

CAMBRIDGE LIBRARY COLLECTION

Books of enduring scholarly value

Mathematical Sciences

From its pre-historic roots in simple counting to the algorithms powering modern desktop computers, from the genius of Archimedes to the genius of Einstein, advances in mathematical understanding and numerical techniques have been directly responsible for creating the modern world as we know it. This series will provide a library of the most influential publications and writers on mathematics in its broadest sense. As such, it will show not only the deep roots from which modern science and technology have grown, but also the astonishing breadth of application of mathematical techniques in the humanities and social sciences, and in everyday life.

Principles of Geometry

Henry Frederick Baker (1866–1956) was a renowned British mathematician specialising in algebraic geometry. He was elected a Fellow of the Royal Society in 1898 and appointed the Lowndean Professor of Astronomy and Geometry in the University of Cambridge in 1914. First published between 1922 and 1925, the six-volume *Principles of Geometry* was a synthesis of Baker's lecture series on geometry and was the first British work on geometry to use axiomatic methods without the use of co-ordinates. The first four volumes describe the projective geometry of space of between two and five dimensions, with the last two volumes reflecting Baker's later research interests in the birational theory of surfaces. The work as a whole provides a detailed insight into the geometry which was developing at the time of publication. This, the fourth volume, describes the principal configurations of space of four and five dimensions.

Cambridge University Press has long been a pioneer in the reissuing of out-of-print titles from its own backlist, producing digital reprints of books that are still sought after by scholars and students but could not be reprinted economically using traditional technology. The Cambridge Library Collection extends this activity to a wider range of books which are still of importance to researchers and professionals, either for the source material they contain, or as landmarks in the history of their academic discipline.

Drawing from the world-renowned collections in the Cambridge University Library, and guided by the advice of experts in each subject area, Cambridge University Press is using state-of-the-art scanning machines in its own Printing House to capture the content of each book selected for inclusion. The files are processed to give a consistently clear, crisp image, and the books finished to the high quality standard for which the Press is recognised around the world. The latest print-on-demand technology ensures that the books will remain available indefinitely, and that orders for single or multiple copies can quickly be supplied.

The Cambridge Library Collection will bring back to life books of enduring scholarly value (including out-of-copyright works originally issued by other publishers) across a wide range of disciplines in the humanities and social sciences and in science and technology.

Principles of Geometry

VOLUME 4: HIGHER GEOMETRY

H.F. BAKER

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paolo, Delhi, Dubai, Tokyo, Mexico City

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9781108017800

© in this compilation Cambridge University Press 2010

This edition first published 1925 This digitally printed version 2010

ISBN 978-1-108-01780-0 Paperback

This book reproduces the text of the original edition. The content and language reflect the beliefs, practices and terminology of their time, and have not been updated.

Cambridge University Press wishes to make clear that the book, unless originally published by Cambridge, is not being republished by, in association or collaboration with, or with the endorsement or approval of, the original publisher or its successors in title.

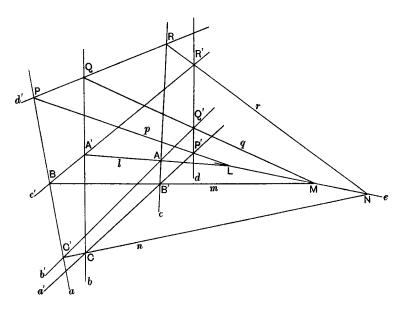
PRINCIPLES OF GEOMETRY

CAMBRIDGE UNIVERSITY PRESS

LONDON: FETTER LANE, E.C. 4

LONDON: H. K. LEWIS AND CO., LTD., 136, Gower Street, W.C. 1
NEW YORK: THE MACMILLAN CO.
BOMBAY
CALCUTTA MACMILLAN AND CO., LTD.
MADRAS
TORONTO: THE MACMILLAN CO. OF
CANADA, LTD.
TOKYO: MARUZEN-KABUSHIKI-KAISHA

ALL RIGHTS RESERVED



The Figure of fifteen lines and fifteen points, in space of four dimensions (See Ch. V.)

