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Preface

In an asset allocation problem the investor, who can be the trader, or the
fund manager, or the private investor, seeks the combination of securities
that best suit their needs in an uncertain environment. In order to determine
the optimum allocation, the investor needs to model, estimate, assess and
manage uncertainty.
The most popular approach to asset allocation is the mean-variance frame-

work pioneered by Markowitz, where the investor aims at maximizing the
portfolio’s expected return for a given level of variance and a given set of in-
vestment constraints. Under a few assumptions it is possible to estimate the
market parameters that feed the model and then solve the ensuing optimiza-
tion problem.
More recently, measures of risk such as the value at risk or the expected

shortfall have found supporters in the financial community. These measures
emphasize the potential downside of an allocation more than its potential ben-
efits. Therefore, they are better suited to handle asset allocation in modern,
highly asymmetrical markets.
All of the above approaches are highly intuitive. Paradoxically, this can be

a drawback, in that one is tempted to rush to conclusions or implementations,
without pondering the underlying assumptions.

expected value with its sample counterpart, the mean. Sample estimates make
sense only if the quantities to estimate are market invariants, i.e. if they display
the same statistical behavior independently across different periods. In equity-
like securities the returns are approximately market invariants: this is why the
mean-variance approach is usually set in terms of returns. Consider instead
an investment in a zero-coupon bond that expires, say, in one month. The
time series of the past monthly returns of this bond is not useful in estimating
the expected value and the variance after one month, which are known with
certainty: the returns are not market invariants.

For instance, the term "mean-variance" hints at the identification of the
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Similarly, when an allocation decision is based on the value at risk or on
the expected shortfall, the problem is typically set in terms of the portfolio’s
profit-and-loss, because the "P&L" is approximately an invariant.
In general, the investor focuses on a function of his portfolio’s value at the

end of the investment horizon. For instance, the portfolio’s return or profit-
and-loss are two such functions which, under very specific circumstances, also
happen to be market invariants. In more general settings, the investor needs
to separate the definition of his objectives, which depend on the portfolio
value at a given future horizon, from the estimation of the distribution of
these objectives, which relies on the identification and estimation of some
underlying market invariants.
To summarize, in order to solve a generic asset allocation problem we need

to go through the following steps.

Detecting invariance
In this phase we detect the market invariants, namely those quantities that

display the same behavior through time, allowing us to learn from the past.
For equities the invariants are the returns; for bonds the invariants are the
changes in yield to maturity; for vanilla derivatives the invariants are changes
in at-the-money-forward implied volatility; etc.

Estimating the market
In this step we estimate the distribution of the market invariants from a

time series of observations by means of nonparametric estimators, parametric
estimators, shrinkage estimators, robust estimators, etc.

Modeling the market
In this phase we map the distribution of the invariants into the distribu-

tion of the market at a generic time in the future, i.e. into the distribution of
the prices of the securities for the given investment horizon. This is achieved
by suitable generalizations of the "square-root-rule" of volatility propagation.
The distribution of the prices at the horizon in turn determines the distribu-
tion of the investor’s objective, such as final wealth, or profit and loss, etc.

Defining optimality
In this step we analyze the investor’s profile. We ascertain the features of a

potential allocation that are more valuable for a specific investor, such as the
trade-off between the expected value and the variance of his objective, or the
value at risk of his objective, etc.; and we determine the investor’s constraints,
such as budget constraints, reluctance to invest in certain assets, etc.

Only after performing separately the above steps can we proceed toward
the final goal:

Computing the optimal allocation
At this stage we determine exactly or in good approximation the allocation

that best suits the investor, namely the allocation that maximizes the valuable
features of the investor’s objective(s) given his constraints.
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Nevertheless, the approach outlined above is sub-optimal: two additional
steps are needed.

Accounting for estimation risk
It is not clear from the above that an allocation based on one month of data

is less reliable than an allocation based on two years of data. Nevertheless,
the effect of estimation errors on the allocation’s performance is dramatic.
Therefore we need to account for estimation risk in the optimization process.

