
Lecture Notes in Computer Science 3800

Variations on Constants

Flow Analysis of Sequential and Parallel Programs

Bearbeitet von
Markus Müller-Olm

1. Auflage 2006. Taschenbuch. xiii, 177 S. Paperback
ISBN 978 3 540 45385 7

Format (B x L): 15,5 x 23,5 cm
Gewicht: 630 g

Weitere Fachgebiete > EDV, Informatik > Programmiersprachen: Methoden >
Prozedurorientierte Programmierung

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Mueller-Olm-Variations-on-Constants/productview.aspx?product=149014&utm_source=pdf&utm_medium=clickthru_preamble&utm_campaign=pdf_149014&campaign=pdf/149014
http://www.beck-shop.de/trefferliste.aspx?toc=8287
http://www.beck-shop.de/trefferliste.aspx?toc=8287


Foreword

By its nature, automatic program analysis is the art of finding adequate com-
promises. Originally, in the 1970s, program analysis aimed at deriving precon-
ditions for typically obviously correct optimizing program transformations.
Heuristics for loop optimizations were popular, which in particular concerned
the treatment of multi-dimensional arrays. The limits of these heuristics-
based approaches became apparent when looking at the combined effects of
optimizations – in particular in the context of concurrency. Since then, the
loss of confidence in optimizing compilers has been fought by semantics-based
methods that come with explicitly stated power and limitations.

A particularly natural and illustrative class of program analyses aims at
detecting program constants, i.e. occurrences of program expressions which
are guaranteed to evaluate to the same value in every run. This problem is
essentially as hard as program verification in its full generality, though there
are interesting subclasses which can be solved effectively or even efficiently.

Markus Müller-Olm investigates particularly interesting variations of such
classes which are characterized by varying strengths of interpretation and by
increasingly complex data and control structures. In particular, he considers
in detail three main classes of problems:

– The purely sequential situation, where his ideal theoretic treatment of poly-
nomial constants is really outstanding. It is a delight to follow the elegant
algebraic development!

– The treatment of copy constants for fork-join parallel programs. This turns
out to be very hard already in restricted settings like acyclic programs, and
becomes undecidable in the context of procedures.

– A variation of the second class, where he waives the usual atomicity prop-
erties during execution. At first sight it is really surprising that this dras-
tically simplifies the analysis problem. However, a closer look reveals that
the decrease in algorithmic complexity goes hand in hand with a decrease
in quality – as the waived atomicity is vital for a decent control of parallel
computation.

Markus Müller-Olm succeeds in significantly improving the known results
for the scenarios considered. However, what makes the book very special
is the impressive firework of elaborate methods and powerful techniques.



VI Foreword

Everybody working in the field will profit from passing from scenario to
scenario and experiencing Markus Müller-Olm’s mastership of choosing the
adequate means for each of the considered analysis problems: one leaves with
a deep understanding of the inherent underlying differences and in particular
of the complexity of modern programming concepts in terms of the hardness
of the implied analysis problem.

July 2006 Bernhard Steffen



Preface

Computer science is concerned with design of programs for a wide range of
purposes. We are, however, not done once a program is constructed. For vari-
ous reasons, programs need to be analyzed and processed after their construc-
tion. First of all, we usually write programs in high-level languages and before
we can execute them on a computer they must be translated into machine
code. In order to speed up computation or save memory, optimizing compilers
perform program transformations relying heavily on the results of program
analysis routines. Secondly, due to their ever-increasing complexity, programs
must be validated or verified in order to ensure that they serve their intended
purpose. Program analysis (in a broad sense) is concerned with techniques
that automatically determine run-time properties of given programs prior to
run-time. This includes flow analysis, type checking, abstract interpretation,
model checking, and similar areas.

By Rice’s theorem [79, 31], every non-trivial semantic question about pro-
grams in a universal programming language is undecidable. At first glance,
this seems to imply that automatic analysis of programs is impossible. How-
ever, computer scientists have found at least two ways out of this problem.
Firstly, we can use weaker formalisms than universal programming languages
for modeling systems such that interesting questions become decidable. Im-
portant examples are the many types of automata studied in automata the-
ory and Kripke structures (or labeled transition systems) considered in model
checking. Secondly, we can work with approximate analyses that do not al-
ways give a definite answer but may have weaker (but sound) outcomes.
Approximate analyses are widely used in optimizing compilers.

An interesting problem is to assess the precision of an approximate anal-
ysis. One approach is to consider an abstraction of programs or program
behavior that gives rise to weaker but sound information and to prove that
the analysis yields exact results with respect to this abstraction (cf. Fig. 0.1).
The loss of precision can then be attributed to and measured by the em-
ployed abstraction. This scheme has been used in the literature in a number
of scenarios [40, 86, 43, 87, 88, 24].

The scheme of Fig. 0.1 allows us to make meaningful statements on ap-
proximate analysis problems independently of specific algorithms: by devising
abstractions of programs, we obtain well-defined weakened analysis problems



VIII Preface

Approximate results

Analysis

Exact results

problem
Weakened

problem
Original Abstraction

Fig. 0.1. Using an abstraction to assess the precision of an approximate analysis.

and we can classify these problems with the techniques of complexity and
recursion theory. The purpose of such research is twofold: on the theoretical
side, we gain insights on the trade-off between efficiency and precision in the
design of approximate analyses; on the practical side, we hope to uncover
potential for the construction of more precise (efficient) analysis algorithms.

