
Preface

Optimization is the task of finding one or more solutions which correspond to
minimizing (or maximizing) one or more specified objectives and which sat-
isfy all constraints (if any). A single-objective optimization problem involves a
single objective function and usually results in a single solution, called an opti-
mal solution. On the other hand, a multiobjective optimization task considers
several conflicting objectives simultaneously. In such a case, there is usually
no single optimal solution, but a set of alternatives with different trade-offs,
called Pareto optimal solutions, or non-dominated solutions. Despite the ex-
istence of multiple Pareto optimal solutions, in practice, usually only one of
these solutions is to be chosen. Thus, compared to single-objective optimiza-
tion problems, in multiobjective optimization, there are at least two equally
important tasks: an optimization task for finding Pareto optimal solutions (in-
volving a computer-based procedure) and a decision-making task for choosing
a single most preferred solution. The latter typically necessitates preference
information from a decision maker (DM).

1 Modelling an Optimization Problem

Before any optimization can be done, the problem must first be modelled. As a
matter of fact, to build an appropriate mathematical or computational model
for an optimization problem is as important or as critical as the optimization
task itself. Typically, most books devoted to optimization methods tacitly as-
sume that the problem has been correctly specified. However, in practice, this
is not necessarily always the case. Quantifying and discussing the modelling
aspects largely depend on the actual context of the underlying problem and,
thus, we do not consider modelling aspects in this book. However, we wish to
highlight the following points.

First, building a suitable model (that is, the formulation of the optimiza-
tion problem with specifying decision variables, objectives, constraints, and
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variable bounds) is an important task. Second, an optimization algorithm (sin-
gle or multiobjective, alike) finds the optima of the model of the optimization
problem specified and not of the true optimization problem. Due to these rea-
sons, the optimal solutions found by an optimization algorithm must always
be analyzed (through a post-optimality analysis) for their ‘appropriateness’ in
the context of the problem. This aspect makes the optimization task iterative
in the sense that if some discrepancies in the optimal solutions obtained are
found in the post-optimality analysis, the optimization model may have to be
modified and the optimization task must be performed again. For example, if
the DM during the solution process of a multiobjective optimization problem
learns that the interdependencies between the objectives do not correspond
to his/her experience and understanding, one must get back to the modelling
phase.

2 Why Use Multiple Objectives?

It is a common misconception in practice that most design or problem solving
activities must be geared toward optimizing a single objective, for example,
bringing maximum profit or causing the smallest cost, even though there may
exist different conflicting goals for the optimization task. As a result, the dif-
ferent goals are often redefined to provide an equivalent cost or a profit value,
thereby artificially reducing the number of apparently conflicting goals into a
single objective. However, the correlation between objectives is usually rather
complex and dependent on the alternatives available. Moreover, the different
objectives are typically non-commensurable, so it is difficult to aggregate them
into one synthetic objective. Let us consider the simple example of choosing
a hotel for a night. If the alternatives are a one-star hotel for 70 euros, or
a zero-star hotel for 20 euros, the user might prefer the one-star hotel. On
the other hand, if the choice is between a five-star hotel for 300 euros, and
a four-star hotel for 250 euros, the four-star hotel may be sufficient. That is,
stars cannot be simply weighted with money. How much an extra star is val-
ued depends on the alternatives. As a consequence, it may be very difficult to
combine different objectives into a single goal function a priori, that is, before
alternatives are known. It may be comparatively easier to choose among a
given set of alternatives if appropriate decision support is available for the
DM. Similarly, one cannot simply specify constraints on the objectives before
alternatives are known, as the resulting feasible region may become empty,
making the optimization problem impossible to solve.

