
 



xvi List of Abbreviations

SVG Scalable Vector Graphics

TCP Transmission Control Protocol

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

VML Vector Markup Language

W3C Word Wide Web Consortium

XML Extensible Markup Language

1. Introduction

1.1. Problem Outline

The objective of Software Engineering (SE) is to build high quality software

within a given time and with a predetermined budget (Sommerville, 2007).

Often, though, software development projects still struggle to accomplish these

objectives and many fail (Charette, 2005; The Standish Group, 2009). Studies

show that in many cases, problems in the early phase of software development

lead to cost or time overruns, rework, bad quality, and eventually to the failure

of the project (Procaccino et al., 2006; Hofmann and Lehner, 2001).

Requirements Engineering (RE) is the phase of SE which deals with this

early phase of software development (Sommerville and Sawyer, 1997; Nuseibeh

and Easterbrook, 2000). RE can be defined as follows: “Requirements engi-

neering is the disciplined application of proven principles, methods, tools, and

notations to describe a proposed system’s intended behavior and its associated

constraints”(Hsia et al., 1993). RE comprises activities such as the elicitation of

the requirements, their specification, and their management. The main task of

RE is essentially the transfer of knowledge between stakeholders in the project

and the creation of a common understanding of “what to build”. Stakeholders

are individuals or organizations which actively participate in a software project

or whose interests influence the project (Hofmann and Lehner, 2001).

Today, globalization also affects the processes of how software is built and

many development projects nowadays are conducted in globally distributed



2 1. Introduction

environments, where project stakeholders are spread over multiple locations

and often work in different time zones (Karolak, 1998). This distribution of

stakeholders leads to a variety of challenges in collaboration and communication

(Herbsleb and Moitra, 2001) and needs for research in that field (Hargreaves

et al., 2004). Stakeholders are not able to communicate in the same way as in

face-to-face meetings at one location. Informal and ad-hoc communication is

impeded1.

Synchronous rich communication needs significant effort and tools. Further-

more, multiple time-zones often constrain the available time for synchronous

communication. Cultural differences and language barriers make communica-

tion and collaboration more difficult. As RE requires extensive communication,

these problems make it even more challenging in global and distributed projects.

To ensure an efficient and effective communication over distance, solid methods

and tools have to be developed and evaluated. The design of these methods

and tools should be informed by existing theoretical knowledge about commu-

nication and coordination processes in order to ensure the effectiveness of these

methods and tools (Hevner et al., 2004).

This thesis focuses on the following general question:

“How can it be ensured that requirements engineering leads to high

quality requirements in distributed software development projects?”

The general objective of this research is to support requirements engineering

to come up with requirements in such a way that the system to be build meets

the stakeholders’ needs. The search for these requirements is usually conducted

in the elicitation and analysis phase of requirements engineering (Sommerville,

1 Many popular agile software development methodologies, which try to solve common prob-
lems of traditional methodologies, e.g. Scrum (Schwaber, 2004), have been developed for
co-located stakeholders.



2 1. Introduction

environments, where project stakeholders are spread over multiple locations

and often work in different time zones (Karolak, 1998). This distribution of

stakeholders leads to a variety of challenges in collaboration and communication

(Herbsleb and Moitra, 2001) and needs for research in that field (Hargreaves

et al., 2004). Stakeholders are not able to communicate in the same way as in

face-to-face meetings at one location. Informal and ad-hoc communication is

impeded1.

Synchronous rich communication needs significant effort and tools. Further-

more, multiple time-zones often constrain the available time for synchronous

communication. Cultural differences and language barriers make communica-

tion and collaboration more difficult. As RE requires extensive communication,

these problems make it even more challenging in global and distributed projects.

To ensure an efficient and effective communication over distance, solid methods

and tools have to be developed and evaluated. The design of these methods

and tools should be informed by existing theoretical knowledge about commu-

nication and coordination processes in order to ensure the effectiveness of these

methods and tools (Hevner et al., 2004).

This thesis focuses on the following general question:

“How can it be ensured that requirements engineering leads to high

quality requirements in distributed software development projects?”

The general objective of this research is to support requirements engineering

to come up with requirements in such a way that the system to be build meets

the stakeholders’ needs. The search for these requirements is usually conducted

in the elicitation and analysis phase of requirements engineering (Sommerville,

1 Many popular agile software development methodologies, which try to solve common prob-
lems of traditional methodologies, e.g. Scrum (Schwaber, 2004), have been developed for
co-located stakeholders.

1.2. Research Focus and Objective 3

2007), which is the main research focus of this work. Elicitation deals with

discovering the needs of all relevant stakeholders (Hickey and Davis, 2004).

These needs lead to requirements, which are collected and further analyzed.

The analysis activities comprise classification, prioritization, and negotiation of

requirements. Different objectives of different stakeholders must be taken into

account.

Requirements elicitation and analysis are activities, which often cannot be

considered separately because of their highly iterative nature (Geisser, 2008).

