
Preface

Overview and Goals

The agile approach for software development has been applied more and more

extensively since the mid nineties of the 20th century. Though there are only about

ten years of accumulated experience using the agile approach, it is currently

conceived as one of the mainstream approaches for software development.

This book presents a complete software engineering course from the agile

angle. Our intention is to present the agile approach in a holistic and comprehen-

sive learning environment that fits both industry and academia and inspires the

spirit of agile software development.

Agile software engineering is reviewed in this book through the following three

perspectives:

l The Human perspective, which includes cognitive and social aspects, and

refers to learning and interpersonal processes between teammates, customers,

and management.

l The Organizational perspective, which includes managerial and cultural

aspects, and refers to software project management and control.

l The Technological perspective, which includes practical and technical aspects,

and refers to design, testing, and coding, as well as to integration, delivery, and

maintenance of software products.

Specifically, we explain and analyze how the explicit attention that agile

software development gives these perspectives and their interconnections, helps



it cope with the challenges of software projects. This multifaceted perspective on

software development processes is reflected in this book, among other ways, by

the chapter titles, which specify dimensions of software development projects

such as quality, time, abstraction, and management, rather than specific project

stages, phases, or practices.

To share with the readers this multifaceted perspective, we use the Human,

Organizational, and Technical (HOT) scale for
HOT

software development approaches.

For example, when we refer to teamwork or abstraction levels, we emphasize the

Human perspective; when software management issues are addressed, the

Organizational perspective is emphasized; similarly,
HOT

when the actual perfor-

mance of test-driven development is described, the Technological aspect is

highlighted. When the HOT? sign appears, the readers are invited to suggest

their own HOT perspective.

Agile software development values these
HOT

three perspectives. Therefore, in

many cases, more than one perspective is illuminated by the agile approach with

respect to a specific topic. Yet even when more than one perspective is significant

with respect to a specific topic, we discuss from time to time only one or two main

perspective(s), and the readers are invited to complete the picture.

The book is based on the authors’ comprehensive experience of teaching and

implementing agile software development over the past six years. A course on

agile software engineering has been shaped during these years, in an iterative

process that was accompanied by an ongoing research project. This course is

presented in this book. In parallel to the course creation and shaping process, the

agile approach has emerged and spread, becoming one of the worldwide main-

stream approaches for software project management.

Organization and Features

This textbook guides a fourteen-week/session course on software engineering

from the agile perspective and can be used on a weekly basis. It is intended for

all who practice, research, teach, and learn software development both in

academia and industry. It discusses how agile teams live and function in software

development environments, how they achieve their goals, and how they act

professionally in their environments. Specifically, the themes presented in the

book, such as teamwork, time, quality, learning, trust, and culture, are reviewed

from human, organizational, and technological perspectives, at the individual,

team, and organizational levels, and are illustrated with case studies taken from

industry and academia.

The fourteen chapters of the book are organized in three iterations. This

structure enables us to revisit the various subjects several times during the course,

viii Preface



as well as to guide the development of a one-release software product. Table 1

presents the book’s structure book and the topic of each chapter.

Each chapter includes a theoretical approach to a specific topic, a section that

refers to the given topic in learning environments, and a variety of questions and

tasks for further elaboration.

The Academic Community

This book on agile software engineering can be used by instructors, academic

coaches, and students as a textbook during a fourteen-week semester, either for

the commonly titled ‘‘Introduction to Software Engineering’’ course or the ‘‘Soft-

ware Engineering Methods’’ course.

The course is based on two main components that progress in parallel and are

closely correlated with each other. The first component is theoretical and can be

used in the lecture hall or the class; the second is software project development

guided by the agile approach that takes place in a physical learning environment

that we call a studio or lab.

This book is written for the entire course community---students, instructors,

and academic coaches. Students are the learners who become familiar with the

agile approach both from a theoretical perspective (in the lectures) and from a

practical perspective (in the studio). Instructors are the teachers of the course’s

theoretical ideas, who usually teach in a class or in a lecture hall; yet, interactive

teaching and active learning can be facilitated in this setting as well. The aca-

demic coaches are the practitioners who guide the software project development

Table 1. Book structure

Iteration Chapter # Topic

I 1 Introduction to Agile Software Development

2 Teamwork

3 Customers and Users

4 Time

5 Measures

6 Quality

7 Learning

II 8 Abstraction

9 Trust

10 Globalization

11 Reflection

III 12 Change

13 Leadership

14 Delivery and Cyclicality

Preface ix



in the studio (we elaborate on this role in Chapter 1, Introduction to Agile

Software Engineering).

The positive results of agile software projects, as elaborated throughout the

various chapters of the book, are not the only motive for this course, which

presents the field of software engineering from the agile perspective. There are

three additional characteristics of the course, which are especially relevant when

it is taught in academia.

First, the agile approach was developed by practitioners working in the soft-

ware industry, and has become mainstream in that industry. Therefore, it makes

sense to articulate its nature and main concepts to prospective software engineers

in the framework of a course that deals with software engineering.

