
Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Programming in Haskell

Second Edition

Haskell is a purely functional language that allows programmers to rapidly develop

clear, concise and correct software. The language has grown in popularity in recent

years, both in teaching and in industry. This book is based on the author’s experience of

teaching Haskell for more than 20 years. All concepts are explained from first principles

and no programming experience is required, making this book accessible to a broad

spectrum of readers. While Part I focuses on basic concepts, Part II introduces the reader

to more advanced topics.

This new edition has been extensively updated and expanded to include recent and

more advanced features of Haskell, new examples and exercises, selected solutions,

and freely downloadable lecture slides and code. The presentation is clean and simple,

while also being fully compliant with the latest version of the language, including recent

changes concerning applicative, monadic, foldable and traversable types.

Graham Hutton is Professor of Computer Science at the University of Nottingham.

He has taught Haskell to thousands of students and received numerous best lecturer

awards. Hutton has served as an editor of the Journal of Functional Programming, chair

of the Haskell Symposium and the International Conference on Functional Program-

ming, vice-chair of the ACM Special Interest Group on Programming Languages, and

he is an ACM Distinguished Scientist.

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Programming in Haskell

Second Edition

GRAHAM HUTTON

University of Nottingham

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi - 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of

education, learning, and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781316626221

10.1017/9781316784099

© Graham Hutton 2007, 2016

This publication is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without the written

permission of Cambridge University Press.

First published 2007

Second edition 2016

Printed in the United Kingdom by Clays, St Ives plc in 2016

A catalogue record for this publication is available from the British Library

ISBN 978-1-316-62622-1 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy

of URLs for external or third-party Internet Web sites referred to in this publication,

and does not guarantee that any content on such Web sites is, or will remain,

accurate or appropriate.