PRINCIPLES OF GEOMETRY

BY

H. F. BAKER, Sc.D., LL.D., F.R.S.,

LOWNDEAN PROFESSOR OF ASTRONOMY AND GEOMETRY, AND FELLOW OF ST JOHN'S COLLEGE, IN THE UNIVERSITY OF CAMBRIDGE.

VOLUME IV

HIGHER GEOMETRY

BEING ILLUSTRATIONS OF THE UTILITY OF THE CONSIDERATION OF HIGHER SPACE, ESPECIALLY OF FOUR AND FIVE DIMENSIONS

CAMBRIDGE AT THE UNIVERSITY PRESS

1925

PRINTED IN GREAT BRITAIN

PREFACE

THE present volume, the first written and the most revised, of the book, for which indeed, mostly, the earlier volumes were undertaken, still bears many marks of the difficulty of compressing the matter into brief compass. But the writer hopes that it may seem to the reader as remarkable as it does to him, that it should be possible to comprehend under one point of view, and that so simple, the introduction to nearly all the surfaces ordinarily studied in the geometry of three dimensions, as well as the usual line geometry. Chapters v, vi, vii seek to make clear that this is so. To these the earlier chapters are auxiliary. But Chapters II and IV have been introduced as much for their own interest as for their illustrative value; the results obtained in these two chapters are not required in the subsequent pages. It is hoped that the Table of Contents, and the Index, may make it easy to use the volume. It will of course be understood that the volume is throughout intended to be introductory and illustrative; hardly anywhere is it complete.

To the Staff of the University Press grateful acknowledgments are due for their continued courtesy and care.

H. F. B.

1 June 1925.

TABLE OF CONTENTS

CHAPTER I. INTRODUCTORY. RELATIONS OF THE GEOMETRY OF TWO, THREE, FOUR AND FIVE DIMENSIONS

	PAGES
SECTION I. THEOREMS OF TWO AND THREE DIMENSIONS	132
The conics touching the fives from six arbitrary lines of a plane .	14
Exx. 1-4. Particular algebraic results; equation of triangularly	
circumscribed conic	46
Representation of a plane upon a quadric	6—8
The generalised Miquel theorem	8—10
Ex. 1. The conic of an arbitrary plane determined by joins of five	
points	10, 11
Ex. 2. Cubic curve through the five points gives a self-polar triad.	11
Ex. 3. Dual of theorem of Ex. 1; consequence	11
Ex. 4. Aggregate of conics thus arising for sets of five points of a	
cubic curve	11, 12
Ex. 5. Alternative proof of generalised Miquel theorem	12
Ex. 6. A plane theorem arising from Ex. 5	12
The theory of inversion in a plane	12 - 14
Ex. 1. Equations for inversion in a plane	14
Ex. 2. Relations between centres of inverse circles	14, 15
Ex. 3. Inversion of one given circle into another	15
Ex. 4. Centres of similitude and circle of similitude of two circles.	15
Ex. 5. Circles through threes of four points; property of circles of	
similitude	15, 16
Ex. 6. Quadric touching four planes having double contact with	
another	16
Ex. 7. Relation of two points of contact in Ex. 6	16
Ex. 8. Relation expressed by means of a cubic curve	16, 17
Ex. 9. Employment of cross-ratios	17
Ex. 10. A line, and its polar line, intersecting a quadric	17
Ex. 11. Five circles constructed from five given circles	17, 18
Wallace's theorem for four circles and Moebius's figure of two	
tetrads	18-20
Ex. 1. Dual of Moebius's figure	20
Ex. 2. A quartic surface considered by Bauer	20, 21
Ex. 3. A theorem of Steiner's for two triads of points	21
Additions to Wallace's theorem in a plane	21, 22
Ex. 1. Pedal circles orthogonal to one circle	22—24
Ex. 2. Alternative to use of associated points	24
Ex. 3. Pedal properties in threefold space	24, 25
Ex. 4. Theorem of symmetry of five points, for pedal property .	25

