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Background of This Book

Chaos theory, once considered to be the third revolution in physics following rela-
tivity theory and quantum mechanics, has been studied extensively in the past thirty
years. A lot of chaotic phenomena have been found and enormous mathematical
strides have been taken. Nowadays, it has been agreed by scientists and engineers
that chaos is ubiquitous in natural sciences and social sciences, such as in physics,
chemistry, mathematics, biology, ecology, physiology, economics, and so on. Wher-
ever nonlinearity exists, chaos may be found. For a long time, chaos was thought of
as a harmful behavior that could decrease the performance of a system and there-
fore should be avoided when the system is running. One remarkable feature of a
chaotic system distinguishing itself from other nonchaotic systems is that the sys-
tem is extremely sensitive to initial conditions. Any tiny perturbation of the initial
conditions will significantly alter the long-term dynamics of the system. This fact
means that when one wants to control a chaotic system one must make sure that the
measurement of the needed signals is absolutely precise. Otherwise any attempt of
controlling chaos would make the dynamics of the system go to an unexpected state.
With the development of chaos theory and practice in engineering, more and more
people want to know the answers to the following questions:

(1) Can chaos be controlled?
(2) Can chaos be utilized?
(3) Can two chaotic systems be in resonance as in the case of periodic ones?
(4) If the answer to the second question is positive, then how to generate chaos in a

nonchaotic system?

These questions have been partly answered by Ott, Pecora, and Chen in the
1990s, which has led a surge in the application study of chaos. From then on, a
new research area, chaos control, including suppression, utilization, and generation
of chaotic phenomena, came into being. Among these studies, three aspects attract
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more attention; that is, stabilization of chaos, synchronization of chaos, and anti-
control of chaos.3

Why This Book?

Although several monographs on controlling chaos have been published, the present
book has unique features which distinguish it from others.

First, the types of chaotic systems studied in this monograph are rather extensive.
From the point of view of physics, readers can find not only well-known chaotic
systems, such as the Lorenz system, the Rössler system, and the Hénon map, but
also some new chaotic systems which appeared in recent years, such as the Liu
hyperchaotic system, the Liao chaotic system, the Chen chaotic system, and the Lü
chaotic system. From the point of view of models, one can find difference equations,
ordinary differential equations, and time-delayed differential equations in this book,
which are the main mathematical models describing chaos.

Second, since the monograph is a summary of the authors’ previous research,
the methods proposed here for stabilizing, synchronizing, and generating chaos in a
great degree benefit from the theory of nonlinear control systems, and are more ad-
vanced than that appear in other introductory books. One example is that in order to
stabilize a chaotic system to one of its equilibria, an inverse optimal control method
is developed in this book. The controller designed according to this method not only
stabilizes the system but also optimizes a meaningful cost functional. Therefore, the
difficulty of solving the Hamilton–Jacobi–Bellman (HJB) equation is avoided. An-
other example is that in order to synchronize two discrete-time chaotic systems, the
exact linearization method is used which provides a unified framework for controller
design for both continuous-time and discrete-time chaotic systems. Yet a third ex-
ample is that in order to chaotify a continuous-time nonchaotic system, a kind of
impulsive control method is developed. A mathematical proof shows that the chaos
induced by this method satisfies Devaney’s definition of chaos.

Last but not least, some rather unique contributions are included in this mono-
graph. One notable feature is the combination of fuzzy logic and chaos. Besides
the famous Takagi–Sugeno (T–S) fuzzy model, a novel model, the fuzzy hyperbolic
model (FHM), which was initially proposed by one of the authors and whose merits
in modeling and control have been illustrated in our book4 earlier, is also included
in this book. In this monograph we combine chaos and fuzzy logic in many aspects:
the T–S fuzzy model is used in Chaps. 4 and 8 for suppressing, modeling, and syn-
chronizing chaotic systems, respectively; and the chaotification of the discrete-time
FHM and the continuous-time FHM is studied in Chap. 9. Another notable feature
is that the methods proposed in this monograph can be applied to a wide class of
chaotic systems rather than a specific chaotic system. For example, in Chap. 4 a
systematic method is proposed for stabilizing discrete-time chaotic systems and in

3 Anticontrol of chaos is also known as chaotification. In this book, they are synonymous.
4 H. Zhang and D. Liu, Fuzzy Modeling and Fuzzy Control. Birkhäuser, Boston, 2006.
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Chap. 5 a method based on nonlinear geometric control theory is proposed which
provides a systematic procedure to synchronize two or more chaotic systems.