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

For Annette, Callum and Tom

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents

Foreword page xiii

Preface xv

Part I Basic Concepts 1

1 Introduction 3

1.1 Functions 3

1.2 Functional programming 4

1.3 Features of Haskell 6

1.4 Historical background 8

1.5 A taste of Haskell 9

1.6 Chapter remarks 13

1.7 Exercises 13

2 First steps 14

2.1 Glasgow Haskell Compiler 14

2.2 Installing and starting 14

2.3 Standard prelude 15

2.4 Function application 16

2.5 Haskell scripts 17

2.6 Chapter remarks 21

2.7 Exercises 21

3 Types and classes 22

3.1 Basic concepts 22

3.2 Basic types 23

3.3 List types 25

3.4 Tuple types 26

3.5 Function types 27

3.6 Curried functions 27

3.7 Polymorphic types 29

3.8 Overloaded types 30

3.9 Basic classes 31

3.10 Chapter remarks 36

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

viii Contents

3.11 Exercises 36

4 Defining functions 38

4.1 New from old 38

4.2 Conditional expressions 38

4.3 Guarded equations 39

4.4 Pattern matching 40

4.5 Lambda expressions 42

4.6 Operator sections 44

4.7 Chapter remarks 45

4.8 Exercises 45

5 List comprehensions 47

5.1 Basic concepts 47

5.2 Guards 48

5.3 The zip function 50

5.4 String comprehensions 51

5.5 The Caesar cipher 52

5.6 Chapter remarks 56

5.7 Exercises 57

6 Recursive functions 59

6.1 Basic concepts 59

6.2 Recursion on lists 61

6.3 Multiple arguments 63

6.4 Multiple recursion 64

6.5 Mutual recursion 65

6.6 Advice on recursion 66

6.7 Chapter remarks 71

6.8 Exercises 71

7 Higher-order functions 73

7.1 Basic concepts 73

7.2 Processing lists 74

7.3 The foldr function 76

7.4 The foldl function 79

7.5 The composition operator 81

7.6 Binary string transmitter 82

7.7 Voting algorithms 86

7.8 Chapter remarks 89

7.9 Exercises 89

8 Declaring types and classes 92

8.1 Type declarations 92

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents ix

8.2 Data declarations 93

8.3 Newtype declarations 95

8.4 Recursive types 96

8.5 Class and instance declarations 99

8.6 Tautology checker 101

8.7 Abstract machine 106

8.8 Chapter remarks 108

8.9 Exercises 109

9 The countdown problem 111

9.1 Introduction 111

9.2 Arithmetic operators 112

9.3 Numeric expressions 113

9.4 Combinatorial functions 114

9.5 Formalising the problem 115

9.6 Brute force solution 115

9.7 Performance testing 116

9.8 Combining generation and evaluation 117

9.9 Exploiting algebraic properties 118

9.10 Chapter remarks 119

9.11 Exercises 120

Part II Going Further 121

10 Interactive programming 123

10.1 The problem 123

10.2 The solution 124

10.3 Basic actions 125

10.4 Sequencing 126

10.5 Derived primitives 127

10.6 Hangman 128

10.7 Nim 129

10.8 Life 133

10.9 Chapter remarks 137

10.10 Exercises 137

11 Unbeatable tic-tac-toe 139

11.1 Introduction 139

11.2 Basic declarations 140

11.3 Grid utilities 141

11.4 Displaying a grid 142

11.5 Making a move 143

11.6 Reading a number 144

11.7 Human vs human 144

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

x Contents

11.8 Game trees 145

11.9 Pruning the tree 147

11.10 Minimax algorithm 148

11.11 Human vs computer 150

11.12 Chapter remarks 151

11.13 Exercises 151

12 Monads and more 153

12.1 Functors 153

12.2 Applicatives 157

12.3 Monads 164

12.4 Chapter remarks 174

12.5 Exercises 175

13 Monadic parsing 177

13.1 What is a parser? 177

13.2 Parsers as functions 177

13.3 Basic definitions 179

13.4 Sequencing parsers 179

13.5 Making choices 181

13.6 Derived primitives 183

13.7 Handling spacing 186

13.8 Arithmetic expressions 187

13.9 Calculator 191

13.10 Chapter remarks 194

13.11 Exercises 194

14 Foldables and friends 196

14.1 Monoids 196

14.2 Foldables 200

14.3 Traversables 206

14.4 Chapter remarks 210

14.5 Exercises 210

15 Lazy evaluation 212

15.1 Introduction 212

15.2 Evaluation strategies 213

15.3 Termination 216

15.4 Number of reductions 217

15.5 Infinite structures 219

15.6 Modular programming 220

15.7 Strict application 223

15.8 Chapter remarks 226

15.9 Exercises 226

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Contents xi

16 Reasoning about programs 228

16.1 Equational reasoning 228

16.2 Reasoning about Haskell 229

16.3 Simple examples 230

16.4 Induction on numbers 231

16.5 Induction on lists 234

16.6 Making append vanish 238

16.7 Compiler correctness 241

16.8 Chapter remarks 246

16.9 Exercises 246

17 Calculating compilers 249

17.1 Introduction 249

17.2 Syntax and semantics 249

17.3 Adding a stack 250

17.4 Adding a continuation 252

17.5 Defunctionalising 254

17.6 Combining the steps 257

17.7 Chapter remarks 261

17.8 Exercises 261

Appendix A Selected solutions 263

A.1 Introduction 263

A.2 First steps 264

A.3 Types and classes 265

A.4 Defining functions 266

A.5 List comprehensions 267

A.6 Recursive functions 267

A.7 Higher-order functions 268

A.8 Declaring types and classes 269

A.9 The countdown problem 270

A.10 Interactive programming 270

A.11 Unbeatable tic-tac-toe 271

A.12 Monads and more 272

A.13 Monadic parsing 273

A.14 Foldables and friends 274

A.15 Lazy evaluation 275

A.16 Reasoning about programs 276

A.17 Calculating compilers 279

Appendix B Standard prelude 280

B.1 Basic classes 280

B.2 Booleans 281

B.3 Characters 282

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xii Contents

B.4 Strings 283

B.5 Numbers 283

B.6 Tuples 284

B.7 Maybe 284

B.8 Lists 285

B.9 Functions 287

B.10 Input/output 287

B.11 Functors 288

B.12 Applicatives 289

B.13 Monads 290

B.14 Alternatives 290

B.15 MonadPlus 291

B.16 Monoids 292

B.17 Foldables 294

B.18 Traversables 297

Bibliography 298

Index 300

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Foreword

It is nearly a century ago that Alonzo Church introduced the lambda calculus,

and over half a century ago that John McCarthy introduced Lisp, the world’s

second oldest programming language and the first functional language based

on the lambda calculus. By now, every major programming language including

JavaScript, C++, Swift, Python, PHP, Visual Basic, Java, . . . has support for

lambda expressions or anonymous higher-order functions.