x Contents

	PAGES
Ex. 5. Pedal property of circle generalised to rational curve of	
higher space	25, 26
Ex. 6. Generalised form of pedal property	26
Ex. 7. Algebraic proof of preceding results	26, 27
Ex. 8. A generalised orthocentre of four arbitrary points	28
Ex. 9. Theorem for two systems of conics	28
Ex. 10. A property of the cubic surface with four double points .	28
Ex. 11. Cubic curve in threefold space, three tetrads upon	28, 29
Ex. 12. Algebraic form of result of Ex. 11	29
Theorems for circumscribed circles for any number of lines in a	
plane	29-31
Ex. 1. Representation of points of quadric by transversals of two	
lines	31, 32
Ex. 2. Six conics triangularly inscribed to another	32
Section II. Theorems of three and four dimensions	32—40
Tetrahedral complex, determined by planes meeting three lines in	
fourfold space	3234
Ex. Algebraic formulation	34
Analogous generation of a linear complex	34, 35
Ex. Algebraic formulation.	35, 36
Spheres as determined from sections of a quadric in fourfold space	36—38
Exx. 1, 2. Two conjugate points of quadric in fourfold space .	38
Ex. 3. Representation of a circle by a line in fourfold space	38, 39
Ex. 4. Two spheres cut everywhere at the same angle	39, 40
Section III. Use of space of five dimensions	4064
The representation of lines of threefold space by points of fivefold	4004
• • • • • • • • • • • • • • • • • • • •	4042
space	4042
Ex. 1. Six linear complexes mutually conjugate	42
Ex. 3. General form of theorem of Ex. 2	42, 43
The lines common to three, and to four, linear complexes Planes lying entirely on the quadric fourfold in the space of five	43, 44
	44 46
dimensions	44, 45
The planes of the quadric fourfold treated with the symbols.	45—47
The aggregate of the planes lying on a quadric in fivefold space .	47, 48
Ex. 1. Representation of point and polar plane in regard to a focal	4.0
system	48
Ex. 2. Representation of a pair of lines, polars in regard to a	10. 10
quadric	48, 49
The representation of congruences of lines of the original space .	49, 50
Number of lines common to two congruences in threefold space .	50, 51
Ex. Number of chords common to two curves	51
The chords of a cubic curve in the threefold space. Veronese's	
surface	52-54

Contents	XI
	PAGES
Ex. 1. The section of Veronese's surface by a fourfold space.	54
Ex. 2. The representation in fivefold space of the conics of a plane	54
Ex. 3. Statement of some properties of Veronese's surface	54, 55
Lie's correspondence between lines and spheres in space of three	
dimensions	55, 56
Ex. 1. Algebraic formulation of the correspondence	56, 57
Ex. 2. Comparison with deduction of sphere from fourfold space .	57
Ex. 3. The eight pairs of spheres which touch four spheres	57, 58
Ex. 4. The eight spheres touching four planes	58
Ex. 5. The double-six theorem expressed in terms of spheres .	58
Generalisation of Wallace's theorem. The theorem of the double-	
six. A theorem for six lines with a common transversal .	58—60
Exx. 1—5. Proofs of the theorems	60-64
Note. Another proof of Wallace's theorem, and extensions .	64
CHAPTER II. HART'S THEOREM, FOR CIRCLA PLANE, OR FOR SECTIONS OF A QUADR	
The sections of a quadric which touch three given sections	65, 66
Ex. 1. A pair of variable sections of a quadric touching one another	00, 00
and two fixed sections	66
Ex. 2. Construction of the circles touching three given circles .	66
Ex. 3. A theorem for circles through threes of four special points.	66, 67
Ex. 4. Circles cutting three given circles at equal angles	67
Ex. 5. Circles cutting four given circles at equal angles	67
Ex. 6. Circles cutting three given circles at given angles	67
Ex. 7. Common tangents, of three circles, which meet in a point .	67, 68
Ex. 8. Solution of generalised Malfatti's problem	68, 69
Ex. 9. Equations of sections touching three sections of a quadric .	69, 70
Exx. 10—15. Various algebraic results	70, 71
The Hart circles of three circles when the four have a common	
orthogonal circle	71, 72
The Hart circles of three circles in general	72 - 78
Ex. 1. The various cases	78
Ex. 2. The point of contact of the Hart section	75, 76
Ex. 3. The bipolar character of the figure obtained	76, 77
Ex. 4. Eight sections divided into four pairs	77
Ex. 5. Relations with metrical geometry	78
Ex. 6. The particular case of the Feuerbach circle	78—80
Ex. 7. The same Hart section arises in different ways	80
Ex. 8. The radius of the Hart section	80, 81
Ex. 9. Four circles arising from the intersections of three circles .	82
The bifocal property is necessary as well as sufficient	82—88
Ex. 1. A particular form of the equation of the quadric	85, 86

