
Chapter 2
Random Variables and Probability;
Normal Distribution

2.1 Probability and Random Variables

We say that a phenomenon is random if, on the basis of our best knowledge, we can-
not exactly predict its result. What really happens is only one of many possibilities.
In every day life we meet random results of lotteries, a non-predictable dispersion
of gun shots at a target or a random travel time through a crowded city.

An intuitively understandable idea of random phenomena can be formalized by
the concept of random events and probability. Using formal definitions, we say that
the random event (a collection of sample points) is a result of some random phe-
nomena, and its probability is the chance that this phenomenon will occur, expressed
by a number from the interval [0,1].

Example 2.1 (An unbiased coin flipping) During an experiment of a single flip of an
unbiased coin, two results are possible: the occurrence of heads and the occurrence
of tails. Both results are random events. The probability of heads and the probability
of tails are equal and they are 1/2.

In this example we can say that the set of all possible results of the experiment
has two elements (occurrence of heads and occurrence of tails). We interpret the
probabilities of occurrence of these elementary events in the following way: if we
repeat flipping the coin a sufficient number of times, then the number of occurrences
of heads (or, equivalently, the number of occurrences of tails) divided by the num-
ber of flips will tend to 1/2. This is the so-called frequency interpretation of the
probability.

Example 2.2 (Dice casting) During an experiment of a single cast of an unbiased
die, six results are possible: the occurrence of a face with n = 1, 2, 3, 4, 5, or 6 spots.
Then the set of the results (elementary events, sample points) contains six elements.
The probability of each event (the occurrence of a face with n spots) equals 1/6.
This means that if the number of casts tends to infinity, then the following ratio:
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number of casts, when n spots occurred

total number of casts

tends to 1/6, for n = 1, 2, 3, 4, 5, and 6.

The expected outcome of the experiment described in Example 2.2 may be more
complicated than the occurrence of a fixed number of spots. For example, we can
ask: What is the probability that the single cast results in a face with an even number
of spots? What is the probability that we will see a face which has more than 4 spots?
Of course, we can easily deduce that in the first case the probability is 1/2 and in
the second one 1/3.

The above examples show that it is conceptually easy to define an event and
the probability of an event if the number of possible outcomes of the experiment
(e.g., coin flipping or dice casting) is finite and the outcome of each result is equally
probable. In such a case, the probability of some event is defined as the frequency
of occurrences of this event when the number of experiments tends to infinity.

In some situations, we can introduce another definition of probability. If the set
of results of an experiment is infinite but it is contained in some set on a plane (alter-
natively: in 3-dimensional space, on a straight line, etc.), then the probability has a
geometrical interpretation. The probability of a certain outcome of an experiment is
the ratio of the area of the subset corresponding to these results, to the area of the set
corresponding to all possible results of the experiment. The geometrical definition
of probability has some limitations: the results of the experiment must be located in
a bounded set on the plane and, moreover, they must be evenly distributed over this
set.

The definitions of an event and the probability of an event used today have their
origin in measure theory. The fundamental object of probability theory is the prob-
ability space. A probability space is defined by the triad (Ω,�,P ), where Ω is the
sample space containing all elementary events (sample points), � is the σ -algebra
of Borel subsets of the sample space Ω containing all possible events (elementary
and compound), and P is a (probability) measure defined on �.

We will now comment on the above definitions. Elementary events ω (being
elements of the sample space Ω) are results of some experiment, mutually exclud-
ing each other; this means that only one elementary event can be the result of the
experiment. Generally, (compound) events in an experiment are elements of the σ -
algebra �. Occurrence of an event A can be the result of several elementary events;
knowing the outcome of an experiment we are able to decide if the event A oc-
curred. The probability measure P or, simply, the probability, has the property that
it is equal to 1 for the certain event (the whole sample space Ω , that is, the event
that the experiment had some outcome). Certainly, the probability of the impossible
event (the empty set ∅) is zero.