Including experience
The most valuable tool for a successful investor is experience, or a-priori

knowledge of the market. We need to include the investor’s experience in the
optimization process by means of a sound statistical framework.

Purpose of this book is to provide a comprehensive treatment of all the
above steps. In order to discuss these steps in full generality and consistently
from the first to the last one we focus on one-period asset allocation.

Audience and style

A few years ago I started teaching computer-based graduate courses on asset
allocation and risk management with emphasis on estimation and modeling
because I realized the utmost importance of these aspects in my experience
as a practitioner in the financial industry. While teaching, I felt the need
to provide the students with an accessible, yet detailed and self-contained,
reference for the theory behind the above applications. Since I could not find
such a reference in the literature, I set out to write lecture notes, which over
the years and after many adjustments have turned into this book.

In an effort to make the reader capable of innovating rather than just
following, I sought to analyze the first principles that lead to any given recipe,
in addition to explaining how to implement that recipe in practice. Once those
first principles have been isolated, the discussion is kept as general as possible:
the many applications detailed throughout the text arise as specific instances
of the general discussion.

I have tried wherever possible to support intuition with geometrical argu-
ments and practical examples. Heuristic arguments are favored over math-
ematical rigor. The mathematical formalism is used only up to (and not
beyond) the point where it eases the comprehension of the subject. The
MATLAB R© applications downloadable from symmys.com allow the reader to
further visualize the theory and to understand the practical issues behind the
applications.

A reader with basic notions of probability and univariate statistics could
learn faster from the book, although this is not a prerequisite. Simple con-
cepts of functional analysis are used heuristically throughout the text, but the
reader is introduced to them from scratch and absolutely no previous knowl-
edge of the subject is assumed. Nevertheless the reader must be familiar with
multivariate calculus and linear algebra.
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For the above reasons, this book targets graduate and advanced under-
graduate students in economics and finance as well as the new breed of prac-
titioners with a background in physics, mathematics, engineering, finance or
economics who ever increasingly populate the financial districts worldwide.
For the students this is a textbook that introduces the problems of the finan-
cial industry in a format that is more familiar to them. For the practitioners,
this is a comprehensive reference for the theory and the principles underlying
the recipes they implement on a daily basis.

Any feedback on the book is greatly appreciated. Please refer to the website
symmys.com to contact me.

Structure of the work

This work consists of the printed text and of complementary online resources.

• Printed text

The printed text is divided in four parts.
Part I
In the first part we present the statistics of asset allocation, namely the

tools necessary to model the market prices at the investment horizon. Chap-
ters 1 and 2 introduce the reader to the formalism of financial risk, namely
univariate and multivariate statistics respectively. In Chapter 3 we discuss
how to detect the market invariants and how to map their distribution into
the distribution of the market prices at the investment horizon.

Part II
In the second part we discuss the classical approach to asset allocation.

In Chapter 4 we show how to estimate the distribution of the market invari-
ants. In Chapter 5 we define optimality criteria to assess the advantages and
disadvantages of a given allocation, once the distribution of the market is
known. In Chapter 6 we set and solve allocation problems, by maximizing the
advantages of an allocation given the investment constraints.

Part III
In the third part we present the modern approach to asset allocation,

which accounts for estimation risk and includes the investor’s experience in
the decision process. In Chapter 7 we introduce the Bayesian approach to
parameter estimation. In Chapter 8 we update the optimality criteria to assess
the advantages and disadvantages of an allocation when the distribution of
the market is only known with some approximation. In Chapter 9 we pursue
optimal allocations in the presence of estimation risk, by maximizing their
advantages according to the newly defined optimality criteria.

Part IV
The fourth part consists of two mathematical appendices. In Appendix A

we review some results from linear algebra, geometry and matrix calculus.
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In Appendix B we hinge on the analogies with linear algebra to introduce
heuristically the simple tools of functional analysis that recur throughout the
main text.

