
concerned with the basics of game theory and discrete choice theory. The
latter Section is based on Train (2009).

1.1.1 Graphs and Networks

A graph G = (V,E) is composed of two (finite) sets V (n := |V |) and
E (m := |E|). The elements of V are called vertices. The elements of E
are the edges. Each edge is associated (incident) to one or two vertices,
which are called the edge’s end points. The end points are said to be joined
by the edge. An edge e ∈ E joining vertex u ∈ V and vertex v ∈ V is
denoted by e = [u, v]. Unless otherwise stated, we assume that there is
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no direction associated with an edge of a graph, hence [u, v] = [v, u]. Two
vertices u, v ∈ V , u �= v, are called neighbored, if there exists an edge [u, v]
in E. An edge [u, u] is a loop. The sum of the number of edges that join
a vertex v ∈ V with other vertices of the network and twice the number of
loops at v is the degree of v, deg(v).

A network N = (V,E, λ) consists of a graph with vertex set V and edge
set E and an additional mapping λ : E → R+. For each e = [u, v] ∈ E,
λ(e) = λ(uv) = λ(u, v) defines the length of e. We define D̂ := maxe∈E λ(e).
The elements of the edges of a network N , including all the vertices, are the
points x of N (x ∈ N). A subedge [x, y] (or xy) of an edge e ∈ E is
determined by two points x and y on e (x, y ∈ e). The length of a subedge
[x, y] is denoted by λ([x, y]) = λ(xy) = λ(x, y). A subedge defined by all
points of an edge [u, v] ∈ E without including the vertices u and v is denoted
by (u, v).

Let N = (V,E, λ) and V ′ ⊆ V . Then N ′ = (V ′, E ′, λ′) is the subnetwork
of N on the vertex set V ′, if E ′ ⊆ E consists of all those edges of N whose
end points are in V ′. The mapping λ′ is the restriction of λ to E ′.

A path P (x, y) joining two points x, y, x �= y, of a network N is ei-
ther a subedge [x, y] or an alternating sequence of (sub-) edges and ver-
tices, [x, v0], v0, e1, v1, ..., ek, vk, [vk, y], such that ej = [vj−1, vj] ∈ E for
j = 1, ..., k, no edge and no vertex of the sequence occurs more than once,
and [x, v0] as well as [vk, y] define point-disjoint subedges of N . x and
y are called end points of P (x, y). The length of a path is defined by
the sum of the lengths of its edges and subedges. A path P (x, y) is a
shortest path, if there exists no path P ′(x, y) �= P (x, y) of smaller length;
The length of a shortest path P (x, y) is the distance d(x, y) = dxy be-
tween x and y. We define d(x, y) := ∞ if there exists no path P (x, y)
for x, y ∈ N , x �= y. Furthermore, we define d(x, x) := 0 for any x ∈ N and
D(p, Z) := min{d(p, z)|z ∈ Z} for a point p ∈ N and a set of points Z ⊆ N .
A cycle consists of an edge e = [u, v] ∈ E, and some path P (u, v) �= e con-
necting u and v. In a connected network there exists a path joining x and y
for any two points x �= y of the network. We additionally define any network
with n = 1 to be connected. A connected network is a tree network if there
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exists no cycle or loop. A tree network where every vertex is end point of
at most two edges is a chain network. A network without loops where every
pair of vertices is joined by a unique edge is a complete network.
Let u and v be vertices of a networkN . Then I(u, v) := {x ∈ N |d(u, v) =

d(u, x)+d(x, v)} is called the interval I(u, v) between u and v.1 The interval
is ported if for any pair of points x ∈ I(u, v) and y /∈ I(u, v) every shortest
path P (x, y) passes through u or v.
A path-decomposition of a graph G = (V,E) is a sequence V1, ..., Vr of

subsets of the vertex set V , such that

1.
⋃

1≤i≤r Vi = V ,

2. there exists a Vi, i ∈ {1, ..., r}, such that u ∈ Vi and v ∈ Vi for all
[u, v] ∈ E, and

