
Preface

Using stochastic differential equations (SDEs), we can successfully model sy-
stems that function in the presence of random perturbations. Such systems
are among the basic objects of modern control theory, signal processing and
filtering, physics, biology and chemistry, economics and finance, to mention
just a few. However the very importance acquired by SDEs lies, to a large
extent, in the strong connection they have with the equations of mathemati-
cal physics. It is well known that problems of mathematical physics involve
“damned dimensions”, often leading to severe difficulties in solving boundary
value problems. A way out is provided by the employment of probabilistic
representations together with Monte Carlo methods. As a result, a complex
multi-dimensional problem for partial differential equations (PDEs) reduces
to the Cauchy problem for a system of SDEs. The last system can natu-
rally be regarded as one-dimensional, since it contains only one independent
variable; it arises as a characteristic system of the considered problem for
PDEs. The importance of this approach, while enabling the reduction of a
multi-dimensional boundary value problem to the one-dimensional Cauchy
problem, cannot be underestimated for computational mathematics.

Two books:

Milstein G.N., Numerical Integration of Stochastic Differential Equations.
Kluwer, 1995 (English translation from Russian 1988),
Kloeden P.E. and Platen E., Numerical Solution of Stochastic Differential
Equations. Springer, 1992,

present a systematic treatment of mean-square and weak numerical schemes
for SDEs. These approximations represent two fundamental aspects in the
contemporary theory of numerical integration of SDEs. Mean-square methods
are useful for direct simulation of stochastic trajectories which, for instance,
can give information on general behavior of a stochastic model. They are the
basis for construction of weak methods which are important for many practical
applications. Weak methods are sufficient for evaluation of mean values and
solving problems of mathematical physics by the Monte Carlo technique, and
they are simpler than mean-square ones.
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In the present book, numerical integration of SDEs receives a large deve-
lopmental effort in two directions: a lot of new special schemes are constructed
for a number of stochastic systems which are important for applications and
for the first time numerical methods for SDEs in bounded domains are pro-
posed. The second part of the book is devoted to construction of stochastic
numerical algorithms for solving complicated problems for PDEs, both linear
and nonlinear.

The first two chapters contain essentially revised material of the previously
mentioned book by the first author, with broad supplements. For instance, a
number of effective numerical methods for systems with colored noise are in-
cluded in these chapters. Another example of the new material is construction
of fully implicit mean-square schemes for SDEs with multiplicative noise.

Many difficulties arise with realizing numerical methods for SDEs of a ge-
neral form. At the same time methods adapted to specific systems can be
more efficient than general methods. Very often fluctuations, which affect a
physical system, are small. Fortunately, as shown in Chap. 3, in the case of
stochastic systems with small noise, it is possible to construct special numeri-
cal methods. The errors of these methods are estimated in terms of products
hiεj , where h is the step-size of discretization and ε is a small noise parameter.
Usually, the global errors in these methods have the form O(hj +εkhl), where
j > l, k > 0. Thanks to the fact that the accuracy order l of such methods
is comparatively small, they are not too complicated, while due to the large
j and the small factor εk at hl, their errors are fairly low. This allows us to
construct effective (high-exactness) methods with low time-step order which
nevertheless have small errors.

In Chap. 4, specific methods for stochastic Hamiltonian systems and Lan-
gevin type equations are proposed. Stochastic Hamiltonian systems, like deter-
ministic Hamiltonian systems, possess the property of preserving symplectic
structure (symplecticness). For instance, Hamiltonian systems with additive
noise are a rather wide and important class of equations having this property.
It is well known from deterministic numerical analysis that an effective nu-
merical solution of deterministic Hamiltonian systems on long time intervals
requires symplectic methods. It turns out that symplectic methods for sto-
chastic Hamiltonian systems, which are proposed in the first part of Chap. 4,
have significant advantages over standard schemes for SDEs.

In the second part of Chap. 4 we construct special numerical methods (we
call them quasi-symplectic) for Langevin type equations which have wide-
spread occurrence in models from physics, chemistry, and biology. The propo-
sed methods are such that they degenerate to symplectic methods when the sy-
stem degenerates to a Hamiltonian one and their law of phase volume contrac-
tivity is close to the exact one. The presented numerical tests of both symplec-
tic and quasi-symplectic methods clearly demonstrate superiority of the pro-
posed methods over very long time intervals in comparison with standard ones.

