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On the Robustness of the Shewhart Control
Chart to Different Types of Dependencies
in Data

Olgierd Hryniewicz

Abstract Shewhart control charts were originally designed under the assumption
of independence of consecutive observations. In the presence of dependence the
authors usually assume dependencies in the form of autocorrelated and normally
distributed data. However, there exist many other types of dependencies which are
described by other mathematical models. The question arises then, how classical
control charts are robust to different types of dependencies. This problem has been
sufficiently well discussed for the case of autocorrelated and normal data. In the
paper we use the concept of copulas to model dependencies of other types. We use
Monte Carlo simulation experiments to investigate the impact of type and strength
of dependence in data on the value of the ARL of Shewhart control charts.

Keywords Shewhart control charts • Correlated data • Copulas • ARL

1 Introduction

Statistical process control (SPC) is a collection of statistical methods used by
thousands of practitioners who are striving to achieve continuous improvement in
quality. This objective is accomplished by continuous monitoring of the process
under study in order to quickly detect the occurrence of assignable causes. The
Shewhart NX control chart, known for more than 80 years, is the most popular
SPC method used to detect whether observed process is under control. Its classical
and internationally standardized version is designed under the assumption that
process measurements are described by independent and identically distributed
random variables. In the majority of practical cases these assumptions are fulfilled at
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least approximately. However, there exist production processes where consecutive
observations are obviously correlated, e.g. in case of certain continuous production
processes. The presence of correlations between consecutive measurements should
be taken into account during the design of control charts. This need was already
noticed in the 1970s, see e.g. the papers by Johnson and Bagshaw (1974) and
by Vasilopoulos and Stamboulis (1978), but the problem was widely discussed in
papers published in the late 1980s and in the 1990s.

One of the visible effects of autocorrelation in observed process data is the
significant difference between statistical properties of control charts designed for
independent and dependent data. There exist several approaches for dealing with
this problem. First approach, historically the oldest one, consists in dealing with
original data and adjusting control limits of classical control charts. This approach
was used, for example, in papers by Reynolds Jr. and co-authors (Lu and Reynolds,
1999a,b, 2001; VanBrackle and Reynolds, 1997; Schmid, 1995, 1997; Vasilopoulos
and Stamboulis, 1978; Zhang, 1998). Other approaches are based on the concept
of residuals (see the papers by Alwan and Roberts (1988) or by Montgomery and
Mastrangelo (1991)) or on monitoring statistics related to autocorrelations (see the
papers by Yourstone and Montgomery (1991) or by Jiang et al. (2000)). There
also exist more sophisticated methods for dealing with SPC autocorrelated data.
An overview of SPC methods used for autocorrelated data can be found in papers
by Wardell et al. (1994), Lu and Reynolds (1999a) and Knoth et al. (2001).

While dealing with correlated data we cannot rely, even in the case of classical
control charts, on the methods used for the estimation of their parameters in case
independent observations. Some corrections are necessary, as it was mentioned e.g.
in the paper by Maragah and Woodall (1992). Another problem with the application
of the procedures designed to control autocorrelated data is the knowledge of
the structure of correlation. In the majority of papers it is assumed that the type
of a stochastic process that describes the process data is known. Moreover, it
is also assumed that the parameters of this stochastic process are also known.
However, Lu and Reynolds (1999a, 2001) have shown that precise estimation of
such parameters requires at least hundreds of observations.

All these problems, noticed by many authors, make the SPC with dependent
data very difficult, especially for not well-trained in statistics practitioners who
need efficient tools to discriminate between complicated problems with dependent
data and relatively simple problems when observed data are independent. This
problem was considered in the paper by Hryniewicz and Szediw (2010) who
proposed a relatively simple and efficient nonparametric tool, named by them the
Kendall control chart, for testing hypotheses about independence of SPC data.
While discussing the properties of this tool they noticed that the type of existing
dependence plays a crucial role. In this paper we continue the work along that line
by analyzing the properties of Shewhart control charts when data are generated by
different variants of a simple autoregression model. The mathematical model that
describes serial dependence between consecutive observations of a process in terms
of copulas is described in the second section of the paper. In the third section we
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present the results of Monte Carlo simulation experiments which show very strong
dependence of statistical properties of control charts upon the type and the strngth of
dependence. Conclusions derived from these results are presented in the last section
of the paper.