The Content of This Book

The whole book involves nine chapters. As indicated by the title of the book, the
main content of the book is composed of three parts: suppressing chaos, synchro-
nizing chaos, and generating chaos. To make the book self contained, additional
materials are added to provide readers with a brief review of the history of chaos
control and some necessary mathematical preliminaries on dynamical systems.

In Chap. 1, we briefly review the history of chaos theory and chaos control.
We first review the history of chaos by following the important events in the de-
velopment of chaos theory. We start the review from the last decade of the 19th
century to the 1980s in the 20th century. The work of many distinguished scientists,
such as Poincaré, Birkhoff, van de Pol, Littlewood, Andoronov, Lorenz, Smale, Kol-
mogorov, Arnol’d, Feigenbaum, Li, Yorke, and May, is summarized. After that, we
review the development of chaos control from three different aspects, i.e., from the
points of view of suppression, synchronization, and chaotification. For each aspect,
not only the main methods are introduced but also the ideas behind those meth-
ods are mentioned. Some representative methods are introduced, such as the Ott–
Grebogi–Yorke (OGY) method and its extensions, the entrainment and migration
method, the time-delay feedback method, and some state feedback methods. Chaos
synchronization is introduced according to different synchronization patterns, such
as complete synchronization, phase synchronization, lag synchronization, and gen-
eralized synchronization. Chaotification was proposed by Chen in 1997 and has
attracted a lot of attention since then. Methods for chaotification will be reviewed,
including the state feedback method, the state delay feedback method, the impulsive
control method, and the Smale horseshoe method.

In Chap. 2, necessary mathematical background materials on nonlinear dynam-
ics and chaos are introduced. Dynamical system theory is a powerful tool for chaos
study. For the completeness of the book we provide a brief introduction to nonlin-
ear dynamical systems. This chapter is rather difficult for readers with engineering
background since many mathematical concepts, definitions, and theorems are in-
volved. The content of this chapter includes two parts. Some concepts and defini-
tions about nonlinear ordinary equations and dynamical systems are introduced first,
such as the concepts of flow, fixed point, equilibrium state, invariant set, attractor,
stable (unstable) manifold, Floquet index, Lyapunov exponents, and Smale horse-
shoe. We also state some important theorems, such as the theorem about existence
and uniqueness of solutions, the Hartman-Grobman theorems, and the Lyapunov
stability theorems. Some concepts and theorems about retarded functional differen-
tial equations (RFDEs) are introduced next, such as the definitions of solutions and
the initial problem, existence and uniqueness of solutions, and stability of solutions.
After that, some stability criteria for RFDEs are introduced.
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In Chap. 3, the entrainment and migration control of chaos is introduced. It is usu-
ally the case that several attractors coexist in a complex dynamical system. These
attractors can be stable or unstable. When a key parameter is changed the attractor
may be altered either in appearance or in spatial position, or in both. One of the goals
of chaos control is to steer the system’s trajectory to the expected state. The back-
ground of entrainment and migration control is based on two facts: a multi-attractor
chaotic system is sensitive to both initial conditions and parameters and each sta-
ble attractor has its basin of attraction. After introducing the basics of entrainment
and migration control, a modified entrainment and migration control method: the
open-plus-closed-loop (OPCL) control method, is introduced. The OPCL method is
an effective method for polynomial chaotic systems when the order of the polyno-
mial is less than two. To overcome this restriction, based on the OPCL method, we
propose an improved method, the open-plus-nonlinear-closed-loop (OPNCL) con-
trol method. The OPNCL method can be applied to polynomial chaotic systems
with arbitrary order and greatly improves the control accuracy. Finally, the OP-
NCL method is employed for controlling continuous-time polynomial chaotic sys-
tems and discrete-time polynomial chaotic systems. By simulating the Chua circuit,
the logistic map, and the Hénon map, we validate the effectiveness of the OPNCL
method.

The parameters of a chaotic system play an important role, whose variation will
lead to completely different dynamics. Sometimes, we want to design a controller
which is optimal in a certain sense. However, it is a difficult task to solve the HJB
equation when one designs an optimal controller directly along the conventional
route. To solve the aforementioned problems, in Chap. 4, we focus on two kinds
of methods of suppressing chaos: the adaptive control method and the inverse op-
timal control method. We develop two new methods of parametric adaptive control
for a class of discrete-time chaotic systems and a class of continuous-time chaotic
systems with multiple parameters, respectively. The systems are assumed to be lin-
early parameterized in the adaptive control algorithm. Then, systems with nonlinear
distributed parameters and uncertain noise are considered. We apply the inverse op-
timal control method to stabilize a new four-dimensional chaotic system. The merit
of this approach is that it does not need to solve the complicated HJB equation.