As with any idea that becomes mainstream, inevitably the underlying founda-

tions and principles get watered down or forgotten. Lisp allowed mutation, yet

today many confuse functions as first-class citizens with immutability. At the

same time, other effects such as exceptions, reflection, communication with the

outside world, and concurrency go unmentioned. Adding recursion in the form

of feedback-loops to pure combinational circuits lets us implement mutable state

via flip-flops. Similarly, using one effect such as concurrency or input/output we

can simulate other effects such as mutability. John Hughes famously stated in

his classic paper Why Functional Programming Matters that we cannot make

a language more powerful by eliminating features. To that, we add that often

we cannot even make a language less powerful by removing features. In this

book, Graham demonstrates convincingly that the true value of functional pro-

gramming lies in leveraging first-class functions to achieve compositionality and

equational reasoning. Or in Graham’s own words, “functional programming can

be viewed as a style of programming in which the basic method of computation

is the application of functions to arguments”. These functions do not necessarily

have to be pure or statically typed in order to realise the simplicity, elegance,

and conciseness of expression that we get from the functional style.

While you can code like a functional hacker in a plethora of languages, a

semantically pure and lazy, and syntactically lean and terse language such as

Haskell is still the best way to learn how to think like a fundamentalist. Based

upon decades of teaching experience, and backed by an impressive stream of re-

search papers, in this book Graham gently guides us through the whole gambit of

key functional programming concepts such as higher-order functions, recursion,

list comprehensions, algebraic datatypes and pattern matching. The book does

not shy away from more advanced concepts. If you are still confused by the n-th

blog post that attempts to explain monads, you are in the right place. Gently

starting with the IO monad, Graham progresses from functors to applicatives

using many concrete examples. By the time he arrives at monads, every reader

will feel that they themselves could have come up with the concept of a monad as

a generic pattern for composing functions with effects. The chapter on monadic

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xiv Foreword

parsers brings everything together in a compelling use-case of parsing arithmetic

expressions in the implementation of a simple calculator.

This new edition not only adds many more concrete examples of concepts

introduced throughout the book, it also introduces the novel Haskell concepts of

foldable and traversable types. Readers familiar with object-oriented languages

routinely use iterables and visitors to enumerate over all values in a container,

or respectively to traverse complex data structures. Haskell’s higher-kinded type

classes allow for a very concise and abstract treatment of these concepts by means

of the Foldable and Traversable classes. Last but not least, the final chapters of

the book give an in-depth overview of lazy evaluation and equational reasoning

to prove and derive programs. The capstone chapter on calculating compilers

especially appeals to me because it touches a topic that has had my keen interest

for many decades, ever since my own PhD thesis on the same topic.

While there are plenty of alternative textbooks on Haskell in particular and

functional programming in general, Graham’s book is unique amongst all of these

in that it uses Haskell simply as a tool for thought, and never attempts to sell

Haskell or functional programming as a silver bullet that magically solves all

programming problems. It focuses on elegant and concise expression of intent

and thus makes a strong case of how pure and lazy functional programming is

an intelligible medium for efficiently reasoning about algorithms at a high level

of abstraction. The skills you acquire by studying this book will make you a

much better programmer no matter what language you use to actually program

in. In the past decade, using the first edition of this book I have taught many

tens of thousands of students how to juggle with code. With this new edition, I

am looking forward to extending this streak for at least another 10 years.

Erik Meijer

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

Preface

What is this book?

Haskell is a purely functional language that allows programmers to rapidly de-

velop software that is clear, concise and correct. The book is aimed at a broad

spectrum of readers who are interested in learning the language, including profes-

sional programmers, university students and high-school students. However, no

programming experience is required or assumed, and all concepts are explained

from first principles with the aid of carefully chosen examples and exercises. Most

of the material in the book should be accessible to anyone over the age of around

sixteen with a reasonable aptitude for scientific ideas.