2 Mathematical Models of Dependence Between Consecutive
Observations on a Control Chart

Mathematical models used for the description of dependent random variables are
well known for many years. In the simplest two-dimensional case we are interested
in the description of dependence between two random variables X and Y having
marginal distributions described by cumulative probability functions F.x/ and
G.y/, respectively. In the context of the considered in this paper time-dependent
observations we can, in the simplest case, set X D Xt and Y D XtC1, where
Xt; t D 1; 2; : : : is the time series representing consecutive observations of the
process under consideration. In his fundamental work Sklar (1959) showed that
for a two-dimensional probability distribution function H.X; Y / with marginal
distribution functions F.X/ and G.Y / there exists a copula C such that H.x; y/ D
C.F.x/; G.y//. This result has been later extended to the case of multivariate
probability distributions. For more information about copulas the reader should refer
e.g. to the book by Nelsen (2006).

All well known multivariate probability distributions, the multivariate normal
distribution included, can be generated by parametric families C˛ of copulas, where
real- or vector-valued parameter ˛ describes the strength of dependence between
the components of the random vector. Thus, copulas have found many interesting
practical applications. The number of papers devoted to the theory and applications
of copulas is still growing rapidly, thanks to the increasing interest coming from e.g.
the analysis of financial risks and the survival analysis. For more recent results the
reader should consult already mentioned book by Nelsen (2006).

In this paper we focus our attention on three types of copulas. First is the normal
copula, which in the two-dimensional case is defined as follows:

C.u1; u2I �/ D ˚N .˚�1.u1/; ˚�1.u2/I �/ (1)

where ˚N .u1; u2/ is the cumulative probability distribution function of the bivariate
normal distribution, ˚�1.u/ is the inverse of the cumulative probability function
of the univariate normal distribution (the quantile function). Parameter � in case of
marginals described by the normal distribution is equal to the well known coefficient
of linear correlation introduced by Pearson. It is worth noticing that the values of
the linear correlation coefficient depend upon the type of marginals. Therefore, for
the same value of the parameter � of the normal copula, the values of the Pearson’s
correlation may be different for different distributions of X and Y .
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Second copula considered in this paper is the Farlie-Gumbel-Morgenstern
(FGM) copula who is frequently used for modelling weak dependencies. This
copula is defined by the following formula:

C.u1; u2I �/ D u1u2 C �u1u2.1 � u1/.1 � u2/; j� j � 1 (2)

The remaining three copulas considered in this paper belong to a general class
of symmetric copulas, named the Archimedean copulas. They are generated using
a class ˚ of functions � W Œ0; 1� ! Œ0; 1�, named generators, that have two
continuous derivatives on .0; 1/ and fulfill the following conditions: �.1/ D 1,
�‘.t/ < 0, and �“.t/ > 0 for all 0 < t < 1 (these conditions guarantee that
� has an inverse ��1 that also has two derivatives). Every member of this class
generates a multivariate distribution function. In this paper we consider three two-
dimensional Archimedean copulas defined by the following formulae (copulas and
their respective generators):

• Clayton’s

C.u; v/ D max
�
Œu�˛ C v�˛ � 1�

�1=˛
; 0

�
; ˛ 2 Œ�1; 1/ n 0 (3)

�.t/ D .t�˛ � 1/=˛; ˛ 2 Œ�1; 1/ n 0 (4)