It should be clear that multiobjective optimization consists of three phases:
model building, optimization, and decision making (preference articulation).
Converting a multiobjective optimization problem into a simplistic single-
objective problem puts decision making before optimization, that is, before
alternatives are known. As explained above, articulating preferences without
a good knowledge of alternatives is difficult, and thus the resulting optimum
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may not correspond to the solution the user would have selected from the set
of Pareto optimal solutions. Treating the problem as a true multiobjective
problem means putting the preference articulation stage after optimization,
or interlacing optimization and preference articulation. This will help the user
gain a much better understanding of the problem and the available alterna-
tives, thus leading to a more conscious and better choice. Furthermore, the
resulting multiple Pareto optimal solutions can be analyzed to learn about
interdependencies among decision variables, objectives, and constraints. Such
knowledge about the interactions can be used to redefine the model of the op-
timization problem to get solutions that, on the one hand, correspond better
to reality, and, on the other hand, satisfy better the DM’s preferences.

3 Multiple Criteria Decision Making

The research field of considering decision problems with multiple conflicting
objectives (or goals or criteria) is known as multiple criteria decision making
(MCDM) or multiple criteria decision aiding (MCDA). It covers both discrete
problems (with a finite set of alternatives, also called actions or solutions) and
continuous problems (multiobjective optimization). Traditionally, in multiob-
jective optimization (also known as multicriteria optimization), mathematical
programming techniques and decision making have been used in an inter-
twined manner, and the ultimate aim of solving a multiobjective optimization
problem has been characterized as supporting the DM in finding the solution
that best fits the DM’s preferences. The alternating stages of decision making
and optimization create typically an interactive procedure for finding the most
preferred solution. The DM participates actively in this procedure, particu-
larly in the decision-making stage. Decision making on alternatives discovered
by optimization requires a more or less explicit model of DM’s preferences, so
as to find the most preferred solution among the alternatives currently consid-
ered, or to give indications for finding better solutions in the next optimization
stage. Many interactive methods have been proposed to date, differing mainly
in the way the DM is involved in the process, and in the type of preference
model built on preference information elicited from the DM.

The origin of nonlinear multiobjective optimization goes back almost 60
years, when Kuhn and Tucker formulated optimality conditions. However, for
example, the concept of Pareto optimality has a much earlier origin. More
information about the history of the field can be found in Chap. 1 of this
book. It is worth mentioning that biannual conferences on MCDM have been
regularly organized since 1975 (first by active researchers in the field, then by
a Special Interest Group formed by them and later by the International Soci-
ety on Multiple Criteria Decision Making). In addition, in Europe a Working
Group on Multiple Criteria Decision Aiding was established in 1975 within
EURO (European Association of Operational Research Societies) and holds
two meetings per year (it is presently in its 67th meeting). Furthermore, Inter-
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national Summer Schools on Multicriteria Decision Aid have been arranged
since 1983. A significant number of monographs, journal articles, conference
proceedings, and collections have been published during the years and the
field is still active.

4 Evolutionary Multiobjective Optimization

In the 1960s, several researchers independently suggested adopting the prin-
ciples of natural evolution, in particular Darwin’s theory of the survival of
the fittest, for optimization. These pioneers were Lawrence Fogel, John H.
Holland, Ingo Rechenberg, and Hans-Paul Schwefel. One distinguishing fea-
ture of these so-called evolutionary algorithms (EAs) is that they work with a
population of solutions. This is of particular advantage in the case of multiob-
jective optimization, as they can search for several Pareto optimal solutions
simultaneously in one run, providing the DM with a set of alternatives to
choose from.

Despite some early suggestions and studies, major research and applica-
tion activities of EAs in multiobjective optimization, spurred by a unique
suggestion by David E. Goldberg of a combined EA involving domination
and niching, started only in the beginning of 1990s. But in the last 15 years,
the field of evolutionary multiobjective optimization (EMO) has developed
rapidly, with a regular, dedicated, biannual conference, commercial software,
and more than 10 books on the topic. Although earlier studies focused on find-
ing a representative set of solutions on the entire Pareto optimal set, EMO
methodologies are also good candidates for finding only a part of the Pareto
optimal set.

5 Genesis of This Book

Soon after initiating EMO activities, the leading researchers recognized the
existence of the MCDM field and commonality in interests between the two
fields. They realized the importance of exchanging ideas and engaging in col-
laborative studies. Since their first international conference in 2001 in Zurich,
EMO conference organizers have always invited leading MCDM researchers to
deliver keynote and invited lectures. The need for cross-fertilization was also
realized by the MCDM community and they reciprocated. However, as each
field tried to understand the other, the need for real collaborations became
clear.