• Online resources

The online resources consist of software applications and ready-to-print
material. They can be downloaded freely from the website symmys.com.

Software applications
The software applications are in the form of MATLAB programs. These

programs were used to generate the case studies, simulations and figures in
the printed text.

Exercise book
The exercise book documents the above MATLAB programs and dis-

cusses new applications.
Technical appendices
In order to make the book self-contained, the proofs to almost all the

technical results that appear in the printed text are collected in the form of
end-of-chapter appendices. These appendices are not essential to follow the
discussion. However, they are fundamental to a true understanding of the
subjects to which they refer. Nevertheless, if included in the printed text,
these appendices would have made the size of the book unmanageable.

The notation in the printed text, say, Appendix www.2.4 refers to the
technical appendix to Chapter 2, Section 4, which is located on the internet.
On the other hand the notation, say, Appendix B.3 refers to the mathemat-
ical Appendix B, Section 3, at the end of the book.

A guided tour by means of a simplistic example

To better clarify the content of each chapter in the main text we present a
more detailed overview, supported by an oversimplified example which, we
stress, does not represent a real model.

Part I
A portfolio at a given future horizon is modeled as a random variable

and is represented by a univariate distribution: in Chapter 1 we review uni-
variate statistics. We introduce the representations of the distribution of a
generic random variable X, i.e. the probability density function, the cumula-
tive distribution function, the characteristic function and the quantile, and we
discuss expected value, variance and other parameters of shape. We present
a graphical interpretation of the location and dispersion properties of a uni-
variate distribution and we discuss a few parametric distributions useful in
applications.

For example, we learn what it means that a variable X is normally dis-
tributed:

" "

" "
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X ∼ N
(
µ, σ2

)
, (0.1)

where µ is the expected value and σ2 is the variance.

The market consists of securities, whose prices at a given future horizon
can be modeled as a multivariate random variable: in Chapter 2 we discuss
multivariate statistics. We introduce the representations of the distribution
of a multivariate random variable X, namely the joint probability density
function, the cumulative distribution function and the characteristic function.
We analyze the relationships between the different entries of X: the marginal-
copula factorization, as well as the concepts of dependence and of conditional
distribution.

We discuss expected value, mode and other multivariate parameters of
location; and covariance, modal dispersion and other multivariate parameters
of dispersion. We present a graphical interpretation of location and dispersion
in terms of ellipsoids and the link between this interpretation and principal
component analysis.

We discuss parameters that summarize the co-movements of one entry of
X with another: we introduce the concept of correlation, as well as alternative
measures of concordance. We analyze the multivariate generalization of the
distributions presented in Chapter 1, including the Wishart and the matrix-
variate Student t distributions, useful in Bayesian analysis, as well as very
general log-distributions, useful to model prices. Finally we discuss special
classes of distributions that play special roles in applications.

For example, we learn what it means that two variables X ≡ (X1,X2)
′ are

normally distributed:
X ∼ N(µ,Σ) , (0.2)

where µ ≡ (µ1, µ2)
′ is the vector of the expected values and where the covari-

ance matrix is the identity matrix, i.e. Σ ≡ I. We represent this variable as
a unit circle centered in µ: the radius represents the two eigenvalues and the
reference axes represent the two eigenvectors. As it turns out, the normal dis-
tribution (0.2) belongs to the special elliptical, stable and infinitely divisible
classes.

In Chapter 3 we model the market. The market is represented by a set
of securities that at time t trade at the price Pt. The investment decision
is made at the time T and the investor is interested in the distribution of
the prices PT+τ at a determined future investment horizon τ . Modeling the
market consists of three steps. First we need to identify the invariants hidden
behind the market data, i.e. those random variables X that are distributed
identically and independently across time.

For example suppose that we detect as invariants the changes in price:

Xt,τ̃ ≡ Pt − Pt−τ̃ , (0.3)
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where the estimation horizon τ̃ is one week.