• Frank’s

C.u; v/ D � 1

˛
ln

�
1 C .e�˛u � 1/ .e�˛v � 1/

e�˛ � 1

�
; ˛ 2 .�1; 1/ n 0 (5)

�.t/ D ln

�
1 � e�˛

1 � e�˛t

�
; ˛ 2 .�1; 1/ n 0 (6)

• Gumbel’s

C.u; v/ D exp

�
�

h
.� ln u/1C˛ C .� ln v/1C˛

i 1
1C˛

�
; ˛ 2 .0; 1/ (7)

�.t/ D .� ln.t//˛C1; ˛ 2 .0; 1/ (8)

In case of independence the dependence parameter ˛ind adopts the value of 0

(in Clayton’s and Frank’s copulas as an appropriate limit). The copulas mentioned
above are sometimes presented using different parametrization, and in such cases
independence is equivalent to other values of ˛.

As it has been already mentioned above, a well known coefficient of linear
correlation cannot be used for measuring the strength of dependence between
random variables whose dependence is described by a given copula. Nonparametric
measures of dependence, such as Spearman’s � or Kendall’s � can be used for this
purpose. For the copulas considered in this paper the values of Kendall’s � are
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easier to calculate, and for this reason we use this measure of dependence in further
analyses.

Genest and McKay (1986) considered the population version of the Kendall’s
coefficient od dependence (association) � . This characteristic can be used for
the description of the strength of dependence in copulas, and its importance in
characterizations of copulas has been shown recently in papers by Nelsen et al.
(2009). Let K.t/ be the cumulative probability function of the random variable
T D C.U1; U2/, where U1 and U2 are random variables uniformly distributed on
Œ0; 1�. The following relation links a copula with Kendall’s � :

� D 3 � 4

Z 1

0

K.t/dt (9)

Estimation of K.t/ for the case of two-dimensional copulas, and thus the estimation
of � , was considered by Genest and Rivest (1993).

Closed formulae for Kendall’s � are available only for some copulas. In the case
of the normal copula we have the following expression

�Norm D arcsin.�/=.�=2/: (10)

For the FGM copula we can compute Kendall’s � from a very simple formula

�FGM D 2�=9: (11)

For the family of Archimedean copulas there exists the following general formula
that links Kendall’s � with the generator function �:

�Arch D 1 C 4

Z 1

0

�.v/

�0.v/
dv: (12)

For specific cases of the considered in this paper Archimedean copulas we have:

• Clayton’s copula

� D ˛

˛ C 2
; (13)

• Frank’s copula

� D 1 C 4

�
1

˛

Z ˛

0

t

et � 1
dt � 1

�
=˛; (14)

• Gumbel’s copula

� D ˛

˛ C 1
: (15)

Each copula can be looked upon as a multivariate probability distribution whose all
marginal distributions are uniform. However, by using an inverse probability distri-
bution function (a quantile function) we can transform each uniformly distributed
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random variable to a variable with any continuous probability distribution. In this
paper we will consider the case when such transformation will lead to marginals
described by the standard normal distribution N.0; 1/. This assumption definitely
restricts generality of inferred conclusions, but – on the other hand – allows to
compare our new results with those presented by other authors who usually made
this assumption.

3 Basic Properties of the Shewhart Control Chart in Case
of Dependencies of Different Types

The most frequently used statistical characteristic of a control chart is its Average
Run Length ARL. This characteristic describes the expected number of observa-
tions (points plotted on a chart) until the occurrence of an alarm (e.g. when the first
point beyond 3-� control limits has been observed). When consecutive observations
are independent, and their probability distribution is known, the random variable
which describes the waiting time till the moment of the first observation beyond the
control limits is distributed according to the geometric distribution, and the value of
the ARL can be calculated analytically. However, when observations are dependent
(serially correlated) and/or their probability distributions are only partially known
(e.g. the class of the distribution is known, but its parameters are estimated) this
characteristic usually cannot be calculated from a closed formula. Therefore, we
need to use statistical Monte Carlo simulation in order to evaluate the value of
the ARL.