In Chap. 5, the synchronization problems of both continuous-time systems and
discrete-time chaotic systems are studied. After introducing some necessary prelim-
inaries, a method is proposed to make the single output signal of the response system
synchronized with that of the drive system with a scalar controller. The method is
based on nonlinear geometric control theory and an exact linearization technique.
Then, this method is generalized to the case of multiple output signals. An adap-
tive method is also proposed to synchronize two different continuous-time chaotic
systems. Finally, for problems of synchronizing discrete-time chaotic systems with
parametric perturbations, an adaptive controller is designed. This method is based
on the theory of exact linearization of discrete-time systems. The methods devel-
oped in this chapter have a systematic procedure and can be used with a rather wide
class of chaotic systems.
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In Chap. 6, we study how to synchronize two identical or different chaotic sys-
tems by impulsive control methods. Impulsive control is an efficient method to deal
with dynamical systems which cannot be controlled by continuous control. Addi-
tionally, in the synchronization process, the response system receives information
from the drive system only at discrete time instants, which drastically reduces the
amount of synchronization information transmitted from the drive system to the re-
sponse system and makes this method more efficient in a great number of real-life
applications. We first study the complete synchronization of a class of chaotic sys-
tems and, after that, we develop synchronization methods for the unified systems
with channel time delay in the sense of practical stability. Then, robust synchroniza-
tion schemes are studied for the chaotic systems with parametric uncertainty and
parametric mismatch. Our goal is to develop practical impulsive control methods
for different synchronization schemes.

In engineering applications, time delays always exist, and parameters of the sys-
tem are inevitably perturbed by external disturbances. Moreover, the values of de-
lays and parameters are often unknown in advance. In some special cases, the struc-
ture or parameters of the drive system are even unknown in advance. In Chap. 7, we
study how to synchronize chaotic systems when time delay exists and the synchro-
nized systems have different structures. Synchronization methods are developed for
a class of delayed chaotic systems when the drive system and the response system
have the same structures but different parameters. After that, the problem of syn-
chronizing different chaotic systems is studied. Some concrete examples are pre-
sented to show how to design the controller. Based on that, a more general case,
synchronizing two different delayed chaotic neural networks with unknown param-
eters, is studied.

In recent years, fuzzy logic systems have received much attention from control
theorists as a powerful tool for nonlinear control. A motivation for using fuzzy sys-
tems and fuzzy control stems in part from the fact that they are particularly suitable
in industrial processes when the physical systems or qualitative criteria are too com-
plex to model and they have provided an efficient and effective way in the control of
complex uncertain nonlinear or ill-defined systems. Among various kinds of fuzzy
control or system methods, the T–S fuzzy system is widely accepted as a power-
ful tool for fuzzy control. Chap. 8 focuses on the modeling and synchronizing of
chaotic and hyperchaotic systems. We first introduce fuzzy modeling methods for
some classical chaotic systems via the T–S fuzzy models. Next, we model some hy-
perchaotic systems with T–S fuzzy models and then, based on these fuzzy models,
we develop an H∞ synchronization method for two different hyperchaotic systems.
Finally, the problem of synchronizing a class of time-delay chaotic systems based
on the T–S fuzzy model is considered.

As a reverse process of suppressing or eliminating chaotic behaviors in order to
reduce the complexity of an individual system or a coupled system, chaotification
aims at creating or enhancing the system’s complexity for some special applica-
tions. In recent years, many conventional control methods and special techniques
were applied to the chaotification of discrete-time dynamical systems or continuous-
time dynamical systems. However, most of them are based on the assumption that
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the analytical representations of the nonlinear dynamical systems to be chaotified
are known exactly. For an unknown or uncertain nonlinear dynamical system, the
above methods are ineffective. Chap. 9 is devoted to the chaotification of dynam-
ical systems which are originally nonchaotic. We develop a simple nonlinear state
feedback controller to chaotify the discrete-time FHM with uncertain parameters.
After that, we use an impulsive and nonlinear feedback control method to chaotify
the continuous-time FHM. We believe that if a nonchaotic system can be approxi-
mated by a fuzzy model with adequate accuracy, then the chaotifying controller of
the fuzzy model will also make the nonchaotic system chaotic. Finally, we chaotify
two classes of continuous-time linear systems via a sampled data control approach.
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