Example 2.3 (An unbiased coin flipping, continuation) The probability space for
the experiment of a single fair coin flip is (Ω,�,P ), where: the sample space Ω is
the following 2-element set:

Ω = ({heads}, {tails});
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the σ -algebra � consists of four elements: the empty set ∅, two 1-element sets, and
the whole sample space Ω :

� = (∅, {heads} , {tails} ,Ω) ;

the probability P is defined as:

P ({heads}) = 1

2
, P ({tails}) = 1

2
.

Example 2.4 (Dice casting, continuation) In the experiment of a single balanced die
cast, the probability space is the following: the sample space Ω has 6 elements:

Ω = ({1 spot} , {2 spots} , {3 spots} , {4 spots} , {5 spots} , {6 spots}) ;

the σ -algebra � consists of the following elements: the empty set ∅, all subsets of
Ω containing 1, 2, 3, 4, and 5 elements and the whole sample space Ω :

� =
⎛
⎝

∅, 6 one-element subsets, 15 two-element subsets,
20 three-element subsets, 15 four-element subsets,

6 five-element subsets, Ω

⎞
⎠ ;

the probability P is defined as:

P ({1 spot}) = P ({2 spots}) = P ({3 spots})
= P ({4 spots}) = P ({5 spots}) = P ({6 spots}) = 1

6
.

The concept of randomness and probability presented here identifies events with
subsets of the sample space Ω, which are elements of the σ -algebra �. Therefore,
we are able to perform on these events the operations analogous to the operations of
set theory. For two events A,B ∈ �, we can define the union A ∪ B (A or B hap-
pens), intersection A ∩ B (A and B occur simultaneously), difference A\B (A oc-
curs but B does not), etc. Probability, as we mentioned, is a measure; it has the
following properties:

0 ≤ P (A) ≤ 1, (2.1)

P (∅) = 0, P (Ω) = 1, (2.2)

P (A ∪ B) = P (A) + P (B) − P (A ∩ B) , (2.3)

and for a countable number of disjoint events Aj :

P

(⋃
j

Aj

)
=

∑
j

P (Ai). (2.4)
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In probability theory, it is very important to know the relationship between
events: their dependence or independence. We say that two events A and B are
independent if their probabilities satisfy the following condition:

P (A ∩ B) = P (A)P (B) , (2.5)

which means that the probability of the simultaneous occurrence of both events is
equal to the product of probabilities of their separate occurrence. If condition (2.5)
is not satisfied, the events A and B are dependent.

To know to what extent the events A and B are dependent, we can use the condi-
tional probability P(A|B), which is defined as

P (A|B) = P (A ∩ B)

P (B)
. (2.6)

The quantity P(A|B), which is the probability of A conditioned on B , we un-
derstand to be the probability of occurrence of A under the condition that B has
occurred.

Using formula (2.5) in (2.6), we see that if events A and B are independent then

P (A|B) = P (A) . (2.7)

The concept of the conditional probability is strongly related to the definition
of complete probability. If we have some sequence of mutually excluding events
Bj , j = 1,2, . . . , n, Bk ∩Bl = ∅ for k �= l, satisfying additionally

⋃
j Bj = Ω, then

the probability of any event A can be represented as

P (A) =
∑
j

P
(
A|Bj

)
P

(
Bj

)
. (2.8)

The last equation enables us to calculate the probability of some event A if we
know its probability under some additional conditions, that is, if we know that some
event Bj has occurred.

Example 2.5 (Dice casting, continuation) Consider the experiment of the die sin-
gle cast and define two events: A, the outcome is a face with an even number
of spots, and B, the face with a number of spots greater than 4. We can verify
whether these two events are independent. Using the elementary events defined
in Example 2.4 we find that the events are: A = ({2 spots}, {4 spots}, {6 spots}),
B = ({5 spots}, {6 spots}), and their probabilities are: P(A) = 1

2 , P(B) = 1
3 .

The intersection of the events is: A ∩ B = ({6 spots}), and the probability of
intersection, P(A∩B) = 1

6 . It is seen that the events A and B satisfy condition (2.5),
that is, they are independent.

