

This book presents a thorough and detailed description of the very successful Lund model of the dynamics of particle physics. The Lund model, inspired by quantum chromodynamics, has provided a very promising and pictorial approach to the dynamics of quark and gluon interactions. Starting with a brief reprise of basic concepts in relativity, the quantum mechanics of fields and particle physics, this book goes on to discuss the dynamics of the massless relativistic string, confinement, causality and relativistic covariance, Lund fragmentation processes, QED and QCD bremsstrahlung, multiplicities and particle-parton distributions. The book also explores the relationships between the Lund model and other models based on field theory (the Schwinger model, S-matrix models, lightcone algebra physics and variations of the parton model) or on statistical mechanics (the Feynman-Wilson gas, scaling, iterative cascade models).

The book will be of interest to experimental and theoretical particle physicists, and also to those working in other branches of physics who would like to develop a feel for these basic interactions.

> CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS, NUCLEAR PHYSICS AND COSMOLOGY: 7

> > General Editors: T. Ericson, P. V. Landshoff

THE LUND MODEL

CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS, NUCLEAR PHYSICS AND COSMOLOGY

1. K. Winter (ed.): Neutrino Physics

2. J. F. Donoghue, E. Golowich and B. R. Holstein: Dynamics of the Standard Model

3. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 1: Electroweak Interactions, the 'New Particles' and the Parton Model

4. E. Leader and E. Predazzi: An Introduction to Gauge Theories and Modern Particle Physics, Volume 2: CP-Violation, QCD and Hard Processes

5. C. Grupen: Particle Detectors

6. H. Grosse and A. Martin: Particle Physics and the Schrödinger Equation

7. B. Andersson: The Lund Model

The Lund Model

BO ANDERSSON

Lund University

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521420945

© Cambridge University Press 1998

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1998
This digitally printed first paperback version 2005

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Andersson, Bo (Bo Algot), 1937– The Lund model / Bo Andersson

- cm. (Cambridge monographs on particle physics, nuclear physics and cosmology; 7)
 Includes bibliographical references and index
 - ISBN 0 521 42094 6
 - 1. Particles (Nuclear physics) Mathematical models. 2. Quark-gluon interactions Mathematical models. I. Title. II. Series.

 QC793.2.A53 1998

 539.7'548-dc21 97-32156 CIP

ISBN-13 978-0-521-42094-5 hardback ISBN-10 0-521-42094-6 hardback

ISBN-13 978-0-521-01734-3 paperback ISBN-10 0-521-01734-3 paperback

Contents

	Acknowledgements	хi
1	Introduction	1
2	Relativistic kinematics, electromagnetic fields and the method of	
	virtual quanta	6
2.1	The Lorentz boost	7
2.2	Particle kinematics	11
2.3	Timelike, lightlike and spacelike vectors in Minkowski space	14
2.4	The electromagnetic field equations and some of their consequences	18
2.5	The method of virtual quanta	22
3	The harmonic oscillator and the quantum field	27
3.1	Introduction	27
3.2	The quantum field as a sum of harmonic oscillators	28
3.3	Feynman's time-ordering prescription	40
3.4	The method for calculating the scattering cross sections	49
3.5	The propagators in lightcone physics in the infinite-momentum frame	52
4	The vacuum as a dielectric medium; renormalisation	57
4.1	Introduction	57
4.2	The Källén-Lehmann representation, the <i>n</i> -particle phase space	61
4.3	A scalar-field-theory propagator in the Källén-Lehmann	
	representation	64
4.4	The photon propagator in QED and the gluon propagator in QCD	69
4.5	Two reasons why in QCD the polarisation tensor behaves	
	differently; the introduction of cut diagrams	77
4.6	The Callan-Symanzik equations for the renormalisation group	85
5	Deep inelastic scattering and the parton model	90
5.1	The parton model: Feynman's proposal	93
5.2	Rutherford's formula from classical mechanics	95

vii

viii	Contents	
5.3	Rutherford's formula in relativistic quantum mechanics	98
5.4	The target recoil and the general elastic cross section for the	404
<i>-</i> -	scattering of spin 1/2 particles	101
5.5 5.6	The extension to non-pointlike baryons, form factors The inelastic scattering of electrons on baryons; lightcone physics	104 106
5.7	The parton model revisited	100
5.8	The partons as quarks	111
6	The classical motion of the massless relativistic string	114
6.1	Introduction	114
6.2	The MRS as a constant force field	115
6.3	The QCD vacuum as a color superconductor	126
7	The decay kinematics of the massless relativistic string	134
7.1	Introduction The biggreeties of the decay and its invaligations	134
7.2 7.3	The kinematics of the decay and its implications Ordering of the decay process along the lightcones	136 139
7.3 7.4	Iterative cascade fragmentation models	141
7.5	The formation time and iterative cascade jets	144
8	A stochastic process for string decay	146
8.1	Introduction	146
8.2	The unique breakup distribution for a single hadron	148
8.3	The production of a finite-energy cluster of hadrons	154
8.4	The Artru-Menessier-Bowler model	159
9	The properties of the Lund model fragmentation formulas;	163
9.1	the external-part formulas Introduction	163 163
9.2	The production properties of a cluster	164
9.3	The properties of the distributions H and f	165
9.4	The particle density in a general iterative cascade model	168
9.5	The relationship between the vertex proper time and the momentum	
	transfer across the vertex	172
10	The internal-part fragmentation formulas and their relations to the	
10.1	unitarity equations of a field theory; Regge theory	177
10.1	Introduction The decay properties of a chapter	177 178
10.2 10.3	The decay properties of a cluster The relationship to the unitarity equations for the S-matrix in a	1/0
10.5	quantum field theory	183
11	The dynamical analogues of the Lund model fragmentation formulas	192
11.1	Introduction	192
11.2	The decay of the vacuum in an external field	193
11.3	The Wilson loop exponential laws and gauge invariance	199