3. Vi ∩ Vk ⊆ Vj holds for all 1 ≤ i < j < k ≤ r.

The width of a path-decomposition V1, ..., Vr is defined as max1≤i≤r{|Vi|−1}.
The pathwidth of a graph G = (V,E) is the minimum width over all path-
decompositions of G.
Let a tree network N = (V,E, λ) be rooted at some distinguished vertex

r ∈ V . For each pair of vertices i ∈ V and j ∈ V , we call i a descendant of
j, if j is on the unique path that connects i to the root r. If i is a descendant
of j, we call j an ancestor of i. A vertex v ∈ V is a common ancestor of two
vertices x, y ∈ V , if it is an ancestor of both, x and y. A common ancestor
of two vertices x, y ∈ V is the nearest common ancestor, nca(x, y), of these
very vertices, if its distance to the root is the largest among all common
ancestors. If i ∈ V is a descendant of j ∈ V and [i, j] ∈ E, then i is said to
be a child of j and j is called the father of i. A vertex without children is
a leaf of the tree network. For any vertex v ∈ V we denote the subnetwork
(subtree) of N on the vertex set VTv

:= {v} ∪ {i ∈ V |i is a descendant of v}
by Tv and the subnetwork on the vertex set V ′Tv

:= VTv
\ {v} by T ′v.

Unless otherwise stated, we assume that the networks considered in this
thesis are connected and that there are no multiple edges. Moreover, we

1 Note that we denote open intervals of real space by (a, b), a, b ∈ R, a ≤ b. Similarly,
closed intervals of real space are denoted by [a, b], a, b ∈ R, a ≤ b.
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assume that there are no loops at the vertices. We associate a (local) coordi-
nate xuv ∈ [0, λ(uv)] with every edge [u, v] of a network N . Thus, we are able
to define any point of the network. The direction of counting can be defined
arbitrarily. For a point p on edge [u, v], we refer to the local coordinate’s
value at p by p as well, i.e. xuv = p at point p. It will always become clear
from the context wether we refer to the point itself or to its corresponding
coordinate’s value. Finally, we assume the distances between all pairs of ver-
tices of a network to be input data of our algorithms. These distances can,
for instance, be computed in O(n3) time with the Floyd-Warshall algorithm
(see, for example, Aho, 2004).

1.1.2 Game Theory

Noncooperative game theory deals with the behavior of agents (or players)
in situations where each agent’s optimal choice depends on the (forecasted)
choices of his opponents and where each agent is motivated solely by self-
interest (Fudenberg and Tirole, 1991).
We will consider games in strategic form that have three basic elements

(Fudenberg and Tirole, 1991): a set of players Θ which we assume to be
finite (Θ = {1, ..., θ}), a (pure) strategy space Ψi for each player i ∈ Θ, and
a payoff function ui(ψ) for each player i ∈ Θ that assigns a utility level to
every vector of strategies ψ = (ψ1, ..., ψθ), ψi ∈ Ψi.
A strategy vector ψN = (ψN

1 , ..., ψ
N
θ ) is said to be a Nash equilibrium in

pure strategies, if no player can unilaterally increase his utility, i.e. ui(ψN) ≥
ui(ψi,ψ

N
Θ\{i}) for all ψi ∈ Ψi, where ψN

Θ\{i} = (ψN
j |j ∈ Θ, j �= i) (cf. Gabay

and Moulin, 1980).
The following theorem is well known. We refer to Fudenberg and Tirole

(1991) and the references therein for a proof.

Theorem 1.1.1. Let Θ be a nonempty set of players and consider a strategic-

form game whose strategy spaces Ψi, i ∈ Θ, are nonempty, convex and com-

pact subsets of an Euclidean space. If the payoff functions ui are continuous

in ψ and quasiconcave in ψi, then there exists a pure strategy Nash equilib-

rium.
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1.1.3 Discrete Choice Theory

Consider the choices of decision makers (for example customers) among a
set of alternatives (for instance a set of facilities), the so called choice set.
If the alternatives are mutually exclusive and the choice set is finite and
exhaustive, we call this framework a discrete choice model. If one assumes
the decision makers to be utility maximizing and derives a specific discrete
choice model from this assumption, the model is said to be a random utility

model (RUM). For a detailed overview of RUMs and their features we refer
to Anderson et al. (1992a); Train (2009).
To derive a RUM, one takes the point of view of a researcher and assumes

the utility uij of a decision maker i ∈ I (I denotes the set of decision makers)
from choosing alternative j ∈ J (J refers to the choice set) to be composed of
a deterministic (i.e. observable) component vij and a stochastic component
εij, the latter being related to unobservable, utility affecting factors:

uij = vij + εij. (1.1)

