
Preface

The Java language has had an enormous impact since its introduction in the last
decade of the twentieth century. Its success has been particularly strong in enterprise
applications, where Java is one of the preeminent technology in use. A domain
where Java is still trying to gain a foothold is that of real-time and embedded
systems, be they multicore or distributed. Over the last 5 years, the supporting Java-
related technologies, in this increasingly important area, have matured. Some have
matured more than others. The overall goal of this book is to provide insights into
some of these technologies.

Audience

This book is aimed at researchers in real-time embedded systems, particularly those
who wish to understand the current state of the art in using Java in this domain.
Masters students will also find useful material that founds background reading for
higher degrees in embedded and real-time systems.

Structure and Content

Much of the work in real-time distributed, embedded and real-time Java has focused
on the Real-time Specification for Java (RTSJ) as the underlying base technology,
and consequently many of the Chapters in this book address issues with, or solve
problems using, this framework.

Real-time embedded system are also themselves evolving. Distribution has
always been an important consideration, but single processor nodes are rapidly
being replaced by multicore platforms. This has increased the emphasis on par-
allel programming and has had a major impact on embedded and real-time
software development. The next three chapters, therefore, explore aspects of this

v



vi Preface

issue. In Chap. 1, Wellings, Dibble and Holmes discuss the impact of multi-
core on the RTSJ itself and motivate why Version 1.1 of the specification will
have more support for multiprocessors. Central to this support is the notion of
processor affinity.

RTSJ has always remained silent on issues of distributed system as other work
in the Java Community has been addressing this problem. Unfortunately, this work
has been moribund for several years and is now considered inactive. It is, therefore,
an appropriate time to re-evaluate the progress in this area. In Chap. , Basanta-Val
and Anderson reviews the state of the art in distributed real-time Java technology
considering both the problems and the solutions.

As embedded real-time system grow in size, they will become more complex
and have to cope with a mixture of hard and soft real-time systems. Scheduling
these systems, within the imposed time constraints, is a challenging problem. Of
particular concern is how to integrate aperiodic events into the system. The accepted
theoretical work in this area revolves around the usage of execution-time servers. In
Chap. 3, Masson and Midonnet consider how these servers can be programmed in
the RTSJ at the application level.

Irrespective of size, embedded systems have imposed constraints, be they power
consumption, heat dissipation or weight. This results in the resources in the platform
being kept to a minimum. Consequently, these resources must be carefully managed.
Processors and networks are the two of the main resource types, and have been
considered in Chaps. 1–3. Memory is the other main resource, and it is this that is
the topic of Chap. 4 through Chap. 6. Real-time garbage collection is crucial to the
success of real-time Java and the advent of multicore has added new impetus to
that technology to produce parallel collectors. In Chap. 4, Siebert explains the basic
concepts behind parallel collectors and reviews the approaches taken by the major
RTSJ implementations.

RTSJ introduced a form of region-based memory management as an alternative
to the use of the heap memory. This has been one of the most controversial features
of the specification. For this reason, Higuera-Toledano, Yovine, and Garbervetsky
(in Chap. 5) evaluate the role of region-based memory management in the RTSJ and
look at the strengths and weaknesses of the associated RTSJ scoped memory model.
The third aspect of memory management for embedded systems is how to access
the underlying platform’s physical memory – in order to maximize performance
and interact with external devices. This has always been a difficult area and one that
has been substantially revised in RTSJ Version 1.1. In Chap. 6, Dibble, Hunt and
Wellings considers these low-level programming activities.

Part and parcel of developing embedded systems is deciding on the demarcation
between what is in software and what is in hardware. From a Java perspective, there
are two important topics: hardware support for the JVM and how applications call
code that has been implemented in hardware. These two issues are addressed in
Chaps. 7 and 8. In Chap. 7, Schoeberl reviews the approaches that have been taken to
support the execution for Java programs. This includes important areas like support
for the execution of Java byte code and garbage collection. In contrast, Whitham and

2



Preface vii

Audsley in Chap. 8, focus on the interaction between Java programs and functional
accelerators implemented as coprocessors or in FPGAs.

Embedded systems are ubiquitous and increasingly control vital operations.
Failure of these systems have an immediate, and sometimes catastrophic, impact
on society’s ability to function. Proponents of Java technology envisage a growing
role for Java in the development of these high-integrity (often safety-critical)
systems. A subset of Java augmented with the RTSJ, called Safety Critical Java
(SCJ) is currently being developed by the Java Community Process. This work
is approaching fruition and two of the most important aspects are discussed
in Chaps. 9 and 10. Most embedded and real-time system directly or indirectly
support the notion of a mission. In the RTSJ, this notion can be implemented but
there is not direct representation. SCJ provides direct support for this concept.
In Chap. 9, Nielsen and Hunt discuss the mission concept and show how it can
be used. Paramount to high-integrity applications is reliability. Although Java
is a strongly typed language run-time exceptions can still be generated. Recent
versions of the language have added support for annotations, which essentially
allow added information to be passed to the compiler, development tools sup-
porting static analysis, and the JVM itself. In Chap. 10, Tang, Plsek and Jan
Vitek explore the SCJ use of annotations to support memory safety, that is
the absence of run-time exceptions resulting from violations of the SCJ mem-
ory model.

Up until now, the topics that have been addressed have been concerned with
the underlying technology for real-time and embedded Java. The remainder of the
book focuses on higher level issues. Real-time and embedded system designers
have to be more resource-aware than the average Java programmer. Inevitably,
this leads to complexities in the programming task. The RTSJ has introduced
abstractions that help the programmer manage resources; however, some of these
abstraction can be difficult to use (for example, scoped memory). In Chap. 11,
Plsek, Loiret and Malohlava argue that this can make the use of the RTSJ error
prone. They consider the role of RTSJ-aware component-oriented frameworks that
can help provide a clearer separation between RTSJ-related issues and application-
related issues.

One well-known Java framework for component-based service-oriented archi-
tectures is the Open Services Gateway initiative (OSGi). Although this initiative
has wide support from industry, it lacks any support for real-time applications. In
Chap. 12, Richardson and Wellings propose the integration of OSGi with the RTSJ
to provide a real-time OSGi framework.

In the final chapter of this book, Holgado-Terriza and Videz-Aivar address the
issue of building a complete embedded application that includes both software and
hardware components from a reusable base.



viii Preface

Acknowledgements

The editors are grateful to Springer who gave us the opportunity to produce this
book, and to all the authors for agreeing to contribute (and for reviewing each others
chapters).

We are also indebted to Sitsofe Wheeler for his help with latex.

Andy J. Wellings
M. Teresa Higuera-Toledano