In our simulation experiments we have generated consecutive observations using
conditional probability distributions derived from two-dimensional copulas. In order
to arrive at comparable results we have generated serially correlated processes
described by a fixed in advance value of Kendall’s � . By having the same normal
marginal distributions, and the same values of the measure of the strength of
dependence we can detect a possible influence of the type of dependence related to
the type of the underlying copula. In the following two subsections we will present
the results of experiments for two cases:

• Parameters of the normal distribution (design parameters) are known,
• Parameters of the normal distribution (design parameters) are estimated from an

initial sample.

In both cases we consider only one type of the process deterioration: the shift of
the process level by k� . When k D 0 (i.e. when there is no shift) the value of the
ARL represents the average time to a false alarm. When k D 1 we have the case
of a small deterioration. Significant deterioration of the process is in our experiment
modelled by setting k D 3.
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Table 1 ARLs–Shewhart control chart (design parameters known), TEST 1: “3-�” rule, no shift

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 1391.0 x 759.3 385.4 1301.8
0.5 466.8 x 622.4 373.1 633.57
0.3 389.0 x 496.0 373.4 528.6
0.1 371.1 369.6 384.4 370.5 456.4
0.05 370.5 369.3 374.7 372.1 443.3
0.01 370.6 369.7 371.6 372.2 430.7
0 370.5 370.5 370.5 370.5 370.5
�0:01 372.31 369.28 370.19 372.97 x
�0:05 371.3 370.8 370.0 371.7 x
�0:1 371.3 368.9 370.6 371.2 x
�0:3 390.0 x 384.3 374.1 x
�0:5 468.4 x 433.9 375.0 x
�0:8 1379.4 x 898.6 384.0 x

3.1 Known Design Parameters

The results of the simulation experiment for known design parameters are presented
in Tables 1–3 for different values of the shift of the process level (mean value). Each
number in these tables has been obtained after averaging the results of 200,000
simulation runs. The maximal length of each simulation run varied from 10,000 to
100,000 observations (for strongly dependent observations).

In Table 1 we present the average times to a false alarm. In all considered cases
the expected time to a false alarm in presence of dependent data is always larger
than in the case of independence, and this difference increases with increasing
strength of dependence. However, the way how the ARL depends on the value of �

strongly depends on the type of the copula that describes the data. It is interesting
to see that for all considered copulas, with a noticeable exception of Gumbel’s
copula, the values of the ARL change insignificantly for weakly dependent data.
However, for moderate and strong dependencies these values are changing in a
completely different way depending on the type of a copula. For the normal copula
(i.e. for an ordinary Gaussian autoregression AR.1/ process) the value of the ARL

increases for the increasing absolute value of the strength of dependence measured
by Kendall’s � . The dependence of the ARL on the value of � is symmetrical and
these values become very large for large values of � . In case of the FGM copula,
which is used for modelling weak dependencies, the influence of the value of � on
the ARL is practically non-existing. The similar situation, but extended to larger
values of � , has been observed for Frank’s copula.

In the case of Clayton’s copula the dependence of the ARL upon the value of �

is not symmetric. In case of positive dependence (� > 0), and small and moderate
strength of dependence, the ARL in this case is larger than in the case of the normal
copula. However, in case of very strong positive dependence this value of the ARL

is significantly smaller than in the normal case. In case of negative dependence
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Table 2 ARLs–Shewhart control chart (design parameters known), TEST 1: “3-�” rule, shift
of 1�

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 273.21 x 90.28 86.74 653.04
0.5 71.95 x 48.55 54.18 126.65
0.3 52.25 x 45.18 47.7 73.07
0.1 45.11 43.97 43.74 45.42 50.39
0 43.78 43.78 43.78 43.78 43.78
�0:1 43.62 43.73 43.74 44.75 x
�0:3 44.36 x 44.63 44.55 x
�0:5 50.96 x 50.15 45.53 x
�0:8 135.18 x 101.04 52.44 x