In the 2003 visit of Kalyanmoy Deb to the University of Karlsruhe to work
on EMO topics with Jürgen Branke and Hartmut Schmeck, they came up with
the idea of arranging a Dagstuhl seminar on multiobjective optimization along
with two MCDM leading researchers, Kaisa Miettinen and Ralph E. Steuer.
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The Dagstuhl seminar organized in November 2004 provided an ideal plat-
form for bringing in the best minds from the two fields and exchanging the
philosophies of each other’s methodologies in solving multiobjective optimiza-
tion problems. It became obvious that the fields did not yet know each other’s
approaches well enough. For example, some EMO researchers had developed
ideas that have existed in the MCDM field for long and, on the other hand,
the MCDM field welcomed the applicability of EMO approaches to problems
where mathematical programming has difficulties.

The success of a multiobjective optimization application relies on the way
the DM is allowed to interact with the optimization procedure. At the end of
the 2004 Dagstuhl seminar, a general consensus clearly emerged that there is
plenty of potential in combining ideas and approaches of MCDM and EMO
fields and preparing hybrids of them. Examples of ideas that emerged were
that more attention in the EMO field should be devoted to incorporating pref-
erence information into the methods and that EMO procedures can be used to
parallelize the repetitive tasks often performed in an MCDM task. By sensing
the opportunity of a collaborative effort, a second Dagstuhl seminar was or-
ganized in December 2006 and Roman Słowiński, who strongly advocated for
inclusion of preference modelling into EMO procedures, was invited to the or-
ganizing team. The seminar brought together about 50 researchers from EMO
and MCDM fields interested in bringing EMO and MCDM approaches closer
to each other. We, the organizers, had a clear idea in mind. The presence of
experts from both fields should be exploited so that the outcome could be
written up in a single book for the benefit of both novices and experts from
both fields.

6 Topics Covered

Before we discuss the topics covered in this book, we mention a few aspects of
the MCDM field which we do not discuss here. Because of the large amount of
research and publications produced in the MCDM field during the years, we
have limited our review. We have mostly restricted our discussion to problems
involving continuous problems, although some chapters include some exten-
sions to discrete problems, as well. However, one has to mention that because
the multiattribute or multiple criteria decision analysis methods have been
developed for problems involving a discrete set of solution alternatives, they
can directly be used for analyzing the final population of an EMO algorithm.
In this way, there is a clear link between the two fields. Another topic not cov-
ered here is group decision making. This refers to situations where we have
several DMs with different preferences. Instead, we assume that we have a
single DM or a unanimous group of DMs involved.

We have divided the contents of this book into five parts. The first part is
devoted to the basics of multiobjective optimization and introduces in three
chapters the main methods and ideas developed in the field of nonlinear mul-
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tiobjective optimization on the MCDM side (including both noninteractive
and interactive approaches) and on the EMO side. This part lays a founda-
tion for the rest of the book and should also allow newcomers to the field
to get familiar with the topic. The second part introduces in four chapters
recent developments in considering preference information or creating inter-
active methods. Approaches with both MCDM and EMO origin as well as
their hybrids are included. The third part concentrates with Chap. 8 and 9
on visualization, both for individual solution candidates and the whole sets of
Pareto optimal solutions. In Chap. 10-13 (Part Four), implementation issues
including meta-modelling, parallel approaches, and software are of interest. In
addition, various real-world applications are described in order to give some
idea of the wide spectrum of disciplines and problems that can benefit from
multiobjective optimization. Finally, in the last three chapters forming Part
Five, some relevant topics including approximation quality in the EMO ap-
proaches and learning perspectives in decision making are studied. The last
chapter points to some future challenges and encourages further research in
the field. All 16 chapters matured during the 2006 Dagstuhl seminar. In par-
ticular, the last six chapters are outcomes of active working groups formed
during the seminar.