xii Contents

	PAGES
Exx. 2, 3. Two algebraic results	86
Ex. 4. Relations between four sections and four tangent sections .	86—88
Ex. 5. The harmonically conjugate quadric in regard to tangent	
sections	88
Ex. 6. The Hart circle defined by angles of intersection	88
CHAPTER III. THE PLANE QUARTIC CURVE	WITH
TWO DOUBLE POINTS	
The generation of the curve. The four principal circles	89, 90
The curve as an envelope of circles. The director conic	90
Ex. 1. Algebraic formulation	90, 91
Ex. 2. Two tangent circles have their points of contact on a circle.	91
The four director conics are confocal	91, 92
The sixteen foci of the quartic curve. Are intersections of a	
principal circle and a director conic	9294
Relation of distances of point of curve from three foci	94
Construction of the plane quartic curve given four foci lying on a	
circle	94 - 96
Inversion of the curve into itself	96, 97
Ex. 1. Cubic curves with two fixed points, arising by inversion .	97
Ex. 2. Equations for the case of the cubic curve	97, 98
Ex. 3. Case of quartic with four foci on a line	98
Ex. 4. The Cartesian, Limaçon and Cardioid	98, 99
Angles of intersection of enveloping circles of the plane quartic	
which belong to different families	99101
Exx. 1, 2. Theorem for eight intersections of four circles taken in	
order	101
Ex. 3. Condition by angles of intersection for three circles to meet	;
$in\ a\ point$	101
Exx. 4, 5. Angles between six planes, in regard to a quadric .	102, 103
Ex. 6. Theorem of intervals, for quadrics with ring contact.	103
Ex. 7. Descriptive form of distance theorem for focal conics.	103
Ex. 8. A theorem for the foci of an anallagmatic curve	103
	~~ . ~~
CHAPTER IV. A PARTICULAR FIGURE IN	SPACE
OF FOUR DIMENSIONS	
The structure of the figure. Identity of numbers with those for	•
lines of cubic surface	104, 105
Geometrical bearings of the figure. The group	105
The establishment of the figure	105-111
Exx. 1-4. Some particular results. Connexion with theory of	f
spheres	. 111, 112

Contents

xiii

CHAPTER V. A FIGURE OF FIFTEEN LINES AND POINTS, IN SPACE OF FOUR DIMENSIONS; AND ASSOCIATED LOCI

	PAGES
The figure of fifteen lines and points	113—115
Proof of the incidences with the help of the symbols	115, 116
Ex. 1. A property of five associated lines	117
Ex. 2. A generation of five associated lines	117
Ex. 3. A quadric surface obtained from six points in fourfold space	117
Ex. 4. Harmonic inversion of figure, with point and solid funda-	
mental	117
Ex. 5. Dual of the figure. Harmonic inversion with two funda-	
mental planes	117-119
Ex. 6. Harmonic inversion with line and plane fundamental .	119
Ex. 7. Separation of the figure into two parts, in ten ways	119, 120
Ex. 8. Application of inversion of Ex. 6 to quartic curve in four-	
fold space	120
The associated line of a set of five is met by all planes meeting the	
first four lines	120 - 123
Interpolation in regard to quadric point-cone and line-cone	120-122
The six systems of planes	123, 124
The planes of the figure deduced with the help of the symbols .	124, 125
The equation of an associated quartic locus	125, 126
Ex. The six sets of associated lines give related ranges on certain	
conics	127, 128
The tangent solid of the quartic locus Σ	128, 129
The equations of the singular solids	129, 130
The intersections of a tangent solid of $\boldsymbol{\Sigma}$ with the fifteen funda-	
mental lines	130—133
The intersections of a tangent solid of Σ with the planes of the six	
systems	134 - 136
Ex. 1. Planes of a system meeting a line. Algebraic expression .	136, 137
Ex. 2. Equations for congruence of lines on tangent solid, by planes	
of a system	137, 138
Ex. 3. Particular algebraic results	138
Ex. 4. Intersection of locus Σ with tangent solid is a Kummer	
surface	138, 139
Ex. 5. Six conjugate linear complexes determined by six points .	139, 140
Ex. 6. Algebraic formulation of theorem of Ex. 5	140
Ex. 7. Number of non-intersecting pairs and threes of lines in the	
figure	140
Ex. 8. Other forms of congruence of lines in tangent solid, by	
planes of a system	140, 141
Ex. 9. Theorem for relation of a line to four mutually inscribed	
tetrads	141 149