How is it structured?

The book is divided into two parts. Part I introduces the basic concepts of pure

programming in Haskell and is structured around the core features of the lan-

guage, such as types, functions, list comprehensions, recursion and higher-order

functions. Part II covers impure programming and a range of more advanced

topics, such as monads, parsing, foldable types, lazy evaluation and reasoning

about programs. The book contains many extended programming examples, and

each chapter includes suggestions for further reading and a series of exercises.

The appendices provide solutions to selected exercises, and a summary of some

of the most commonly used definitions from the Haskell standard prelude.

What is its approach?

The book aims to teach the key concepts of Haskell in a clean and simple manner.

As this is a textbook rather than a reference manual we do not attempt to cover

all aspects of the language and its libraries, and we sometimes choose to define

functions from first principles rather than using library functions. As the book

progresses the level of generality that is used is gradually increased. For example,

in the beginning most of the functions that are used are specialised to simple

types, and later on we see how many functions can be generalised to larger classes

of types by exploiting particular features of Haskell.

How should it be read?

The basic material in part I can potentially be worked through fairly quickly,

particularly for those with some prior programming experience, but additional

time and effort may be required to absorb some of material in part II. Readers

are recommended to work through all the material in part I, and then select

www.cambridge.org/9781316626221
www.cambridge.org


Cambridge University Press
978-1-316-62622-1 — Programming in Haskell
Graham Hutton 
Frontmatter
More Information

www.cambridge.org© in this web service Cambridge University Press

xvi Preface

appropriate material from part II depending on their own interests. It is vital to

write Haskell code for yourself as you go along, as you can’t learn to program

just by reading. Try out the examples from each chapter as you proceed, and

solve the exercises for each chapter before checking the solutions.

What’s new in this edition?

The book is an extensively revised and expanded version of the first edition. It has

been extended with new chapters that cover more advanced aspects of Haskell,

new examples and exercises to further reinforce the concepts being introduced,

and solutions to selected exercises. The remaining material has been completely

reworked in response to changes in the language and feedback from readers. The

new edition uses the Glasgow Haskell Compiler (GHC), and is fully compati-

ble with the latest version of the language, including recent changes concerning

applicative, monadic, foldable and traversable types.

How can it be used for teaching?

An introductory course might cover all of part I and a few selected topics from

part II; my first-year course covers chapters 1–9, 10 and 15. An advanced course

might start with a refresher of part I, and cover a selection of more advanced

topics from part II; my second-year course focuses on chapters 12 and 16, and is

taught interactively on the board. The website for the book provides a range of

supporting materials, including PowerPoint slides and Haskell code for the ex-

tended examples. Instructors can obtain a large collection of exams and solutions

based on material in the book from solutions@cambridge.org.

Acknowledgements

I am grateful to the University of Nottingham for providing a sabbatical to pro-

duce this new edition; Thorsten Altenkirch, Venanzio Capretta, Henrik Nilsson

and other members of the FP lab for our many enjoyable discussions; Iván Pérez

Domı́nguez for useful comments on a number of chapters; the students and tutors

on all of my Haskell courses for their feedback; Clare Dennison, David Tranah

and Abigail Walkington at CUP for their editorial work; the GHC team for pro-

ducing such a great compiler; and finally, Catherine and Ian Hutton for getting

me started in computing all those years ago.

Many thanks also to Ki Yung Ahn, Bob Davison, Philip Hölzenspies and Neil

Mitchell for providing detailed comments on the first edition, and to the following

for pointing our errors and typos: Paul Brown, Sergio Queiroz de Medeiros,

David Duke, Robert Fabian, Ben Fleis, Robert Furber, Andrew Kish, Tomoyas

Kobayashi, Florian Larysch, Carlos Oroz, Douglas Philips, Bruce Turner, Gregor

Ulm, Marco Valtorta and Kazu Yamamoto. All of these comments have been

taken into account when preparing the new edition.

Graham Hutton

www.cambridge.org/9781316626221
www.cambridge.org