In this monograph we study weakened versions of constant propagation.
The motivation for this choice is threefold. Firstly, the constant-propagation
problem is easy to understand and of obvious practical relevance. Hence,
uncovering potential for more precise constant-propagation routines is of
intrinsic interest. Secondly, there is a rich spectrum of natural weakened
constant-propagation problems. On the one hand, we can vary the set of al-
gebraic operators that are to be interpreted by the analysis. On the other
hand, we can study the resulting problems in different classes of programs
(sequential or parallel programs, with or without procedures, with or without
loops etc.). Finally, results for the constant-propagation problem can often
be generalized to other analysis questions. For instance, if as part of the ab-
straction we decide not to interpret algebraic operators at all, which leads to
a problem known as copy-constant detection, we are essentially faced with an-
alyzing transitive dependences in programs. Hence, results for copy-constant
detection can straightforwardly be adapted to other problems concerned with
transitive dependences, like faint-code elimination and program slicing.

In this monograph we combine techniques from different areas such as
linear algebra, computable ring theory, abstract interpretation, program ver-
ification, complexity theory, etc. in order to come to grips with the considered
variants of the constant-propagation problem. More generally, we believe that
combination of techniques is the key to further progress in automatic analy-
sis, and constant-propagation allows us to illustrate this point in a theoretical
study.

Let us briefly outline the main contributions of this monograph:

A hierarchy of constants in sequential programs. We explore the complex-
ity of constant-propagation for a three-dimensional taxonomy of constants
in sequential imperative programs that work on integer variables. The first
dimension restricts the set of interpreted integer expressions. The second di-



Preface IX

mension distinguishes between must- and may-constants. May-constants ap-
pear in two variations: single- and multiple-valued. May-constants are closely
related to reachability. In the third dimension we distinguish between pro-
grams with and without loops. We succeed in classifying the complexity of the
problems almost completely (Chapter 2). Moreover, we develop (must-)con-
stant-propagation algorithms that interpret completely all integer operators
except for the division operators by using results from linear algebra and
computational ring theory (Chapter 3).
Limits for the analysis of parallel programs. We study propagation of copy
constants in parallel programs. Assuming that base statements execute atom-
ically, a standard assumption in the program verification and analysis lit-
erature, we show that copy-constant propagation is undecidable, PSPACE-
complete, and NP-complete if we consider programs with procedures, without
procedures, and without loops, respectively (Chapter 4). These results indi-
cate that it is very unlikely that recent results on efficient exact analysis of
parallel programs can be generalized to richer classes of dataflow problems.
Abandoning the atomic execution assumption. We then explore the conse-
quences of abandoning the atomic execution assumption for base statements
in parallel programs, which is the more realistic setup in practice (Chap-
ters 5 to 9). Surprisingly, it turns out that this makes copy-constant detection,
faint-code elimination and, more generally, analysis of transitive dependences
decidable for programs with procedures (Chapter 8) although it remains in-
tractable (NP-hard) (Chapter 9). In order to show decidability we develop a
precise abstract interpretation of sets of runs (program executions) (Chap-
ter 7). While the worst-case running time of the developed algorithms is
exponential in the number of global variables, it is polynomial in the other
parameters describing the program size. As well-designed parallel programs
communicate on a small number of global variables only, there is thus the
prospect of developing practically relevant algorithms by refining our tech-
niques.

These three contributions constitute essentially self-contained parts that
can be read independently of each other. Figure 0.2 shows the assignment of
the chapters to these parts and indicates dependences between the chapters.
For clarity, transitive relationships are omitted.

Throughout this monograph we assume that the reader is familiar with
the basic techniques and results from the theory of computational complexity
[72, 36], program analysis [70, 2, 30, 56], and abstract interpretation [14,
15]. A brief introduction to constraint-based program analysis is provided in
Appendix A.

Acknowledgments

This monograph is a revised version of my habilitation thesis (Habilitations-
schrift), which was submitted to the Faculty of Computer Science (Fach-



X Preface

Abandoning the atomic
execution assumption

Overview

Conclusion and future research

Limits of parallel flow analysis

Sequential constant hierarchy Chapter 2 Chapter 3

Chapter 4

Chapter 5 Chapter 6 Chapter 7

Chapter 8Chapter 9

Chapter 10

Chapter 1

Fig. 0.2. Dependence between the chapters.

bereich Informatik) of Dortmund University in August 2002 and accepted in
February 2003. I would like to thank Bernhard Steffen, head of the research
group on Programming Systems and Compiler Construction at Dortmund
University, in which I worked from 1996, for continual advice and support in
many ways. I am also grateful to Oliver Rüthing and Helmut Seidl for our
joint work. I thank all three and Jens Knoop for many helpful discussions
and Hardi Hungar for insightful comments on a draft version. I thank the
referees of my habilitation thesis, Javier Esparza, Neil Jones, and Bernhard
Steffen, for their time and enthusiasm.

From October 2001 until March 2002 I worked at Trier University, which
allowed me to elaborate the third part free from teaching duties. I thank
Helmut Seidl and the DAEDALUS project, which was supported by the Eu-
ropean FP5 programme (RTD project IST-1999-20527), for making this visit
possible.

Dortmund, June 2005 Markus Müller-Olm


