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Haskell is a purely functional language that allows programmers to rapidly develop

clear, concise and correct software. The language has grown in popularity in recent

years, both in teaching and in industry. This book is based on the author’s experience of

teaching Haskell for more than 20 years. All concepts are explained from first principles

and no programming experience is required, making this book accessible to a broad

spectrum of readers. While Part I focuses on basic concepts, Part II introduces the reader

to more advanced topics.

This new edition has been extensively updated and expanded to include recent and

more advanced features of Haskell, new examples and exercises, selected solutions,

and freely downloadable lecture slides and code. The presentation is clean and simple,

while also being fully compliant with the latest version of the language, including recent

changes concerning applicative, monadic, foldable and traversable types.

Graham Hutton is Professor of Computer Science at the University of Nottingham.

He has taught Haskell to thousands of students and received numerous best lecturer

awards. Hutton has served as an editor of the Journal of Functional Programming, chair
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Foreword

It is nearly a century ago that Alonzo Church introduced the lambda calculus,

and over half a century ago that John McCarthy introduced Lisp, the world’s

second oldest programming language and the first functional language based

on the lambda calculus. By now, every major programming language including

JavaScript, C++, Swift, Python, PHP, Visual Basic, Java, . . . has support for

lambda expressions or anonymous higher-order functions.

As with any idea that becomes mainstream, inevitably the underlying founda-

tions and principles get watered down or forgotten. Lisp allowed mutation, yet

today many confuse functions as first-class citizens with immutability. At the

same time, other effects such as exceptions, reflection, communication with the

outside world, and concurrency go unmentioned. Adding recursion in the form

of feedback-loops to pure combinational circuits lets us implement mutable state

via flip-flops. Similarly, using one effect such as concurrency or input/output we

can simulate other effects such as mutability. John Hughes famously stated in

his classic paper Why Functional Programming Matters that we cannot make

a language more powerful by eliminating features. To that, we add that often

we cannot even make a language less powerful by removing features. In this

book, Graham demonstrates convincingly that the true value of functional pro-

gramming lies in leveraging first-class functions to achieve compositionality and

equational reasoning. Or in Graham’s own words, “functional programming can

be viewed as a style of programming in which the basic method of computation

is the application of functions to arguments”. These functions do not necessarily

have to be pure or statically typed in order to realise the simplicity, elegance,

and conciseness of expression that we get from the functional style.

While you can code like a functional hacker in a plethora of languages, a

semantically pure and lazy, and syntactically lean and terse language such as

Haskell is still the best way to learn how to think like a fundamentalist. Based

upon decades of teaching experience, and backed by an impressive stream of re-

search papers, in this book Graham gently guides us through the whole gambit of

key functional programming concepts such as higher-order functions, recursion,

list comprehensions, algebraic datatypes and pattern matching. The book does

not shy away from more advanced concepts. If you are still confused by the n-th

blog post that attempts to explain monads, you are in the right place. Gently

starting with the IO monad, Graham progresses from functors to applicatives

using many concrete examples. By the time he arrives at monads, every reader

will feel that they themselves could have come up with the concept of a monad as

a generic pattern for composing functions with effects. The chapter on monadic
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xiv Foreword

parsers brings everything together in a compelling use-case of parsing arithmetic

expressions in the implementation of a simple calculator.

This new edition not only adds many more concrete examples of concepts

introduced throughout the book, it also introduces the novel Haskell concepts of

foldable and traversable types. Readers familiar with object-oriented languages

routinely use iterables and visitors to enumerate over all values in a container,

or respectively to traverse complex data structures. Haskell’s higher-kinded type

classes allow for a very concise and abstract treatment of these concepts by means

of the Foldable and Traversable classes. Last but not least, the final chapters of

the book give an in-depth overview of lazy evaluation and equational reasoning

to prove and derive programs. The capstone chapter on calculating compilers

especially appeals to me because it touches a topic that has had my keen interest

for many decades, ever since my own PhD thesis on the same topic.

While there are plenty of alternative textbooks on Haskell in particular and

functional programming in general, Graham’s book is unique amongst all of these

in that it uses Haskell simply as a tool for thought, and never attempts to sell

Haskell or functional programming as a silver bullet that magically solves all

programming problems. It focuses on elegant and concise expression of intent

and thus makes a strong case of how pure and lazy functional programming is

an intelligible medium for efficiently reasoning about algorithms at a high level

of abstraction. The skills you acquire by studying this book will make you a

much better programmer no matter what language you use to actually program

in. In the past decade, using the first edition of this book I have taught many

tens of thousands of students how to juggle with code. With this new edition, I

am looking forward to extending this streak for at least another 10 years.

Erik Meijer
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Preface

What is this book?

Haskell is a purely functional language that allows programmers to rapidly de-

velop software that is clear, concise and correct. The book is aimed at a broad

spectrum of readers who are interested in learning the language, including profes-

sional programmers, university students and high-school students. However, no

programming experience is required or assumed, and all concepts are explained

from first principles with the aid of carefully chosen examples and exercises. Most

of the material in the book should be accessible to anyone over the age of around

sixteen with a reasonable aptitude for scientific ideas.

How is it structured?

The book is divided into two parts. Part I introduces the basic concepts of pure

programming in Haskell and is structured around the core features of the lan-

guage, such as types, functions, list comprehensions, recursion and higher-order

functions. Part II covers impure programming and a range of more advanced

topics, such as monads, parsing, foldable types, lazy evaluation and reasoning

about programs. The book contains many extended programming examples, and

each chapter includes suggestions for further reading and a series of exercises.

The appendices provide solutions to selected exercises, and a summary of some

of the most commonly used definitions from the Haskell standard prelude.

What is its approach?

The book aims to teach the key concepts of Haskell in a clean and simple manner.

As this is a textbook rather than a reference manual we do not attempt to cover

all aspects of the language and its libraries, and we sometimes choose to define

functions from first principles rather than using library functions. As the book

progresses the level of generality that is used is gradually increased. For example,

in the beginning most of the functions that are used are specialised to simple

types, and later on we see how many functions can be generalised to larger classes

of types by exploiting particular features of Haskell.

How should it be read?

The basic material in part I can potentially be worked through fairly quickly,

particularly for those with some prior programming experience, but additional

time and effort may be required to absorb some of material in part II. Readers

are recommended to work through all the material in part I, and then select
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xvi Preface

appropriate material from part II depending on their own interests. It is vital to

write Haskell code for yourself as you go along, as you can’t learn to program

just by reading. Try out the examples from each chapter as you proceed, and

solve the exercises for each chapter before checking the solutions.

What’s new in this edition?

The book is an extensively revised and expanded version of the first edition. It has

been extended with new chapters that cover more advanced aspects of Haskell,

new examples and exercises to further reinforce the concepts being introduced,

and solutions to selected exercises. The remaining material has been completely

reworked in response to changes in the language and feedback from readers. The

new edition uses the Glasgow Haskell Compiler (GHC), and is fully compati-

ble with the latest version of the language, including recent changes concerning

applicative, monadic, foldable and traversable types.

How can it be used for teaching?

An introductory course might cover all of part I and a few selected topics from

part II; my first-year course covers chapters 1–9, 10 and 15. An advanced course

might start with a refresher of part I, and cover a selection of more advanced

topics from part II; my second-year course focuses on chapters 12 and 16, and is

taught interactively on the board. The website for the book provides a range of

supporting materials, including PowerPoint slides and Haskell code for the ex-

tended examples. Instructors can obtain a large collection of exams and solutions

based on material in the book from solutions@cambridge.org.
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