Table 3 ARLs–Shewhart control chart (design parameters known), TEST 1: “3-�” rule, shift
of 3�

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 10.58 x 24.94 9.75 9.1
0.5 3.29 x 4.05 4.51 3.16
0.3 2.49 x 2.59 3.55 2.44
0.1 2.1 1.99 2.12 3.13 2.11
0 1.99 1.99 1.99 1.99 1.99
�0:1 1.92 2.0 1.92 2.91 x
�0:3 1.79 x 1.83 2.76 x
�0:5 1.69 x 1.77 2.65 x
�0:8 1.57 x 1.71 2.57 x

(� < 0) the ARL for Clayton’s copula is always smaller than the ARL in the normal
case. The case of Gumbel’s copula requires special comments. This copula describes
only positive dependence, and even for very weak dependencies the corresponding
values of the ARL are significantly greater than in the case of independence. Only in
case of very strong dependence the behaviour of the Shewhart control chart seems
to be similar to that described by the normal copula. It means that the Shewhart
control chart is very sensitive to this type of dependence, even if this dependence is
very weak, and thus difficult to be confirmed.

In case of small shifts (equal to 1�) of the process level the dependence of the
ARL upon � looks different. The values of the ARL in presence of dependent
data are nearly always greater than in the case of independence. It means that
the dependence in data has negative impact on discrimination abilities of the
Shewhart control chart, and this unpleasant feature does not depend upon the type
of dependence. In case of strongly dependent data the values of the ARL may
be so large (especially for normal and Gumbel’s copulas) that the chart becomes
practically insensitive to relatively small deterioration of the process. However,
in the case of Frank’s copula the value of the ARL remains reasonable even for
strongly dependent data (especially in case of negative dependence).
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When the shift of the process is large (e.g. equal to 3�) the situation is different.
First of all, in case of negative dependence described by the normal and Clayton’s
copulas the chart reacts faster than in the case of independence. Positive dependence
in all considered cases has negative influence on the ability of the chart to detect
shifts. The worse situation is in the case of Frank’s copula, and this is somewhat
unexpected because for small shifts this copula seems to be the most favourable.
A similar situation is with Clayton’s copula which usually behaves quite well except
for the case of large shifts and strong positive dependence.

3.2 Estimated Design Parameters

Let us consider the case when parameters of the probability distribution (mean value
and standard deviation) that are used for the design of a control chart are estimated
from a process (its Phase I, as the sampling period is sometimes called) with
possibly dependent consecutive observations. This assumption leads to significant
consequences. First of all, random character of control lines which are estimated
from a sample adds some variability resulting in wider (on average) in-control
area on a control chart. This problem has been considered by many authors, and
some conclusions from that research may be found in the paper by Woodall and
Montgomery (1999) or in the paper by Albers and Kallenberg (2004). Second, the
autocorrelation between sample observations influences the properties of estimators,
as it was noticed already in the paper by Vasilopoulos and Stamboulis (1978).
Variability related to both these two sources is difficult to be assessed analytically.
Thus, simulation experiments are needed in order to evaluate the properties of
control charts designed in such a way.

Our simulation experiment has two phases as in actual applications. First we
simulate a sample of n elements, and the results of this simulation are used for the
design of a control chart. The minimal number of observations which is suggested
for designing a chart should be, according to many authors, such as e.g. Quesenberry
(1993), not smaller than 300. However, in the majority of popular textbooks on
quality control this minimal value is proposed to be equal to 100. Having in mind
our main purpose, i.e. to investigate the influence of different types of dependence
on the performance of control charts actually used in practice, in our experiments
we set the sample size (the number of consecutive observations that are used for the
design of a chart) as equal to 100. In the experiment we have simulated 500 different
control charts, and for each of them we have simulated 500 production runs. Thus,
for each experiment described by the chosen copula and the given value of Kendall’s
� we have had altogether 250,000 simulation runs. These runs have been used for
the estimation of the ARL, and other statistical properties of the chart.