Our probabilistic methods for solving boundary value problems ensure
that the proposed approximations of solutions of the corresponding SDEs be-
long to a bounded domain. Such mean-square approximations are considered
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in Chap. 5. A numerical method for simulation of an autonomous diffusion
process in a space bounded domain is based on a space discretization using a
random walk over small spheres. The algorithm gives points which are close to
the points of the real phase trajectory for SDEs. To realize the algorithm, the
exit point of the Wiener process from a d-dimensional ball has to be construc-
ted at each step. Due to independence of the first exit time and the first exit
point of the Wiener process from the ball, they can be simulated separately.
It is known that the exit point is distributed uniformly on the sphere, but
simulation of the exit time is a fairly laborious problem. Consequently, the
algorithm gives only the phase component of the approximate trajectory with-
out modelling the corresponding time component. The space-time point lies on
the d-dimensional lateral surface of a semicylinder with spherical base in the
(d+1)-dimensional semispace [t0, ∞)×Rd. The algorithm ensures smallness of
the phase increments at each step, but the nonsimulated time increments can
take arbitrary large values with some probability. “Ordinary” mean-square
methods from Chap. 1, intended to solve SDEs on a finite time interval, are
based on a time discretization. The space-time point, corresponding to an
“ordinary” one-step approximation constructed at a time point tk, lies on the
d-dimensional plane t = tk, which belongs to the (d+1)-dimensional semispace
[t0, ∞)×Rd. The “ordinary” mean-square methods give both time and phase
components of the approximate trajectory. They ensure smallness of time in-
crements at each step, but space increments can take arbitrary large values
with some probability. In Chap. 5 we also introduce mean-square approximati-
ons which control boundedness of both space increments and time increments.
In addition they give approximate values for both phase and time components
of the space-time diffusion in the space-time bounded domain. The space-time
point lies on a bounded d-dimensional manifold. This problem is solved in a
constructive manner by the implementation of a space-time discretization with
a random walk over boundaries of small space-time parallelepipeds.

Chapter 6 is devoted to random walks related to linear Dirichlet and Neu-
mann boundary value problems for PDEs of elliptic and parabolic type. These
random walks are Markov chains. Using them together with the Monte Carlo
technique, complex multi-dimensional problems for linear PDEs can be sol-
ved. The random walks are constructed on the basis of mean-square and weak
approximations for the characteristic system of SDEs due to the correspon-
ding probabilistic representations of the solution to the considered boundary
value problem. As in Chap. 5, a certain boundedness of the simulated incre-
ments of the Markov chains is necessary here. The proposed algorithms are
accompanied by convergence theorems and numerical tests.

Nonlinear PDEs are suggested as mathematical models of problems in
many fields such as fluid dynamics, combustion, biochemistry, dynamics of
populations, finance, etc. They are mostly investigated by numerical methods,
which are traditionally based on deterministic approaches. A probabilistic ap-
proach to construction of new numerical methods for solving initial and bo-
undary value problems for nonlinear parabolic PDEs is developed in Chaps. 7
and 8. The approach is based on making use of the well-known probabilistic
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representations of solutions of linear PDEs and the idea of SDE numerical in-
tegration in the weak sense. Despite their probabilistic nature these methods
are nevertheless deterministic. The probabilistic approach takes into account
a coefficient dependence on the space variables and a relationship between
diffusion and advection in an intrinsic manner. In particular, the layer me-
thods derived allow us to avoid difficulties stemming from essentially changing
coefficients and strong advection. A lot of computer experiments were made
using the numerical algorithms proposed in Chaps. 7  and 8. Among them
are numerical tests on the Burgers equation with small viscosity and on the
FKPP-equation. Their results are in a good agreement with the theory. We
also present a comparison analysis of the layer methods and the well known
finite-difference schemes demonstrating some of the advantages of the propo-
sed methods.

Chapter 9 is devoted to applications of stochastic numerics. Among lots
of possibilities, we select applications of constructed stochastic simulation al-
gorithms to such models of stochastic dynamics as systems with stochastic
resonance and stochastic ratchets. We demonstrate here both mean-square
methods for simulating trajectories of the considered models and weak me-
thods for solving a number of boundary value problems.

An overwhelming majority of the methods proposed in this book are bro-
ught to numerical algorithms. Then it only remains to write a computer pro-
gram, which is usually not complicated, and to use the method in practice. We
give some illustrations in the Appendix how our methods can be implemented.

The field of stochastic numerics and its applications is too broad for one
book. For example, such important topics as numerical integration of sto-
chastic partial differential equations and of backward stochastic differential
equations, being close to interests of the authors, are not covered in the book.
The authors do not aim to provide an exhaustive review of literature. As a
rule, the references are cited in the course of presentation. Some references
are given without comments. On the whole, the content of the book is mainly
based on the results obtained by the authors.

Throughout the book we use the hierarchical numbering system: the k-
th equation (or the k-th theorem, figure, table, etc) in Sect. j of Chap. i is
labelled at the place, where it occurs, and is cited within Chap. i as (j.k) (or
Theorem j.k, etc); it is cited as (i.j.k) (or Theorem i.j.k, etc) outside Chap. i.
The equation (theorem, figure, etc) counter is reset at the beginning of each
section. The only exception is listings in the Appendix: the k-th listing is
labelled and cited as Listing A.k.
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