As the decision makers are assumed to be utility maximizing, the probability
prij for a decision maker i ∈ I to choose alternative j ∈ J is

prij = Prob(uij > uik ∀ k ∈ J, k �= j). (1.2)

Now, the RUM is derived by additionally providing a specific distribution of
the random components. One of the most prominent RUMs which is well es-
tablished in the economics, marketing and operations research literature (see
also Hensher et al., 2005), the multinomial logit model, assumes the stochas-
tic components to be independently and identical extreme value distributed
(Gumbel distributed) with density

f(εij) =
(
e−εij/σe−e

−εij/σ
)
/σ (1.3)

and the cumulative distribution

F (εij) = e−e
−εij/σ

. (1.4)
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The variance is σ2π2/6, where σ is a scaling parameter. As σ approaches
zero, the decision makers’ choices become deterministic. The mean is σγ,
where γ is Euler’s constant. Then, as shown in Appendix A, one derives
a closed form expression of the choice probabilities of the multinomial logit
model,

prij =
evij/σ∑

k∈J
evik/σ

∀ i ∈ I, j ∈ J. (1.5)

1.2 Foundations of Competitive and Voting
Location

The study of competitive location is rooted in the work of Hotelling (1929),
who studied the location choice and pricing decision of two competitors on
a finite line with uniformly spread consumers. It has been a prosperous field
of research, leading to a whole variety of models, ever since. Those models
can be classified with respect to multiple components (Eiselt, 1993; Eiselt
and Laporte, 1989, 1996; Eiselt et al., 1993; Friesz et al., 1988; Hamacher
and Nickel, 1998; Plastria, 2001; ReVelle and Eiselt, 2005). In this section we
describe the most significant of these classification criteria as in Kress and
Pesch (2012d).
Most important, the representation of the underlying location space tra-

ditionally gives rise to three classes: d-dimensional real space, network and
discrete space. Distances need to be calculated by some metric in each of
these classes. We follow ReVelle and Eiselt (2005) in differentiating only
between d-dimensional real space and network location problems, each of
which further being subdivided into continuous and discrete problems (see
Figure 1.1). A discrete problem arises, when the set of candidate locations
is assumed to be finite and known a priori. In a continuous problem, any
point of the network or the d-dimensional space is a potential location site.
By identifying finite dominating sets – finite sets of points to which at least
one of the optimal solutions must belong – we are able to transform some
special classes of continuous location problems into equivalent discrete prob-
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lem classes a posteriori (Hooker et al., 1991). Moreover, as discrete sets of
potential facility sites may easily become very large, one may consider treat-
ing those sets as continuous entities (see, for instance, Dasci and Laporte,
2005). Note, however, that there is an overlap of d-dimensional real spaces
and networks. Hotelling’s line, for instance, can be interpreted as a network
with two vertices and a connecting edge or, alternatively, as an interval of R1.
Other models are somewhere in between network and d-dimensional models.
Suárez-Vega et al. (2011), for example, consider a “buffer” around a network
to represent the space of potential locations.

Continuous Discrete Continuous Discrete

Network
d-dimensional

real space

Location space

discretization

treat as contin.

discretization

treat as contin.

Fig. 1.1: Location spaces

Other fundamental categories of competitive location theory are related
to game theoretic aspects. Competition itself may be static (present and
fixed), competitors may enter in a simultaneous or sequential fashion, or we
can think of dynamic competition, i.e. players who repeatedly reoptimize
their locations (see Figure 1.2; Eiselt et al., 1993; Plastria, 2001). Sequential
locational competition, dating back to Hay (1976) and Prescott and Visscher
(1977), is characterized by two types of players: leaders, who choose locations
at given instants, anticipating the subsequent actions of later entrants, and
followers, who make their location decisions based on the past decisions of
the leaders. The solution concept generally employed in sequential location
problems is the Stackelberg equilibrium (von Stackelberg, 1934): assuming
rational players, the location of each player is determined by backward in-
duction. Simultaneous locational games (as the one of Hotelling, 1929), in
contrast, usually use the concept of a Nash equilibrium (cf. Section 1.1.2).
Note that the number of players may be exogenously given or determined
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endogenously, e.g. by incorporating fixed location cost. The same holds for
the sequence of location and the numbers of resources to be located by each
player.