Table 4 contains the results of the simulation experiment similar to those
presented in Table 1, i.e. in presence of no shift in the level of a process. Somewhat
unexpectedly these results are different not only with respect to the simulated values
of the ARL. The dependence of the ARL upon the value of � is also somewhat
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Table 4 ARLs–Shewhart control chart (design parameters estimated), TEST 1: “3-�” rule,
no shift

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 2111.72 x 346.65 568.74 1192.92
0.5 967.84 x 974.28 437.75 1142.76
0.3 540.38 x 730.8 487.09 799.15
0.1 473.11 490.15 560.42 508.98 586.61

0 486.14 486.14 486.14 486.14 486.14
�0:1 503.28 458.77 447.48 458.49 x
�0:3 589.39 x 537.13 512.63 x
�0:5 1242.9 x 861.8 593.1 x
�0:8 9966.6 x 6255.6 1253.5 x

different than that represented in Table 1. The results of the experiment displayed
in Table 4 show that the existence of dependence of any type results, in general, in
increasing value of the ARL. Only in few cases, in presence of weak dependence,
the values of ARL are slightly smaller than in the case of independence. When the
strength of dependence is low, the values of the ARL are similar. Only for Gumbel’s
copula this value is visibly larger than in the case of independence. For moderate
values of Kendall’s � practically acceptable worsening of the value of the ARL can
be noticed only in the case of Frank’s copula. In the case of strong dependence,
both positive and negative, the values of the ARL are large enough to make the
chart insensible to the process deterioration of that magnitude. An interesting, and
difficult to explain, exception is the case of Clayton’s copula where the large value
of ARL for � D 0:5 decreases to a low value for � D 0:8. A phenomenon of a
similar type is also seen in the case of Gumbel’s copula.

When the magnitude of the process deterioration is large (i.e. when the shift
in the process level is equal to 3�) the picture is anew different. First of all, it
can be noticed that in the case of small and moderate negative dependencies the
value of the ARL may be smaller than in the case of independence. It means that
negative dependence, unless it is not too strong, has a positive impact on the ability
of the chart to detect deteriorations of large magnitude. In case of strong negative
dependence the situation is different, and the value of the ARL usually becomes too
large. In the case of the normal copula this value becomes completely unacceptable.
In case of positive dependence good properties of the chart are observed for Frank’s
and Gumbel’s copulas.

The results presented in Tables 4–6 show a very complicated situation. Only in
the case of Frank’s copula the performance of the Shewhart control chart is more
or less robust to the existence of dependence between consecutive observations. In
all remaining cases one can observe situations which are difficult to describe and
explain. Only in the case of the normal copula the dependence of the ARL on the
strength of dependence can be described in a relatively simple way: the chart is
completely insensible to process shifts only in the case of strong, both positive and
negative, dependence.
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Table 5 ARLs–Shewhart control chart (design parameters estimated), TEST 1: “3-�” rule, shift
of 1�

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 352.88 x 55.77 80.64 206.43
0.5 84.7 x 102.46 55.72 205.43
0.3 59.61 x 57.34 51.55 92.76
0.1 54.88 51.4 50.51 49.12 58.54
0 48.09 48.09 48.09 48.09 48.09
�0:1 48.9 50.72 50.15 47.39 x
�0:3 56.1 x 56.07 53.08 x
�0:5 78.25 x 80.61 59.4 x
�0:8 769.18 x 433.52 89.26 x

Table 6 ARLs–Shewhart control chart (design parameters estimated), TEST 1: “3-�” rule, shift
of 3�

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 7.35 x 11.95 4.80 2.00
0.5 3.27 x 3.94 2.68 2.54
0.3 2.54 x 2.70 2.26 2.55
0.1 2.15 2.05 2.18 2.15 2.19
0 2.06 2.06 2.06 2.06 2.06
�0:1 1.92 2.07 1.96 1.87 x
�0:3 1.85 x 1.95 2.00 x
�0:5 1.92 x 2.09 2.02 x
�0:8 21.47 x 4.22 2.45 x

Table 7 Skewness of the run length – Shewhart control chart (design parameters estimated), shift
of 3�

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 9.53 x 7.18 5.89 2.1
0.5 3.7 x 4.05 4.11 7.16
0.3 3.02 x 7.47 3.63 3.98
0.1 2.7 2.54 3.3 2.7 2.94
0 2.49 2.49 2.49 2.49 2.49
�0:1 2.12 2.54 2.6 2.8 x
�0:3 3.11 x 3.75 2.32 x
�0:5 6.87 x 6.47 2.72 x
�0:8 27.96 x 10.59 6.08 x

ARL is the most frequently used statistical characteristic of control charts.
Another characteristic which is often calculated is the variance of the run length.
Specialist are fully aware of the fact that the run length is a highly skewed random
variable, and these two characteristics are not sufficient for the comprehensive
description of the statistical properties of control charts. The coefficient of skewness
whose value equal to 2 is well known for the chart with known design parameters is
rarely calculated for other cases. In Table 7 we present the values of the coefficient
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of skewness of the run length for the case of estimated design parameters and shift
equal to 3� .

The values given in Table 7 show that the times to alarm are highly skewed,
especially in case of strong (both positive and negative) dependence. In practice
it means that despite reasonable values of the ARL there is quite substantial pos-
sibility that even significant process deterioration may not be detected sufficiently
quickly.

4 Tests Based on Runs in Case of Dependent Data

Classical Shewhart control chart has been supported by additional decisions rules
based on runs. Different rules have been proposed by many authors, but the most
popular ones were proposed in the Western Electric handbook in 1956. They are also
described in the international standard ISO 8258 and in the paper by Nelsen (1984).
These rules are designed with the aim to detect deteriorations of different type.
Statistical properties of control charts with supporting run rules can be computed
using the Markov chain approach. A general solution of this problem has been
proposed in the paper by Champ and Woodall (1987). This methodology has
been successfully implemented for the calculations made under the assumption
of independence of observations, and full knowledge of the values of design
parameters. However, in case of dependent observations, and for estimated values
of design parameters such computations are very difficult or even hardly possible.
Therefore, in our analysis we used the results of the Monte Carlo simulation
experiments. The settings of these experiments are the same as in the cases described
in the previous sections of this paper.

One of the most popular rule, known as Test 3 or “6 increasing (decreasing) in a
row”, is used for the detection of harmful trends. The properties of this test do not
depend upon the design parameters, and may be evaluated using recently published
results of Ferguson et al. (2000). In Table 8 we present the values of the ARL for
this particular test when the process is in the in-control state.

These results show that dependencies have detrimental impact on the properties
of this test. In case of positive dependence the average time to a false alarm becomes
unacceptably small. On the other hand, the negative dependence (especially the
strong one) may decrease the ability of the test to detect trends in data. Similar
results, which are not presented in this paper because of its limited volume, have
been observed in preliminary experiments for the case of deteriorated processes.

Another popular additional decision rule, known as Test 5 or “2 out of 3 in a row
observation in an outer zone”, is used to improve the ability to detect small shifts
of the process level. In Table 9 we present the values of the ARL for this test when
the process is in the in-control state, and the design parameters are estimated from
(possibly dependent) observations.