	Contents	ix
11.4	The fragmentation formulas and the partition functions for the Feynman-Wilson gas in rapidity space	207
12	Flavor and transverse momentum generation and the vector meson to	
	pseudoscalar meson ratio	213
12.1	Introduction	213
12.2	The classical transverse motion of a string	214
12.3	A general process for transverse momentum generation	219
12.4	The phenomenological implications of the tunnelling process	224
12.5	Vector meson suppression	228
13	Heavy quark fragmentation and baryon production	234
13.1	Introduction	234
13.2	Heavy quark fragmentation	235
13.3	Baryon-antibaryon production	241
13.4	A different use of the Lund model formulas, the UCLA model	247
14	The Hanbury-Brown-Twiss effect and the polarisation effects in the	
	Lund model	249
14.1	Introduction	249
14.2	The Hanbury-Brown-Twiss effect	251
14.3	The polarisation effects in the Lund model	262
15	The Lund gluon model, its kinematics and decay properties	269
15.1	Introduction	269
15.2	The dance of the butterfly	270
15.3	The general description of string motion	276
15.4	Multigluon states and some complications	282
15.5	The breakup of a gluonic Lund string	286
15.6	The final-state particles in the breakup of a $qg\overline{q}$ -state	290
15.7	A measure of multigluon activity, the generalised phase-space	•
	rapidity	298
16	Gluon emission via the bremsstrahlung process	302
16.1	Introduction	302
16.2	The matrix element for dipole emission	303
16.3	The dipole cross section	307
16.4	The antenna pattern of dipole emission	314
17	Multigluon emission, the dipole cascade model and other coherent	
	cascade models	318
17.1	Introduction	318
17.2	The consequences of the second-order matrix element	319
17.3	An aside on ordering and the Sudakov form factors	321
17.4	The generalisation of the λ -measure to multigluon situations	323
17.5	The phase-space triangles of DCM	325
17.6	The description of multigluon emission as a process on the directrix	328

X	Contents	
17.7	Single-parton emission compared to the DCM procedure	334
17.8	Some further comments	345
18	The λ -measure in the leading-log and modified leading-log	
	approximations of perturbative QCD	349
18.1	Introduction	349
18.2	The <i>L</i> -method	352
18.3	The κ -method	363
18.4	The next-to-leading-order corrections	372
18.5	On the running coupling in QCD	374
18.6	Discrete QCD, another approximation method	376
18.7	The x-curve and an infrared-stable λ -measure	384
18.8	The fractal properties of the QCD cascades	390
19	The parton model and QCD	392
19.1	Introduction	392
19.2	The DIS cross sections, initial- and final-state bremsstrahlung	393
19.3	A bird's-eye view of the features of deep inelastic scattering	397
19.4	The moment method and the DGLAP mechanism	402
19.5	The Lipatov results and a critique on the stability	413
19.6	The CCMF model, interpolating between the DGLAP and the	
	BFKL contributions	417
19.7	The GLR model of reinteraction of partons	421
20	Inelastic lepto-production in the Lund model, the soft radiation model	
	and the linked dipole chain model	423
20.1	Introduction	423
20.2	The classical motion of a yoyo-string exposed to a large momentum	
	transfer at an endpoint	425
20.3	The fragmentation of a final-state yoyo-string stemming from a DIS	
	event	428
20.4	A model for baryon fragmentation	430
20.5	The soft radiation model	434
20.6	The relationship between the SRM and the non-local form factor	427
20.5	of the CCMF model	437
20.7	The linked dipole chain model	440
20.8	The structure function behavior of the LDC model	455
	References	465
	Index	468

Acknowledgements

This book is dedicated to the memory of my teacher, Gunnar Källén, who died much too young. He was the greatest teacher any man could have had. Those of us who enjoyed the vision of physics according to the way he described it, as a great adventure, have often asked what he would have said about the greatest adventure my generation will ever have, i.e. the confined field theory of QCD (which is so different from what we talked about in Lund in the 1960s!).

I would also like to thank my collaborators over the years, in particular the past and present members of the Lund High-Energy Theory Group. I will firstly mention Gösta Gustafson, who kindly has read most parts of this book and provided many useful remarks. He has been my principal collaborator for very many years and there is no way to thank him for all the joy and insight he has provided. Further, one of our recent students, Jari Häkkinen, has helped me both with my sometimes very temperamental computer and also with the figures. As there are very few 'free luncheons in life', as my American friends tell me, his help has been something that I will savour for all times. I have also been teased, kicked around and during the process learned a lot from my copy-editor, Susan Parkinson.

But even if I have been endowed with the best advisers, with regard to any remaining errors and omissions the buck rests with me!