Static Dynamic Simultaneous Sequential

Competition

Fig. 1.2: Competition

It is generally agreed that the work on competitive location problems on
(general) networks is rooted in the work of Slater (1975) and Hakimi (1983)
(see Eiselt and Laporte, 1996; Smith et al., 2009, for details). Hakimi (1983)
formally introduced the terms (r|Xp)-medianoid problem and (r|p)-centroid
problem for sequential games with one leader (L) and one follower (F) lo-
cating p and r facilities, respectively. Note that r and p are arbitrary input
parameters. Knowing the p locations of L, denoted by Xp = (x1, ..., xp),
F faces the problem of optimally locating r facilities (with respect to some
objective function): the (r|Xp)-medianoid problem. We denote a feasible lo-
cation decision of F by Yr = (xp+1, ..., xp+r) and an optimal location decision
by Y ∗r = (x∗p+1, ..., x

∗
p+r). L’s problem, the (r|p)-centroid problem, is to lo-

cate p facilities, anticipating F’s subsequent behavior. An optimal solution
to this latter problem is denoted by X∗

p = (x∗1, ..., x
∗
p). Note that, differing

from other authors as Spoerhase and Wirth (2010), we use the terms (r|Xp)-
medianoid and (r|p)-centroid problem in a rather broad sense, subsuming a
whole variety of choice rules and player objectives under these terms.
Another category that is related to game theory is the incorporation of

pricing in competitive facility or product location models (Anderson et al.,
1992b; Eiselt and Laporte, 1996; Eiselt et al., 1993; García Pérez et al.,
2004). Traditional spatial pricing policies include mill pricing (all customers
are charged the same price for the good itself, all transport costs are passed
to the customers), uniform delivered pricing (the facility pays for the trans-
portation; all customers of a facility are charged the same price, no matter
where they are located at) and spatial price discrimination (the facility pays
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for the transportation; prices for different customers are customer-location-
specific). Prices may be set simultaneously to the location decisions or in a
separate stage, either sequentially or simultaneously. Alternatively, one can
incorporate parametric prices. The equilibrium concepts used for combined
location price games depend on which of these situations is implemented
(Eiselt et al., 1993).

Other ingredients of competitive location models include characteristics
of the targeted group, as, for example, customers or voters. They may be
distributed over the representation of the location space according to some
density function or we may consider discrete locations (cf. Section 1.3). De-
mand may be deterministic or stochastic, elastic or inelastic (dependent on
or independent of the conditions of its supply). Furthermore, we may take
different types of choice rules into consideration (cf., for example, Hakimi,
1990). A choice rule is said to be binary (or deterministic), when it is de-
terministic from the perspective of the players with the total demand of a
customer (voter etc.) being served by a single located resource; it is said to
be probabilistic, if the researcher can only derive probabilities of customer
(voter etc.) behavior or if demand is assumed to be split over multiple lo-
cated resources. Probabilistic choice rules include partially binary (splitting
only over one of the locations of each player) and proportional (splitting over
all locations) behavior. Note that, at least in the case of a binary choice
rule, one has to make assumptions concerning the location of two facilities
in the same point of the network (co-location). A common assumption in
the field of competitive location problems is to break ties in favor of the
leader (see, for example, Hakimi, 1990; Hansen and Labbé, 1988; Hansen
and Thisse, 1981) or, similarly, not allowing co-location at all (see, for exam-
ple, Granot et al., 2010; Shiode and Drezner, 2003). Alternatively, ties may
be broken equally as, for instance, in Dasci et al. (2002). Both, the existence
and nature of equilibria in competitive location models, may vary according
to different assumptions concerning co-location: Hakimi (1990) designs the
above-mentioned tie breaking rule to “avoid [...] trivial solutions”. Similarly,
Granot et al. (2010) analyze the effect of allowing or not allowing co-location
in their model in detail.