In agile software development, these activities are even more intertwined, over-

lapping and are repeated because agile development processes imply iterative

activities (Lee and Xia, 2010; Paetsch et al., 2003). Requirements elicitation

and analysis are communication-intense and critical activities in software de-

velopment projects (Zowghi and Coulin, 2005). They concentrate on the task

of finding out “what problem needs to be solved” rather than on “how the prob-

lem should be solved” (Nuseibeh and Easterbrook, 2000). Due to the required

communication intensity of these activities and the fact that stakeholders are

located at different places and possibly reside within different cultural environ-

ments, these activities are even more difficult.

1.2. Research Focus and Objective

The research objective of this work is to develop a method and a software

artifact to support the activities in the early requirements engineering phase

in order to overcome some of the difficulties and improve the quality of the re-

quirements, which should eventually lead to better software products. There are

many techniques, which can be used in this early phase, to elicit requirements

in software development, e.g. brainstorming, interviews, business process mod-

eling or observation (Zowghi and Coulin, 2005). A technique which has been



4 1. Introduction

shown to be very effective in this phase is graphical user interface (GUI) pro-

totyping (Gomaa and Scott, 1981; Bäumer et al., 1996; Newman and Landay,

2000; Ravid and Berry, 2000). For instance, in a study by Keil and Carmel

(1995), GUI prototyping was one of the most effective customer-developer link.

GUI prototypes are also popular in practice, especially in agile projects as they

are quickly created and convey ideas without a lot of documentation. The proto-

types show characteristics which makes GUI prototyping a promising technique

for knowledge transfer between stakeholders (see Section 3.1.1). Hence, GUI

prototypes have been chosen as the research focus of this thesis.

These prototypes, also known as mockups, help to visualize the system which

has to be build, support the users of this system to get a clearer picture of their

requirements, and serve as a tool to quickly try out various ideas and function-

alities. They are an early representation of the user-visible part of the system

and help to provide a common understanding of the requirements of the sys-

tem, both on the developer and the user side, and improve the usability of the

product (Arnowitz et al., 2007). User interface prototypes exist on a multitude

of sophistication levels: from simple, paper-based sketches to dynamic func-

tional graphical user interfaces created with heavy weighted interface creation

applications (Rudd et al., 1996). Especially in the very first phase of the de-

velopment, often simple, paper-based prototypes are used in order to visualize

and try out ideas quickly (Chamberlain et al., 2006).

As prototypes are means to convey design ideas and help stakeholders to get a

common understanding of the requirements, GUI prototyping also seems to be

a promising approach in distributed software engineering, where communication

and knowledge management problems are even more striking than in co-located

settings. Prototyping can help distributed stakeholders in the early phase of

development to get a common understanding of the requirements of the software

product and the business context. Prototypes facilitate the communication of



4 1. Introduction

shown to be very effective in this phase is graphical user interface (GUI) pro-

totyping (Gomaa and Scott, 1981; Bäumer et al., 1996; Newman and Landay,

2000; Ravid and Berry, 2000). For instance, in a study by Keil and Carmel

(1995), GUI prototyping was one of the most effective customer-developer link.

GUI prototypes are also popular in practice, especially in agile projects as they

are quickly created and convey ideas without a lot of documentation. The proto-

types show characteristics which makes GUI prototyping a promising technique

for knowledge transfer between stakeholders (see Section 3.1.1). Hence, GUI

prototypes have been chosen as the research focus of this thesis.

These prototypes, also known as mockups, help to visualize the system which

has to be build, support the users of this system to get a clearer picture of their

requirements, and serve as a tool to quickly try out various ideas and function-

alities. They are an early representation of the user-visible part of the system

and help to provide a common understanding of the requirements of the sys-

tem, both on the developer and the user side, and improve the usability of the

product (Arnowitz et al., 2007). User interface prototypes exist on a multitude

of sophistication levels: from simple, paper-based sketches to dynamic func-

tional graphical user interfaces created with heavy weighted interface creation

applications (Rudd et al., 1996). Especially in the very first phase of the de-

velopment, often simple, paper-based prototypes are used in order to visualize

and try out ideas quickly (Chamberlain et al., 2006).

As prototypes are means to convey design ideas and help stakeholders to get a

common understanding of the requirements, GUI prototyping also seems to be

a promising approach in distributed software engineering, where communication

and knowledge management problems are even more striking than in co-located

settings. Prototyping can help distributed stakeholders in the early phase of

development to get a common understanding of the requirements of the software

product and the business context. Prototypes facilitate the communication of

1.2. Research Focus and Objective 5

stakeholders, who are situated in different locations, with different professional

and cultural environments.

Furthermore, research in this area is of high relevance as prototyping is a

common technique in agile development (Paetsch et al., 2003) and there are

attempts to use agile development methods also in distributed environments

(Ramesh et al., 2006; Hildenbrand, 2008). Nevertheless, little research has been

conducted so far in the application of GUI prototyping in distributed software

development. However, for the effective application of this technique, methods

and tools for the collaboration on user interface prototypes over distance are

needed. When designing such methods and tools, theoretical knowledge should

be utilized to make them more effective. The objective of this thesis is the design

and implementation of such a method and tool. The design should be informed

by theory and the resulting artifacts be evaluated for their effectiveness and

efficiency.

