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Preface

This book is about relations between three different areas of mathematics and
theoretical computer science: combinatorial group theory, cryptography, and com-
plexity theory. We explore how non-commutative (infinite) groups, which are typi-
cally studied in combinatorial group theory, can be used in public key cryptography.
We also show that there is a remarkable feedback from cryptography to combi-
natorial group theory because some of the problems motivated by cryptography
appear to be new to group theory, and they open many interesting research av-
enues within group theory. Then, we employ complexity theory, notably generic
case complexity of algorithms, for cryptanalysis of various cryptographic protocols
based on infinite groups. We also use the ideas and machinery from the theory
of generic case complexity to study asymptotically dominant properties of some
infinite groups that have been used in public key cryptography so far. It turns
out that for a relevant cryptographic scheme to be secure, it is essential that keys
are selected from a “very small” (relative to the whole group, say) subset rather
than from the whole group. Detecting these subsets (“black holes”) for a partic-
ular cryptographic scheme is usually a very challenging problem, but it holds the
key to creating secure cryptographic primitives based on infinite non-commutative
groups.

The book is based on lecture notes for the Advanced Course on Group-Based
Cryptography held at the CRM, Barcelona in May 2007. It is a great pleasure for us
to thank Manuel Castellet, the Honorary Director of the CRM, for supporting the
idea of this Advanced Course. We are also grateful to the current CRM Director,
Joaquim Bruna, and to the friendly CRM staff, especially Mrs. N. Portet and Mrs.
N. Hernandez, for their help in running the Advanced Course and in preparing
the lecture notes.

It is also a pleasure for us to thank our colleagues who have directly or
indirectly contributed to this book. Our special thanks go to E. Ventura who was
the coordinator of the Advanced Course on Group-Based Cryptography at the
CRM. We would also like to thank M. Anshel, M. Elder, B. Fine, R. Gilman,
D. Grigoriev, Yu. Gurevich, Y. Kurt, A. D. Miasnikov, D. Osin, S. Radomirovic,
G. Rosenberger, T. Riley, V. Roman’kov, A. Rybalov, R. Steinwandt, B. Tsaban,
G. Zapata for numerous helpful comments and insightful discussions.

We are also grateful to our home institutions, McGill University, the City
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College of New York, and Stevens Institute of Technology for a stimulating research
environment. A. G. Myasnikov and V. Shpilrain acknowledge support by the NSF
grant DMS-0405105 during their work on this book. A. G. Myasnikov was also
supported by an NSERC grant, and V. Shpilrain was also supported by an NSA
grant.
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Introduction

The object of this book is twofold. First, we explore how non-commutative groups
which are typically studied in combinatorial group theory can be used in public key
cryptography. Second, we show that there is a remarkable feedback from cryptog-
raphy to combinatorial group theory because some of the problems motivated by
cryptography appear to be new to group theory, and they open many interesting
research avenues within group theory.

