Preface

In recent times, serial software applications have no longer enjoyed significant
gains in performance with process scaling, since microprocessor performance gains
have been hampered due to increases in power and manufacturability issues, which
accompany scaling. With the continuous growth of IC design complexities, this
problem is particularly significant for EDA applications. In this research mono-
graph, we evaluate the feasibility of hardware platforms such as custom ICs, FPGAs,
and graphics processors, for accelerating EDA algorithms. We choose applications
which contribute significantly to the total runtime of the VLSI design flow and
which have varied degrees of inherent parallelism in them. We study the acceler-
ation of such algorithms on these alternative platforms. We also present an auto-
mated approach to accelerate certain specific types of uniprocessor subroutines on
the GPU.

This research monograph consists of four parts. The alternative hardware plat-
forms, along with the details of the programming model used for interfacing with
the graphics processing units, are discussed in the first part of this monograph.
The second part of this monograph studies the acceleration of an algorithm in
the control-dominated category, namely Boolean satisfiability (SAT). The third part
studies the acceleration of some algorithms in the control plus data parallel cate-
gory, namely Monte Carlo based statistical static timing analysis, circuit simulation,
fault simulation and fault table generation. In the fourth part of the monograph, we
present the automated approach to generate GPU code to accelerate certain software
subroutines.

Book Outline

This research monograph is organized into four parts. In Part I of this research
monograph, we discuss alternative hardware platforms. We also provide details of
the programming model used for interfacing with the graphics processor. In Chap-
ter 2, we compare and contrast the hardware platforms that are considered in this
monograph. In particular, we discuss custom-designed ICs, reconfigurable architec-
tures such as FPGAs, and streaming processors such as graphics processing units



X Preface

(GPUs). This comparison is performed over various criteria such as architecture,
expected performance, programming model and environment, scalability, time to
market, security, and cost of hardware. In Chapter 3, we describe the programming
environment used for interfacing with the GPUs.

In Part II of this monograph we present hardware implementations of a control-
dominated EDA problem, namely Boolean satisfiability (SAT). We present
approaches to accelerate SAT using each of the three hardware platforms under
consideration. In Chapter 4, we present a custom IC-based hardware approach to
accelerate SAT. In this approach, the traversal of the implication graph and con-
flict clause generation are performed in hardware, in parallel. Further, we propose a
hardware approach to extract the minimum unsatisfiable core for any unsatisfiable
formula. In Chapter 5, we discuss an FPGA-based hardware approach to accelerate
SAT. In this approach, we store the clauses in the FPGA slices. In order to solve
large SAT instances, we partition the instance into ‘bins,” each of which can fit in
the FPGA. The solution of SAT clauses of any bin is performed in parallel. Our
approach also handles (in hardware) the fact that the original SAT instance is par-
titioned into bins. In Chapter 6, we present a SAT approach which employs a new
GPU-enhanced variable ordering heuristic. In this approach, we augment a CPU-
based complete procedure (MiniSAT), with a GPU-based approximate procedure
(survey propagation). In this manner, the complete procedure benefits from the high
parallelism of the GPU.

In Part IIT of this book, we study the acceleration of several EDA problems,
with varying amounts of control and data parallelism, on a GPU. In Chapter 7, we
exploit the parallelism in Monte Carlo based statistical static timing analysis and
accelerate it on a graphics processor. In this approach, we map the Monte Carlo
based SSTA computations to the large number of threads that can be computed in
parallel on a GPU. Our approach performs multiple delay simulations of a single
gate in parallel and further benefits from a parallel implementation of the Mersenne
Twister pseudo-random number generator on the GPU, followed by Box—Muller
transformations (also implemented on the GPU). In Chapter 8, we study the accel-
eration of fault simulation on a GPU. Fault simulation is inherently parallelizable
and requires a large number of gate evaluations to be performed for each gate in
a design. The large number of threads that can be computed in parallel on a GPU
can be employed to perform a large number of these gate evaluations in parallel. We
implement a pattern and fault parallel fault simulator, which fault-simulates a circuit
in a levelized fashion. We ensure that all threads of the GPU compute identical
instructions, but on different data. We study the generation of a fault table using a
GPU in Chapter 9. We employ a pattern parallel approach, which utilizes both bit
parallelism and thread-level parallelism. In Chapter 10, we explore the GPU-based
acceleration of the model card evaluation of a circuit simulator. Our resulting code
is integrated into a commercial fast SPICE tool, and the overall speedup obtained
is measured. With careful engineering, we maximally harness the GPU’s immense
memory bandwidth and high computational power.

In Part IV of this book, we present an automated approach to accelerate unipro-
cessor subroutines which are required to be executed multiple times within an



Preface xi

application, on independent data sets. The target hardware platform is a general-
purpose graphics platform. The key idea here is to partition the subroutine into
kernels in an automated fashion, such that multiple instances of these kernels, when
executed in parallel on the GPU, can maximally benefit from the GPU’s hardware
resources. This approach is detailed in Chapter 11.

The approaches presented in this monograph collectively aim to contribute
toward enabling the VLSI CAD community to accelerate EDA algorithms on dif-
ferent hardware platforms.

College Station, TX Kanupriya Gulati
College Station, TX Sunil P. Khatri
October 2009