Secondly, we have to associate a meaningful parametric distribution to
these invariants

For example suppose that the normal distribution (0.2) with the identity
as covariance is a suitable parametric model for the weekly changes in prices:

Xt,τ̃ ∼ N (µ, I) . (0.4)

In this case the market parameters, still to be determined, are the entries of
µ.

Finally, we have to work out the distribution of the market, i.e. the prices
PT+τ at the generic horizon τ , given the distribution of the invariants Xt,τ̃

at the specific horizon τ̃ . This step is fundamental when we first estimate
parameters at a given horizon and then solve allocation problems at a different
horizon.

For example, suppose that the current market prices of all the securities
are normalized to one unit of currency, i.e. PT ≡ 1, and that the invest-
ment horizon is one month, i.e. four weeks. Then, from (0.3) and (0.4) the
distribution of the market is normal with the following parameters:

PT+τ ∼ N (m, 4I) , (0.5)

where
m ≡ 1 + 4µ. (0.6)

In a market of many securities the actual dimension of risk in the mar-
ket is often much lower than the number of securities: therefore we discuss
dimension-reduction techniques such as regression analysis and principal com-
ponent analysis and their geometrical interpretation in terms of the location-
dispersion ellipsoid. We conclude with a detailed case study, which covers all
the steps involved in modeling the swap market: the detection of the invari-
ants; the level-slope-hump PCA approach to dimension reduction of the
swap curve invariants, along with its continuum-limit interpretation in terms
of frequencies; and the roll-down, duration and convexity approximation of
the swap market.

Part II
In the first part of the book we set the statistical background necessary

to formalize allocation problems. In the second part we discuss the classical
approach to solve these problems, which consists of three steps: estimating
the market distribution, evaluating potential portfolios of securities and op-
timizing those portfolios according to the previously introduced evaluation
criteria.

" "
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In Chapter 4 we estimate from empirical observations the distribution of
the market invariants. An estimator is a function that associates a number,
the estimate, with the information iT that is available when the investment
decision in made. This information is typically represented by the time series
of the past observations of the market invariants.

For example, we can estimate the value of the market parameter µ in (0.4)
by means of the sample mean:

iT ≡ {x1, . . . ,xT } �→ µ̂ ≡ 1
T

T∑

t=1

xt, (0.7)

where we dropped the estimation interval from the notation.

We discuss general rules to evaluate the quality of an estimator. The most
important feature of an estimator is its replicability, which guarantees that a
successful estimation does not occur by chance. An estimator’s replicability is
measured by the distribution of its loss and is summarized by error, bias and
inefficiency. Then we introduce different estimators for different situations:
nonparametric estimators, suitable in the case of a very large number of ob-
servations; maximum likelihood estimators under quite general non-normal
assumptions, suitable when the parametric shape of the invariants’ distribu-
tion is known; shrinkage estimators, which perform better when the amount
of data available is limited; robust estimators, which the statistician should
use when he is not comfortable with a given parametric specification of the
market invariants. Throughout the analysis we provide the geometrical inter-
pretation of the above estimators. We conclude with practical tips to deal,
among other problems, with outliers detection and missing values in the time
series.

In Chapter 5 we show how to evaluate an allocation. The investor can al-
locate his money in the market to form a portfolio of securities. Therefore, the
allocation decision is defined by a vector α whose entries determine the num-
ber of units (e.g. shares) of the respective security that are being purchased
at the investment time T . The investor focuses on his primary objective, a
random variable whose distribution depends on the allocation and the market
parameters: different objectives corresponds to different investment priori-
ties, such as benchmark allocation, daily trading (profits and losses), financial
planning, etc.