If we replace the event B with a new one: B1—the number of spots is greater than
5 (that is, B1 = ({6 spots}) and P(B1) = 1

6 ), then the intersection of the events is
A ∩ B1 = ({6 spots}) and it is seen that the events A and B1 are dependent, because
P(A)P (B1) = 1

12 and P(A ∩ B1) = 1
6 , so the condition (2.5) is not satisfied.
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The description of results of experiments or observations of random phenomena
in terms really existing in these processes is very complicated. To make the mod-
eling of the processes more convenient we can introduce the concept of a random
variable.

The real-valued function X(ω) defined on the sample space Ω of random events
ω is called a random variable if a pre-image1 A of every interval of real numbers of
the form I = (−∞, x) is a random event (an element of the σ -algebra �).

Probability P describing properties of random events can also describe random
variables. It is transferred from the σ -algebra of events to the space of real-valued
random variables by pre-images of the intervals I :

P (I) = P (ω such that X (ω) < x) . (2.9)

For a given sample space we can consider various random variables. Our choice
depends on the purpose of the modeling.

Example 2.6 (An unbiased coin flipping, continuation)

(a) Consider the experiment of a symmetric coin single flip. Assign number 1 to
the outcome of heads and number −1 to the outcome of tails. Such a random
variable may be used for description of a random walk on a straight line. We
start from x = 0 and repeat the coin flipping. If the outcome is heads then we
add 1 to x, if tails, we subtract 1. After every trial the value of x is greater by 1 or
smaller by 1 than the value in the previous step. We repeat the trial many times
obtaining the x-coordinate of the walking particle in every step (see, e.g., [11]).

(b) Consider the same experiment. We assign number 1 to heads and number 0 to
tails. Repeating the trials many times and writing down the obtained numbers
we generate random numbers in binary notation.

Analogously to the events, we can define independence of random variables.
We will say that two random variables X and Y (defined on the probability space
(Ω,�,P )) are independent if for all x1 ≤ x2 and y1 ≤ y2 the events of the form
{ω : x1 ≤ X(ω) < x2} and {ω : y1 ≤ Y(ω) < y2} are independent.

The theorem concerning the complete probability (2.8) makes it possible to ap-
ply in many technical problems the so-called conditioning technique. This method
is based on the procedure of decomposition of the initial complicated problem into
a number of tasks easy to solve when we assume certain conditions to be satisfied
with a certain probability. Then the simplified problems are solved and, finally, the
general non-conditioned solution is obtained by averaging of the set of solutions
with respect to the assumed probability distribution. Such a technique lets us calcu-
late the parameters (e.g., moments) or distributions of random variables in various

1Assume, we have a function X : Ω → R and let A be a subset of the set of real numbers R.
The pre-image (or inverse image) A for the function X is a set B ⊂ Ω , containing all the elements
ω ∈ Ω such that their image belongs to A, which means X(ω) ∈ A. In such a case we write:
B = X−1(A).
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engineering problems. The reader can find more about this technique in the papers
[12, 13] or the textbook [20].

2.2 The Cumulative Distribution Function; the Probability
Density Function

Most problems of the error calculus arising in technological applications concern
the analysis of random variables with continuous distributions. Random variables
of such a nature may assume any value from a certain range. The cumulative distri-
bution function (or: probability distribution function) F(x) of any one-dimensional
random variable X is defined by the expression2:

F (x) = P (X < x) , (2.10)

which means that the cumulative distribution function is defined as a function, the
value of which for a given x is equal to the probability of an event that the random
variable X is smaller than the number x.

The cumulative distribution function is defined for all real numbers and it is a
non-decreasing, continuous on the left, function. Moreover, for x tending to minus
infinity and plus infinity, it satisfies the following conditions:

F (−∞) = 0, F (∞) = 1. (2.11)

The probability distribution function can be applied to the calculation of proba-
bilities of the events related to the random variable X. For instance, the probability
of an event that a random variable X belongs to the interval [x1, x2) can be expressed
by means of the probability distribution function (see Fig. 2.1):

P (x1 ≤ X < x2) = F (x2) − F (x1) . (2.12)

Fig. 2.1 The cumulative
distribution function

2We shall denote random variables by capital letters X, Y , while their values, being numbers, will
be denoted by small letters x, y. This does not refer to cases when a random variable in a particular
formula has a physical meaning and is usually denoted by a small letter. P (A) is the probability of
an event A.
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If the random variable X is discrete, that is, if it takes values from a finite (or
countable) set: {xj , j = 1,2, . . . ,N} (or {xj , j = 1,2, . . .}), then the cumulative
distribution function is discontinuous at these points and its jumps are equal to pj .