7 Main Terminology and Notations Used

In order to avoid repeating basic concepts and problem formulations in each
chapter, we present them here. We handle multiobjective optimization prob-
lems of the form

minimize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S

(1)

involving k (≥ 2) conflicting objective functions fi : Rn → R that we want
to minimize simultaneously. The decision (variable) vectors x = (x1, x2, . . . ,
xn)T belong to the nonempty feasible region S ⊂ Rn. In this general problem
formulation we do not fix the types of constraints forming the feasible region.
Objective vectors are images of decision vectors and consist of objective (func-
tion) values z = f(x) = (f1(x), f2(x), . . . , fk(x))T . Furthermore, the image
of the feasible region in the objective space is called a feasible objective region
Z = f(S).

In multiobjective optimization, objective vectors are regarded as optimal
if none of their components can be improved without deterioration to at least
one of the other components. More precisely, a decision vector x′ ∈ S is called
Pareto optimal if there does not exist another x ∈ S such that fi(x) ≤ fi(x′)
for all i = 1, . . . , k and fj(x) < fj(x′) for at least one index j. The set of
Pareto optimal decision vectors can be denoted by P (S). Correspondingly,
an objective vector is Pareto optimal if the corresponding decision vector is
Pareto optimal and the set of Pareto optimal objective vectors can be denoted
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by P (Z). The set of Pareto optimal solutions is a subset of the set of weakly
Pareto optimal solutions. A decision vector x′ ∈ S is weakly Pareto optimal if
there does not exist another x ∈ S such that fi(x) < fi(x′) for all i = 1, . . . , k.
As above, here we can also denote two sets corresponding to decision and
objective spaces by WP (S) and WP (Z), respectively.

The ranges of the Pareto optimal solutions in the feasible objective region
provide valuable information about the problem considered if the objective
functions are bounded over the feasible region. Lower bounds of the Pareto
optimal set are available in the ideal objective vector z� ∈ Rk. Its components
z�

i are obtained by minimizing each of the objective functions individually
subject to the feasible region. A vector strictly better than z� can be called a
utopian objective vector z��. In practice, we set z��

i = z�
i − ε for i = 1, . . . , k,

where ε is some small positive scalar.
The upper bounds of the Pareto optimal set, that is, the components of

a nadir objective vector znad, are usually difficult to obtain. Unfortunately,
there exists no constructive way to obtain the exact nadir objective vector for
nonlinear problems. It can be estimated using a payoff table but the estimate
may be unreliable.

Because vectors cannot be ordered completely, all the Pareto optimal so-
lutions can be regarded as equally desirable in the mathematical sense and
we need a decision maker (DM) to identify the most preferred one among
them. The DM is a person who can express preference information related to
the conflicting objectives and we assume that less is preferred to more in each
objective for her/him.

Besides a DM, we usually also need a so-called analyst to take part in the
solution process. By an analyst we mean a person or a computer program
responsible for the mathematical side of the solution process. The analyst
may be, for example, responsible for selecting the appropriate method for
optimization.
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The topics covered in this book are wide ranging; from presenting the
basics of multiobjective optimization to advanced topics of incorporating di-
verse interactive features in multiobjective optimization and from practical
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real-world applications to software and visualization issues as well as vari-
ous perspectives highlighting relevant research issues. With these contents,
hopefully, the book remains useful to both beginners and current researchers
including experts. Besides the coverage of the topics, this book will also re-
main a milestone achievement in the field of multiobjective optimization for
another reason. This book is the first concrete approach in bringing two paral-
lel fields of multiobjective optimization together. The 16 chapters of this book
are contributed by 19 EMO and 22 MCDM researchers. Of the 16 chapters,
six are written by a mix of EMO and MCDM researchers and all 16 chapters
have been reviewed by at least one EMO and one MCDM researcher. We shall
consider our efforts worthwhile if more such collaborative tasks are pursued in
the coming years to develop hybrid ideas by sharing the strengths of different
approaches.

June 2008 Jürgen Branke,
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