For example, assume that the investor’s objective is final wealth. If the
market is distributed as in (0.5) the objective is normally distributed:

Ψ ≡ α′PT+τ ∼ N
(
α′m, σ2

)
, (0.8)

where m is given in (0.6) and σ2 is a simple function of the allocation.
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Evaluating an allocation corresponds to assessing the advantages and dis-
advantages of the distribution of the respective objective. We start considering
stochastic dominance, a criterion to compare distributions globally: neverthe-
less stochastic dominance does not necessarily give rise to a ranking of the
potential allocations. Therefore we define indices of satisfaction, i.e. functions
of the allocation and the market parameters that measure the extent to which
an investor appreciates the objective ensuing from a given allocation.

For example, satisfaction can be measured by the expected value of final
wealth: a portfolio with high expected value elicits a high level of satisfaction.
In this case from (0.6) and (0.8) the index of satisfaction is the following
function of the allocation and of the market parameters:

(α,µ) �→ E {Ψ} = α′ (1 + 4µ) . (0.9)

We discuss the general properties that indices of satisfaction can or should
display. Then we focus on three broad classes of such indices: the certainty-
equivalent, related to expected utility and prospect theory; the quantile of
the objective, closely related to the concept of value at risk; and coherent
and spectral measures of satisfaction, closely related to the concept of ex-
pected shortfall. We discuss how to build these indices and we analyze their
dependence on the underlying allocation. We tackle a few computational is-
sues, such as the Arrow-Pratt approximation, the gamma approximation, the
Cornish-Fisher approximation, and the extreme value theory approximation.

In Chapter 6 we pursue the optimal allocation for a generic investor. For-
mally, this corresponds to maximizing the investor’s satisfaction while keeping
into account his constraints. We discuss the allocation problems that can be
solved efficiently at least numerically, namely convex programming and in
particular semidefinite and second-order cone programing problems.

For example, suppose that transaction costs are zero and that the investor
has a budget constraint of one unit of currency and can purchase only positive
amounts of any security. Assume that the market consists of only two securi-
ties. Given the current market prices, from (0.9) the investor’s optimization
problem reads:

α∗≡ argmax
α1+α2=1

α≥0

α′ (1 + 4µ̂) , (0.10)

where µ̂ are the estimated market parameters (0.7). This is a linear program-
ming problem, a special case of cone programing. The solution is a 100%
investment in the security with the largest estimated expected value. Assum-
ing for instance that this is the first security, we obtain:

µ̂1 > µ̂2 ⇒ α∗
1 ≡ 1, α∗

2 ≡ 0. (0.11)
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In real problems it not possible to compute the exact solution to an allo-
cation optimization. Nevertheless it is possible to obtain a good approximate
solution by means of a two-step approach. The core of this approach is the
mean-variance optimization, which we present in a general context in terms
market prices, instead of the more common, yet more restrictive, representa-
tion in terms of returns. Under fairly standard hypotheses, the computation
of the mean-variance frontier is a quadratic programming problem. In special
cases we can even compute analytical solutions, which provide insight into
the effect of the market on the allocation in more general contexts: for ex-
ample, we prove wrong the common belief that uncorrelated markets provide
better investment opportunities than highly correlated markets. We analyze
thoroughly the problem of managing assets against a benchmark, which is the
explicit task of a fund manager and, as it turns out, the implicit objective of
all investors. We discuss the pitfalls of a superficial approach to the mean-
variance problem, such as the confusion between compounded returns and
linear returns which gives rise to distortions in the final allocation. Finally,
we present a case study that reviews all the steps that lead to the optimal
allocation.

Part III
In the classical approach to asset allocation discussed in the second part

we implicitly assumed that the distribution of the market, once estimated,
is known. Nevertheless, such distribution is estimated with some error. As a
result, any allocation implemented cannot be truly optimal and the truly opti-
mal allocation cannot be implemented. More importantly, since the optimiza-
tion process is extremely sensitive to the input parameters, the sub-optimality
due to estimation risk can be dramatic.