Moreover, the following equality holds:

P(X = xj ) = pj . (2.13)

Over the intervals of continuity, x ∈ [xj , xj+1), the cumulative distribution function

F(x) of the discrete random variable X is constant and equal to F(x) = ∑j

k=1 pk =
Fj . An example of the cumulative distribution function of some discrete random
variable is presented in Fig. 1.3.

The cumulative distribution function of a random variable with a continuous dis-
tribution (the continuous random variable) may be expressed in the form of the
integral

F (x) =
∫ x

−∞
f (ξ) dξ. (2.14)

Function f (x) in (2.14) is referred to as the probability density function (or sim-
ply probability density) of a random variable X. If the cumulative frequency distri-
bution F(x) has a derivative at any point x, then such a derivative represents the
density

f (x) = F ′ (x) . (2.15)

Since the cumulative distribution function describes the normalized probability
measure (the probability of the certain event equals 1, which means that P(−∞ <

X < ∞) = 1) and is a non-decreasing function, the probability density function
f (x) has the following two properties:

A =
∫ ∞

−∞
f (x)dx = 1 (2.16)

and

f (x) ≥ 0. (2.17)

Thus, the area A between the graph of function f (x) and the horizontal axis x of
the random variable is equal to unity.

The probability of any event that the variable X lies in the interval [x1, x2), which
is, that it will have the value P(x1 ≤ X < x2), is defined by the following:3

P (x1 ≤ X < x2) =
∫ x2

x1

f (x) dx. (2.18)

The relation (2.18) is presented graphically in Fig. 2.2.

3For continuous distributions the probability that a random variable is located in a closed interval
is the same as in an interval closed on one side or as in an open interval. In (2.18) we decided to
choose an option of the interval closed on the left-hand side.
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Fig. 2.2 The probability
density function

Fig. 2.3 The quantile
function, see (2.19)

The cumulative distribution function and the probability density function are not
the only functions characterizing a random variable. In some situations the inverse
distribution function G(α), sometimes called the quantile function, is more conve-
nient. For a given cumulative distribution function F(x), the quantile function is
defined as a function satisfying the following conditions:

x = G(α) = G(F (x)) ,

P (X ≤ G(α)) = α.
(2.19)

This mutual relation between F(x) and G(α) is shown graphically in Fig. 2.3.
In some applications of inspection theory and reliability theory, and also in some

problems of mathematical statistics, the survival function S(x) is useful. It is defined
as the probability that the random variable X is greater than or equal to x:

S (x) = P (X ≥ x) = 1 − F (x) . (2.20)
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More definitions of functions describing the properties of distributions of random
variables can be found in handbooks dealing with probability theory or mathemati-
cal statistics (see, e.g., [6, 7]).

2.3 Moments

Moments play an important role in the error calculus, particularly when multidi-
mensional problems are considered. For the one-dimensional random distributions
discussed in this chapter, the expressions for moments take simple forms.

The first-order moment with respect to the line perpendicular to the x-axis and
crossing it at x = 0 is defined by the formula

m =
∫ ∞

−∞
xf (x)dx. (2.21)

Assuming such a value x that the equality

Ax = m

holds true, we obtain, remembering that A = 1 (comp. (2.16)), the formula

x =
∫ ∞

−∞
xf (x)dx. (2.22)

Using (2.22) one can calculate the average value x. In other words, x represents
the abscissa of the gravity center of the area between the graph of the probability
density function and the x-axis. The moment m may be interpreted as the statical
moment of that field with respect to the x = 0 straight line.