xiv Contents

	PAGES
Ex. 10. The locus Σ giving rise to Kummer surface, or to Plücker's	140 140
Meridian Surface	142, 143
Ex. 11. Six arbitrary lines in fourfold space are met by five asso-	4.10
ciated planes	143
Ex. 12. Solid through associated plane meets four planes in lines	
of a quadric	143, 144
Ex. 13. Joins of two triads met by solid in six planes touching a	
quadric cone	144, 145
Ex. 14. A plane in a singular solid determines a quadric cone .	145
Ex. 15. Aggregate of planes each joining corresponding points in	
three related planes	145, 146
Exx. 16, 17. Various algebraic results	146, 147
Ex. 18. Enveloping cone of Segre's locus from point of a particular	
line	147
Ex. 19. Trisecant planes of a quartic curve in fourfold space .	147
Ex. 20. Symmetrical tangential equation of Segre's quartic locus .	147, 148
Ex. 21. Quadric in regard to which Segre's figure is self-polar .	148
Ex. 22. Derivation of Segre's figure from fivefold space	149
	149—151
Ex. 23. The projection of Segre's figure on to a threefold space.	151—158
The dual of the figure which has been considered. The cubic locus S	191190
Ex. 1. Equations for the six lines of the locus S through an arbi-	110
trary point	158
Ex. 2. The equation of the Weddle surface	158, 159
Ex. 3. Quadratic congruence obtained by projection of lines of S .	159
Ex. 4. Dual derivation of Weddle's surface	159
Ex. 5. The locus Σ , and its tangent solid, in terms of parameters.	159, 160
Ex. 6. Quartic surface with fifteen double points, changed to sur-	
face with five double points	160
Ex. 7. The locus S by projection from fivefold space	160
Ex. 8. Theory of system of any four quadrics in threefold space $$.	160
CHAPTER VI. A QUARTIC SURFACE IN SP	ACE
OF FOUR DIMENSIONS. THE CYCLIDE	
A quartic surface in space of four dimensions	161, 162
Preliminary algebraic consideration of the surface	162—165
Ex. 1. Surface projected on to plane by planes through a line of the	
surface	165
Ex. 2. Reduction of equations of two quadric point-cones	165
Ex. 3. Combination of harmonic inversions from points of a simplex	165
Ex. 4. Algebraic proof surface contains only sixteen lines	166
Ex. 5. Algebraic arrangement of lines	166
Resumption of the descriptive theory of the quartic surface. The	100 100
sixteen lines	166—168

