
Preface

Who is this book for? The target reader will already have experienced a first course in
linear algebra covering matrix manipulation, determinants, linear mappings, eigen-
vectors and diagonalisation of matrices. Ideally the reader will have met bases of
finite-dimensional vector spaces, the axioms for groups, rings and fields as well as
some set theory including equivalence relations. Some familiarity with elementary
number theory is also assumed, such as the Euclidean algorithm for the greatest com-
mon divisor of two integers, the Chinese remainder theorem and the fundamental the-
orem of arithmetic. In the proof of Lemma 6.35 it is assumed that the reader knows
how to resolve a permutation into cycles. With these provisos the subject matter is
virtually self-contained. Indeed many of the standard facts of linear algebra, such as
the multiplicative property of determinants and the dimension theorem (any two bases
of the same finite-dimensional vector space have the same number of vectors), are
proved in a more general context. Nevertheless from a didactic point of view it is
highly desirable, if not essential, for the reader to be already familiar with these facts.

What does the book do? The book is in two analogous parts and is designed to be
a second course in linear algebra suitable for second/third year mathematics under-
graduates, or postgraduates. The first part deals with the theory of finitely generated
(f.g.) abelian groups: the emerging homology theory of topological spaces was built
on such groups during the 1870s and more recently the classification of elliptic curves
has made use of them. The starting point of the abstract theory couldn’t be more con-
crete if it tried! Row and column operations are applied to an arbitrary matrix having
integer entries with the aim of obtaining a diagonal matrix with non-negative entries
such that the (1,1)-entry is a divisor of the (2,2)-entry, the (2,2)-entry is a divisor of
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the (3,3)-entry, and so on; a diagonal matrix of this type is said to be in Smith normal
form (Snf ) after the 19th century mathematician HJS Smith. Using an extension of
the Euclidean algorithm it is shown in Chapter 1 that the Snf can be obtained without
resort to prime factorisation. In fact the existence of the Snf is the cornerstone of the
decomposition theory.

Free abelian groups of finite rank have Z-bases and behave in many ways like
finite-dimensional vector spaces. Each f.g. abelian group is best described as a quo-
tient group of such a free abelian group by a subgroup which is necessarily also free.
In Chapter 2 some time is spent on the concept of quotient groups which no student
initially finds easy, but luckily in this context turns out to be little more than working
modulo a given integer. The quotient groups arising in this way are specified by matri-
ces over Z and the theory of the Snf is exactly what is needed to analyse their structure.
Putting the pieces together in Chapter 3 each f.g. abelian group is seen to correspond
to a sequence of non-negative integers (its invariant factors) in which each integer is a
divisor of the next. The sequence of invariant factors of an f.g. abelian group encapsu-
lates its properties: two f.g. abelian groups are isomorphic (abstractly identical) if and
only if their sequences of invariant factors are equal. So broadly, apart from important
side-issues such as specifying the automorphisms of a given group G, this is the end of
the story as far as f.g. abelian groups are concerned! Nevertheless these side-issues are
thoroughly discussed in the text and through numerous exercises; complete solutions
to all exercises are on the associated website.

In the second part of the book the ring Z of integers is replaced by the ring F [x]
of polynomials over a field F . Such polynomials behave in the same way as integers
and in particular the Euclidean algorithm can be used to find the gcd of each pair of
them. In Chapter 4 the theory of the Smith normal form is shown to extend, almost
effortlessly, to matrices over F [x], the non-zero entries in the Snf here being monic
(leading coefficient 1) polynomials. To what end? A question which occupies centre
stage in linear algebra concerns t × t matrices A and B over a field F : is there a sys-
tematic method of finding, where it exists, an invertible t × t matrix X over F with
XA = BX? Should X exist then A and B = XAX−1 are called similar. The answer
to the question posed above is a resounding YES! The systematic method amounts to
reducing the matrices xI −A and xI −B , which are t × t matrices over F [x], to their
Smith normal forms; if these forms are equal then A and B are similar and X can be
found by referring back to the elementary operations used in the reduction processes;
if these forms are different then A and B are not similar and X doesn’t exist. The
matrix xI − A should be familiar to the reader as det(xI − A) is the characteristic
polynomial of A. The non-constant diagonal entries in the Snf of xI − A are called
the invariant factors of A. It is proved in Chapter 6 that A and B are similar if and
only if their sequences of invariant factors are equal. The theory culminates in the ra-
tional canonical form (rcf) of A which is the simplest matrix having the same invariant
factors as A. It’s significant that the rcf is obtained in a constructive way; in particular
there is no reliance on factorisation into irreducible polynomials.
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The analogy between the two parts is established using R-modules where R is a
commutative ring. Abelian groups are renamed Z-modules and structure-preserving
mappings (homomorphisms) of abelian groups are Z-linear mappings. The terminol-
ogy helps the theory along: for instance the reader comfortable with 1-dimensional
subspaces should have little difficulty with cyclic submodules. Each t × t matrix A

over a field F gives rise to an associated F [x]-module M(A). The relationship be-
tween A and M(A) is explained in Chapter 5 where companion matrices are intro-
duced. Just as each finite abelian group G is a direct sum of cyclic groups, so each
matrix A, as above, is similar to a direct sum of companion matrices; the polynomial
analogue of the order |G| of G is the characteristic polynomial det(xI − A) of A.

The theory of the two parts can be conflated using the overarching concept of a
finitely generated module over a principal ideal domain, which is the stance taken by
several textbooks. An exception is Rings, Modules and Linear Algebra by B. Hartley
and T.O. Hawkes, Chapman and Hall (1970) which opened my eyes to the beauty of
the analogy explained above. I willingly acknowledge the debt I owe to this classic
exposition. The two strands are sufficiently important to merit individual attention;
nevertheless I have adopted proofs which generalise without material change, that of
the invariance theorem 3.7 being a case in point.

Mathematically there is nothing new here: it is a rehash of 19th and early 20th
century matrix theory from Smith to Frobenius, ending with the work of Shoda on
automorphisms. However I have not seen elsewhere the step-by-step method of cal-
culating the matrix Q described in Chapter 1 though it is easy enough once one has
stumbled on the basic idea. The book is an expansion of material from a lecture course
I gave in the University of London, off and on, over a 30 year period to undergradu-
ates first at Westfield College and latterly at Royal Holloway. Lively students forced
me to rethink both theory and presentation and I am grateful, in retrospect, to them.
Dr. W.A. Sutherland read and commented on the text and Dr. E.J. Scourfield helped
with the number theory in Chapter 3; I thank both. Any errors which remain are my
own.

Finally I hope the book will attract mathematics students to what is undoubtedly an
important and beautiful theory.

Christopher NormanLondon, UK