The parameter µ̂ in the optimization (0.10) is only an estimate of the true
parameter that defines the distribution of the market (0.4). The true expected
value of the second security could be larger than the first one, as opposed to
what stated in (0.11). In this case the truly optimal allocation would read:

µ1 < µ2 ⇒ α1 ≡ 0, α2 ≡ 1. (0.12)

This allocation is dramatically different from the allocation (0.11), which was
implemented.

As a consequence, portfolio managers, traders and professional investors in
a broader sense mistrust the optimal allocations ensuing from the classical
approach and prefer to resort to their experience. In the third part of the book
we present a systematic approach to tackle estimation risk, which also includes
within a sound statistical framework the investor’s experience or models.

Following the guidelines of the classical approach, in order to determine
the optimal allocation in the presence of estimation risk we need to introduce
a new approach to estimate the market distribution, update the evaluation

" "
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criteria for potential portfolios of securities and optimize those portfolios ac-
cording to the newly introduced evaluation criteria.

In Chapter 7 we introduce the Bayesian approach to estimation. In this
context, estimators are not numbers: instead, they are random variables mod-
eled by their posterior distribution, which includes the investor’s experience
or prior beliefs. A Bayesian estimator defines naturally a classical-equivalent
estimator and an uncertainty region.

For example, the Bayesian posterior, counterpart of the classical estimator
(0.7), could be a normal random variable:

µ̂B ∼ N
(

1
2
µ̂ +

1
2
µ0, I

)
, (0.13)

where µ0 is the price change that the investor expects to take place. Then
the classical-equivalent estimator is an average of the prior and the sample
estimator:

µ̂ce ≡
1
2
µ̂ +

1
2
µ0; (0.14)

and the uncertainty region is a unit circle centered in µ̂ce:

E ≡
{
µ such that (µ − µ̂ce)

′ (µ − µ̂ce) ≤ 1
}

. (0.15)

Since it is difficult for the investor to input prior beliefs directly in the
model, we discuss how to input them implicitly in terms of ideal allocations.

In Chapter 8 we introduce criteria to evaluate the sub-optimality of a
generic allocation. This process parallels the evaluation of an estimator. The
estimator’s loss becomes in this context the given allocation’s opportunity
cost, i.e. a positive random variable which represents the difference between
the satisfaction provided by the true, yet unattainable, optimal allocation and
the satisfaction provided by the given allocation.

In our example, from (0.9) the opportunity cost of the sub-optimal allo-
cation (0.10) reads:

OC (α∗,µ) = (1 + 4µ)′ α − (1 + 4µ̂)′ α∗, (0.16)

where α is the truly optimal allocation (0.12).

We analyze the opportunity cost of two extreme approaches to allocation:
at one extreme the prior allocation, which completely disregards any informa-
tion from the market, relying only on prior beliefs; at the other extreme the
sample-based allocation, where the unknown market parameters are replaced
by naive estimates.

In Chapter 9 we pursue optimal allocations in the presence of estimation
risk, namely allocations whose opportunity cost is minimal. We present allo-
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cations based on Bayes’ rule, such as the classical-equivalent allocation and
the Black-Litterman approach. Next we present the resampling technique by
Michaud. Then we discuss robust allocations, which aim at minimizing the
maximum possible opportunity cost over a given set of potential market pa-
rameters. Finally, we present robust Bayesian allocations, where the set of
potential market parameters is defined naturally in terms of the uncertainty
set of the posterior distribution.

In our example, the sub-optimal allocation (0.10) is replaced by the fol-
lowing robust Bayesian allocation:

α∗ ≡ argmin
α1+α2=1

α≥0

{
max
µ∈E

OC (α,µ)
}

, (0.17)

where the opportunity cost is defined in (0.16) and the uncertainty set is
defined in (0.15). The solution to this problem is a balanced allocation where,
unlike in (0.11), both securities are present in positive amounts.

In general it is not possible to compute exactly the optimal allocations.
Therefore, as in the classical approach to asset allocation, we resort to the
two-step mean-variance setting to solve real problems.
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