The dependence of the value of the ARL and the value of � cannot be easily
explained at the current stage of our research. For example, in case of the normal
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Table 8 ARLs–Shewhart control chart (design parameters known), TEST 3: “6 in a row” rule,
no shift

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 24.8 x 27.3 26.1 24.3
0.5 30.1 x 32.4 30.9 30.26
0.3 48.2 x 47.4 48.4 46.1
0.1 97.1 147.3 95.3 96.1 92.4
0.05 119.2 146.4 117.1 118.5 115.0
0.01 140.4 147.1 140.1 141.1 138.0
0 147.1 147.1 147.1 147.1 147.1
�0:01 153.66 148.50 153.85 155.59 x
�0:05 183.2 147.1 182.6 186.2 x
�0:1 225.7 146.6 225.8 236.7 x
�0:3 539.14 x 507.63 665.26 x
�0:5 1228.96 x 1237.65 1831.29 x
�0:8 4723.89 x 13773.52 x

Table 9 ARLs–Shewhart control chart (design parameters estimated), TEST 5, no shift

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 165.63 x 206.31 102.07 169.82
0.5 95.92 x 184.54 159.38 111.92
0.3 143.0 x 155.32 249.16 130.95
0.1 323.26 510.36 245.75 413.61 222.92
0 510.14 510.14 510.14 510.14 510.14
�0:1 321.9 509.96 620.63 598.52 x
�0:3 401.61 x 335.36 567.58 x
�0:5 193.24 x 165.45 379.85 x
�0:8 209.73 x 134.81 201.11 x

copula this dependence is highly non-monotonic. On the other hand, in case
of Frank’s copula the largest value of the ARL is observed for small negative
dependence, and then the value of the ARL decreases with increasing (decreasing)
values of � . Interesting is the case of the FGM copula where in contrast to other
considered cases the existing weak dependence does not influence the value of the
ARL.

In our experiments we have also calculated the properties of chart with combined
decision rules. When Test 1 is combined with Test 5 the ARL in case of estimated
design parameters and independence has been evaluated as equal to 293.11.
The exact calculations performed for this case, but for known values of design
parameters, by Champ and Woodall (1987) gave the value of the ARL equal to
225.44.

The results presented in Table 10 confirm this value, and additionally show how
the ARL in the case of this combination of tests depends on the type and the strength
of dependence.
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Table 10 ARLs–Shewhart control chart (design parameters known), TEST 1CTEST 5, no shift

Kendall’s � Normal FGM Clayton Frank Gumbel

0.8 165.44 x 180.76 91.68 168.74
0.5 93.46 x 151.39 122.71 105.92
0.3 120.51 x 130.32 161.28 115.87
0.1 187.27 226.65 169.16 207.24 165.62
0 225.45 225.45 225.45 225.45 225.45
�0:1 250.41 226.58 244.68 240.57 x
�0:3 222.3 x 201.0 235.94 x
�0:5 168.26 x 145.03 202.07 x
�0:8 209.72 x 131.67 149.55 x

5 Conclusions

The results presented in this paper confirm without any doubts the findings of
many authors who considered the bahaviour of Shewhart control charts in case of
dependent data described by autoregressive stochastic processes. What seems to
be new is the demonstration that the type of dependence, encapsulated in the type
of respective copula, plays important role. Moreover, it becomes very clear that
the knowledge of the strength of dependence, measured using popular statistical
measures of dependence such as Kendall’s � is not sufficient for the evaluation of
the properties of the Shewhart control chart.

From the results presented in this paper one can derive the following recommen-
dations. First, it is necessary to detect the existence of dependence in data. This
can be done using the Kendall control chart proposed by Hryniewicz and Szediw
(2010). Then, it is necessary to indicate the copula which fits to the observed
data. Unfortunately, the appropriate tests, such as presented e.g. in the paper by
Fermanian (2005), seem to be not simple enough to be used by quality control
practitioners. Therefore, a lot has to be done in order to propose even approximate
but simple methods for the identification of an actual copula. Then, the future
investigations should be concentrated on finding appropriate corrections to classical
procedures, similar in spirit to those that has been proposed in case of dependencies
described by the normal copula.
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