Contents

 $\mathbf{x}\mathbf{v}$

	PAGES
The self-polar pentad for the quartic surface	168 - 170
Ex. 1. Harmonic inversion of the lines of the figure	170
Ex. 2. The lines meet in pairs in eight points of a face of the pentad	170
Ex. 3. A notation for the sixteen lines. Double-fours of lines .	170, 171
The conics lying on the quartic surface	171, 172
The cubic surface in space of three dimensions; and the theory of	
inversion	172, 173
Ex. 1. Equation for a cubic surface derived from fourfold space .	173
Ex. 2. The twenty-seven lines of the cubic surface obtained by pro-	
jection	174
Ex. 3. A line meeting the Absolute conic inverts into an intersect-	
ing line meeting this conic	174
The Cyclide, or quartic surface with a double conic, in threefold	
space	174, 175
Ex. 1. Equation of Cyclide, and of enveloping spheres	175, 176
Ex. 2. Cyclide as locus of circle, intersection of corresponding	
spheres of two systems	176
Ex. 3. Cyclide as locus of limiting points of fixed sphere and vary-	
ing tangent plane of quadric	176, 177
Ex. 4. Enveloping spheres meet Cyclide on tangent planes of a	
quadric cone	177
The five generations of the Cyclide, with confocal quadric surfaces	177, 178
Ex. 1. The focal conics of the confocal principal quadrics	178, 179
Ex. 2. The angle between two enveloping spheres of different systems	179
Ex. 3. The five inversions of a Cyclide into itself	179
Ex. 4. Four points of double conic of Cyclide at which tangent planes	
coincide	179, 180
Confocal Cyclides. Three through arbitrary point with given focal	
curve, cutting orthogonally	180-183
Ex. 1. Algebraic formulation	183
Ex. 2. Lines in fourfold space which become normals of Cyclide .	183—186
Ex. 3. The lines of curvature of a Cyclide	186—188
Ex. 4. The normals of Cyclide along line of curvature generate a	
$developable \ surface \ . \qquad .$	188, 189
Ex. 5. Sixteen lines of Cyclide are complete intersection with a	
quartic surface	189
Ex. 6. A line of curvature is inverted into a line of curvature .	189
Ex. 7. A criterion for a line of curvature	189
Ex. 8. Two orthogonal surfaces intersecting in a line of curvature	
on one	189
Ex. 9. Plane lines of curvature	189, 190
Ex. 10. Differential equation for inflexional curve, and for line of	
curvature	190
In regard to some particular cases. The Dupin Cyclide	190-194

xvi Contents

	PAGES
Ex. 1. An irrational form of the equation of a general Cyclide .	194, 195
Ex. 2. Equations for a Cyclide with two double points	195, 196
Ex. 3. Equations for a Cyclide with four double points	196198
Ex. 4. Maxwell's generation of Dupin's Cyclide generalised	198
Ex. 5. Inversion of Dupin's Cyclide into an Anchor Ring	198-200
Ex. 6. Two theorems for inversion of spheres	200
Ex. 7. The envelope of a sphere touching three spheres	200, 201
Ex. 8. The inversion of Dupin's Cyclide into a Quadric cone of	200, 201
revolution	201
Ex. 9. Dupin's Cyclide given by its tangent planes	201, 202
Ex. 10. Further equations for Dupin's Cyclide	201, 202
Ex. 10. Partner equations for Dupin's Ogeniae	202
CHAPTER VII. RELATIONS IN SPACE OF F	ave
	1 1 17
DIMENSIONS. KUMMER'S SURFACE	
Klein's figure in three dimensions, related to a figure in five	
dimensions	203-205
Exx. 1—4. Various particular formulae	205, 206
Ex. 5. Origin and scheme for ten important quadric surfaces .	206—208
A transformation of Segre's figure, in space of four dimensions, to	
a figure in five dimensions	208211
Relation of the transformation to the theory of Kummer's surface	211, 212
Kummer's quartic surface as the locus of singular points of a quad-	211, 212
ratic complex of lines	212217
Ex. 1. The question of the covariance of the transformation .	217
Ex. 2. The tetrahedroid, and Wave Surface, of Fresnel	217, 218
Kummer's surface in the geometry of space of five dimensions .	217, 210
The tangent lines of a Kummer surface at a point	221, 222
The inflexional directions at a point of the Kummer surface.	,
	222, 223
The associated quadratic congruences	223—225
The common singular points and planes of the six congruences .	225—227
The confocal quadrics	227—229
Singular planes through a more particular point	229, 230
The Inflexional (or Asymptotic) curves of the Kummer Surface .	230—234
The rationality of the Quadratic Complex, and of the Quadratic	
Congruence	234 - 237
The generation of a quadric in fivefold space. The tetrahedral	
complex in threefold space	237 - 240
The singular points and planes of a Quadratic Congruence.	
Caporali's theorem	240-243
Exx. 1—3. Various algebraic results	243, 244
CORRECTIONS TO VOLUME III	244
INDEX	245250