Second, teaching a software engineering course within the framework of agile

software development emphasizes a comprehensive image of the field. This is

because agile software development explicitly addresses human, organizational,

and technological aspects of the software development process with respect to all

players participating in that process. Thus, the agile approach serves as an

opportunity to draw this comprehensive and complex picture of the field.

Third, according to the Software Engineering 2004 Curriculum, developed by

the IEEE Computer Society and the Association for Computing Machinery Joint

Task Force (see http://sites.computer.org/ccse/SE2004Volume.pdf), software

engineering students should acquire additional skills beyond the technical

and scientific ones. One illustrative example is teamwork-related skills. Since

teamwork is one of the basic ideas of agile software development, it is only natural

to integrate teamwork-oriented skills in the teaching and learning process of

software engineering from the agile perspective. Furthermore, since it is natural

to teach agile software development in a teamwork-oriented environment, there is

no need to introduce the topic of teamwork artificially; rather, a teamwork-based

learning environment can be used to teach this topic. This element is emphasized

mainly, but not only, in the studio element of the course.

Suggested Uses in an Academic Environment

Each chapter presents a full week of the course: two weekly lecture hours and a

four-hour weekly studio meeting. The first part of each chapter includes contents

suitable to be presented in the lecture. This part usually presents material beyond

what it is possible to teach in a two-hour lecture. Therefore, it is advisable not to

try to deliver all the content in two hours; rather, we suggest selecting from each

chapter the most relevant topics to be discussed with each particular class of

students. It is also advisable to encourage in the lectures some active learning

elements, as is suggested in the various chapters. The second part of each chapter

x Preface



addresses the teaching and learning of the chapter topic. It presents teaching and

learning principles and the activities conducted in the studio each week.

As preparation for the next week’s lectures and studio meeting, instructors

and academic coaches can ask the students to read the relevant chapter and to

work on selected activities presented throughout the body of each chapter. The

students’ preparation for the lecture will also partially solve the time limitation

problem of addressing all the ideas presented.

Finally, though the book presents a full fourteen-week semester course, which

consists of two weekly lecture hours and four-hour weekly studio meetings, it is

possible to teach only one component of the course. The material provided in this

book enables each instructor/academic coach to make the needed adjustments.

The Industrial Community

Since agile development has become one of the mainstream approaches for mana-

ging software projects, more and more software organizations of different sizes and

types ask themselves whether the agile approach fits them. Even when it is found

that agile software development is relevant for a given organization, questions such

as the following are usually asked: How can we manage a transition to the agile

software development process? How can our organization cope with the changes

required for such a transition? How can we teach agile software development to all

the software practitioners and all the other software project’s stakeholders?

This book, when used in an industrial setting, aims to answer these and other

relevant questions which software organizations face when dealing with the

transition to agile software development. For example, in Chapter 12, Change,

we discuss how to initiate a transition process to agile software development in an

organization. When the organization has already transitioned to agile software

development, the book can also be used for answering questions related to the

actual implementation of agile software development in the organization. For

example, in Chapter 2, Teamwork, we discuss how teams can be formed to exploit

their potential, to avoid conflicts, and to solve dilemmas.

Suggested Uses in an Industrial Environment

This book can be used in industrial settings by coaches of software teams, soft-

ware team leaders, and facilitators of agile software development workshops, both

for the teaching and learning of agile software development, as well as for its

implementation. The book can also be used by interested software practitioners

who are not necessarily within a formal teaching framework.

Preface xi



We propose two ways to use the book in industrial environments.

First, the book can be used for a course which is based on 14 sessions. This

course format fits for organizations that wish to expand their members’ profes-

sional knowledge by becoming familiar with agile software development, without

necessarily implementing the agile approach. If the course also contains the

development of a software project using the agile approach, which in academia

takes place in the studio, a new software system should be developed for learning

process purposes, with respect to which the different activities are facilitated. The

development of a new software project should be undertaken whether the course is

taught to a real team or to a group of people from different teams or organization.

In the case of a real team, the development of another project than the team’s real

project will enable the team not to confuse their current work habits with agile

practices.

Second, for organizations which wish to start implementing agile software

development right away or in the near future, we suggest that the agile approach

be taught first in a short format of a two-day workshop to a team that has been

carefully selected to start the transition to agile software development within the

organization. Chapter 12, Change, elaborates on such a transition process,

explains the motivation and rationale for this intense workshop format, and

outlines the workshop schedule. After the team members have participated in

that workshop, and when the team starts implementing agile software develop-

ment with its real project, the book can be used for clarifications and elaborations.

In both cases, as well as in other learning environments in industry, the teaching

and learning principles presented in the book can naturally be applied.

Acknowledgments

We would like to thank all the practitioners, researchers, students, and mangers,

both in academia and in the software industry, who during the past six years

shared with us their professional knowledge, experience, thoughts, and feelings

with respect to agile software development. They all contributed to our under-

standing of the nature of agile software engineering and fostered our shaping of

the approach presented in this book.

xii Preface