This objective leads to the following research questions:

1. How can GUI prototypes be collaboratively created, shared, maintained,

and integrated into the distributed development process?

2. What kind of tool should be applied?

3. Does this approach help the stakeholders to better understand the re-

quirements and collaborate more efficiently?

Question one focuses on a method for distributed GUI prototyping. Such

a method should provide guidelines on how to create the prototypes and col-

laborate on them from various distributed locations, how to use prototypes of

different levels of detail and functionality, and how to integrate the prototypes

with other artifacts into the distributed development process. This question

will be answered in Section 4.1.



6 1. Introduction

The second question is related to the tool which is required to implement

this method. This tool must provide the functionality that is required by the

method. Beyond the design implications, which are derived from theoretical

considerations and practical requirements, technical design decisions for the

implementation have to be made. This question will be answered in Section

4.2.

Question three indicates that one objective of this research is to support

stakeholders in the understanding of the software requirements. Furthermore,

the collaboration between the stakeholders should become more efficient. To

assess if the developed artifacts improve the understanding and the efficiency,

they are evaluated. Chapter 5 describes this evaluation and reports its results

and thus answers question three.

1.3. Research Method

To answer the questions stated in the previous section, this research will fol-

low a design science research method (March and Smith, 1995; Hevner et al.,

2004). This approach is based on a problem solving paradigm (Hevner et al.,

2004). The goal is to solve the problem presented above. It is the support

and improvement of user interface prototyping in globally distributed software

development. To achieve this goal, two artifacts are designed, which address

the problem.

The artifacts are a method and a tool, which support stakeholders in globally

distributed software projects to collaborate on GUI prototypes. Following the

design science approach, this research draws from existing literature and is in-

formed by theoretical concepts, which are used for the creation of the purposeful

artifacts (Hevner et al., 2004; Markus et al., 2002). These theoretical concepts



6 1. Introduction

The second question is related to the tool which is required to implement

this method. This tool must provide the functionality that is required by the

method. Beyond the design implications, which are derived from theoretical

considerations and practical requirements, technical design decisions for the

implementation have to be made. This question will be answered in Section

4.2.

Question three indicates that one objective of this research is to support

stakeholders in the understanding of the software requirements. Furthermore,

the collaboration between the stakeholders should become more efficient. To

assess if the developed artifacts improve the understanding and the efficiency,

they are evaluated. Chapter 5 describes this evaluation and reports its results

and thus answers question three.

1.3. Research Method

To answer the questions stated in the previous section, this research will fol-

low a design science research method (March and Smith, 1995; Hevner et al.,

2004). This approach is based on a problem solving paradigm (Hevner et al.,

2004). The goal is to solve the problem presented above. It is the support

and improvement of user interface prototyping in globally distributed software

development. To achieve this goal, two artifacts are designed, which address

the problem.

The artifacts are a method and a tool, which support stakeholders in globally

distributed software projects to collaborate on GUI prototypes. Following the

design science approach, this research draws from existing literature and is in-

formed by theoretical concepts, which are used for the creation of the purposeful

artifacts (Hevner et al., 2004; Markus et al., 2002). These theoretical concepts

1.4. Organization of this Thesis 7

are described in Section 3.1. The theoretical knowledge is used to derive de-

sign implications for the artifacts. Further design implications from practice

are determined by conducting expert interviews. These design implications are

described in Section 3.2. After collecting the design implications, the artifacts

are constructed. For the tool, further technical design decisions are made and

the tool is implemented as a software application.

For the artifacts, which are the contributions of this research, to be purpose-

ful, they must provide utility, which must be assessed (Hevner et al., 2004). For

this purpose, the utility, quality, and efficiency of the artifacts are evaluated

with well-established evaluation methods. This evaluation provides feedback

for the construction of the artifact. The two artifacts of this research will be

evaluated by the means of expert interviews. This is described in Chapter 5.

1.4. Organization of this Thesis

The rest of this thesis is structured as follows: Chapter 2 introduces fundamen-

tal concepts, which are important for the understanding of this research. It

explains Requirements Engineering and its activities, the challenges of software

engineering in distributed environments, GUI prototypes, and design science

research. After this, related research is described.

Chapter 3 uses theoretical knowledge to derive design implications for the ar-

tifacts. First, the concept of boundary objects and the two theoretical concepts,

the Cognitive-Affective Model of Organizational Communication for Designing

Information Technology (IT) and the Media Synchronicity Theory, are intro-

duced. After this, design implications are derived and preliminary assessed by

experts from the software industry. Finally, existing tools are analyzed and it

is checked if they meet the requirements of the design implications.



8 1. Introduction

Chapter 4 outlines in detail the artifacts that have been developed: a method

and tool for distributed GUI prototyping. The method, its steps, and example

scenarios are described. Subsequently, the tool, its usage, its technologies, and

its architecture are explained in detail.

In Chapter 5, the evaluation of the artifacts developed earlier is described.

First, the context of the evaluation is introduced and two propositions are

derived. Thereupon, the design of the evaluation is described and its results

are reported.

Chapter 6 discusses the contributions, the implications and the limitations

of this work. Finally, Chapter 7 offers a summary of this thesis and an outlook

for future research.