We reiterate that our focus in this book is on public key (or asymmetric)
cryptography. Standard (or symmetric) cryptography generally uses a single key
which allows both for the encryption and decryption of messages. This form of
cryptography is usually referred to as symmetric key cryptography because the
same algorithm or procedure or key is used not only to encode a message but also
to decode that message. The key being used then is necessarily private and known
only to the two parties involved in communication. This method for transmission
of messages was basically the only way until 1976 when W. Diffie and M. Hellman
introduced an ingenious new way of transmitting information, which has led to
what is now known as public key cryptography. The basic idea is quite simple.
It involves the use of a so-called one-way function f to encrypt messages. Very
informally, a one-way function f is a function such that it is easy to compute
the value of f(x) for each argument x in the domain of f, but it is very hard to
compute the value of f~!(y) for “most” y in the range of f. The most celebrated
one-way function, due to Rivest, Shamir and Adleman, gives rise to the protocol
called RSA, which is the most common public key cryptosystem in use today. It
is employed for instance in the browsers Netscape and Internet Explorer. Thus it
plays a critical and increasingly important role in all manner of secure electronic
communication and transactions that use the Internet. It depends in its efficacy, as
do many other cryptosystems, on the complexity of finite abelian (or commutative)
groups. Such algebraic structures are very special examples of finitely generated
groups. Finitely generated groups have been intensively studied for over 150 years
and they exhibit extraordinary complexity. Although the security of the Internet
does not appear to be threatened at this time because of the weaknesses of the
existing protocols such as RSA, it seems prudent to explore possible enhancements
and replacements of such protocols which depend on finite abelian groups. This is
the basic objective of this book.
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The idea of using the complexity of infinite nonabelian groups in cryptog-
raphy goes back to Magyarik and Wagner [97] who in 1985 devised a public-key
protocol based on the unsolvability of the word problem for finitely presented
groups (or so they thought). Their protocol now looks somewhat naive, but it
was pioneering. More recently, there has been an increased interest in applica-
tions of nonabelian group theory to cryptography (see for example [1, 84, 129]).
Most suggested protocols are based on search problems which are variants of more
traditional decision problems of combinatorial group theory. Protocols based on
search problems fit in with the general paradigm of a public-key protocol based on
a one-way function. We therefore dub the relevant area of cryptography canonical
cryptography and explore it in Chapter 4 of our book.

On the other hand, employing decision problems in public key cryptography
allows one to depart from the canonical paradigm and construct cryptographic
protocols with new properties, impossible in the canonical model. In particular,
such protocols can be secure against some “brute force” attacks by a computa-
tionally unbounded adversary. There is a price to pay for that, but the price is
reasonable: a legitimate receiver decrypts correctly with probability that can be
made arbitrarily close to 1, but not equal to 1. We discuss this and some other
new ideas in Chapter 11.

There were also attempts, so far rather isolated, to provide a rigorous math-
ematical justification of security for protocols based on infinite groups, as an al-
ternative to the security model known as semantic security [50], which is widely
accepted in the “finite case”. It turns out, not surprisingly, that to introduce such
a model one would need to define a suitable probability measure on a given in-
finite group. This delicate problem has been addressed in [17, 16, 89] for some
classes of groups, but this is just the beginning of the work required to build a
solid mathematical foundation for assessing security of cryptosystems based on
infinite groups. Another, related, area of research studies generic behavior of in-
finite groups with respect to various properties (see [75] and its references). It is
becoming clear now that, as far as security of a cryptographic protocol is con-
cerned, the appropriate measure of computational hardness of a group-theoretic
problem in the core of such a cryptographic protocol should take into account the
“generic” case of the problem, as opposed to the worst case or average case tra-
ditionally studied in mathematics and theoretical computer science. Generic case
performance of various algorithms on groups has been studied in [75, 77], [78], and
many other papers. It is the focus of Part IIT of this book.

We have to make a disclaimer though that we do not address here security
properties (e.g., semantic security) that are typically considered in “traditional”
cryptography. They are extensively treated in cryptographic literature; here we
single out a forthcoming monograph [51] because it also studies how group theory
may be used in cryptography, but the focus there is quite different from ours; in
particular, the authors of [51] do not consider infinite groups, but they do study
“traditional” security properties thoroughly.
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In the concluding Part IV of our book, we use the ideas and machinery from
Part III to study asymptotically dominant properties of some infinite groups that
have been used in public key cryptography so far. Informally, the point is that
“most” elements, or tuples of elements, or subgroups, or whatever, of a given
group have some “smooth” properties which makes them unfit for being used (as
private or public keys, say) in a cryptographic scheme. Therefore, for a relevant
cryptographic scheme to be secure, it is essential that keys are actually selected
from a “very small” (relative to the whole group, say) subset rather than from the
whole group. Detecting these subsets (“black holes”) for a particular cryptographic
scheme is usually a very challenging problem, but it holds the key to creating secure
cryptographic primitives based on infinite nonabelian groups.