The second-order moment is the quantity J defined as

J =
∫ ∞

−∞
(x − x)2 f (x) dx. (2.23)

Such a moment calculated with respect to the straight line x = x is called the central
second order moment.

Assuming now a quantity σ 2 such that the equality

Aσ 2 = J

holds true, we get, still remembering that A = 1, the relation

σ 2 =
∫ ∞

−∞
(x − x)2 f (x) dx, (2.24)

where σ 2 is the variance of the distribution f (x). The square root of the variance,
denoted by σ , represents the standard deviation of the distribution.
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Note that the quantity J given by formula (2.23) is, in terms used in engineering
applications, the central inertia moment of the area between the graph of the func-
tion f (x) and the x-axis. Using such an interpretation it is seen that the standard
deviation represents the so-called inertia radius of that field.

Of practical significance is also the average deviation d defined as

d =
∫ ∞

−∞
|x − x|f (x)dx. (2.25)

The concept of the average value x may be generalized; in this way we obtain
moments of order n, n = 0,1,2,3, . . . (called the ordinary moments of n-th order),
defined as:

mn = xn =
∫ ∞

−∞
xnf (x) dx. (2.26)

In the new notation the average value (or: the mean value) is the moment of
order 1, namely m1.

The generalization of the variance are central moments of order n,
n = 2,3,4, . . . , defined as:

μn =
∫ ∞

−∞
(x − m1)

n f (x) dx. (2.27)

Using definition (2.27) of the central moment we obtain the following relation
between central moments and ordinary moments:

μn =
∫ ∞

−∞
(x − m1)

n f (x) dx

=
∫ ∞

−∞

(
n∑

j=0

(−1)j
(

n

j

)
xn−jm

j

1

)
f (x)dx =

n∑
j=0

(−1)j
(

n

j

)
mn−jm

j

1. (2.28)

In particular, the variance σ 2 can be represented as:

σ 2 = μ2 = m2 − m2
1. (2.29)

Except for the ordinary and central moments defined above, the absolute mo-
ments (ordinary and central), that is, average values of powers of the absolute value
of x, can be defined by the following formulas:

mabs
n =

∫ ∞

−∞
|x|n f (x) dx, (2.30)

μabs
n =

∫ ∞

−∞
|x − m1|n f (x) dx. (2.31)

The most often used absolute moment is the average deviation d , defined by (2.25).
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Let us remark that for even values of n, the absolute moments and moments
(ordinary and central) are identical.

Existence of moments is strongly connected with integrability of the probability
density function f (x) multiplied by some power of x. The condition of existence
of the moment of a given order n is the convergence of the integral

∫ ∞
−∞ xnf (x)dx;

from the existence of the moment for a certain given range n = n0 we obtain the
moments of lower orders. Therefore, the greatest n for which the moments exist is
called the range of the random variable. In applications, the most often required
assumption is that random variables have finite variances, that is, they are random
variables of the second order.

Example 2.7 (The Cauchy distribution) The probability distribution with the prob-
ability density function

f (x) = 1

πb{[(x − a)/b]2 + 1} (2.32)

and the cumulative distribution function

F (x) = 1

2
+ 1

π
arctan

(
x − a

b

)
, (2.33)

is called the Cauchy distribution. It is an example of distribution which has no mo-
ments (for each n = 1,2, . . . the integral

mn =
∫ ∞

−∞
xndx

πb{[(x − a)/b]2 + 1}
is divergent).

Example 2.8 (The normal distribution) The probability distribution with the proba-
bility density function

f (x) = 1√
2πσ 2

exp

[−(x − m)2

2σ 2

]
(2.34)

is called the normal distribution. It is an example of distribution which has moments
of any order (for each n = 1,2, . . . the integral

mn =
∫ ∞

−∞
xn

√
2πσ 2

exp

[−(x − m)2

2σ 2

]
dx

is finite).

Remark 2.1 Assume that a certain random variable X has a finite mean value mX

and variance σ 2
X . Then we can consider the new random variable X̃, defined as

X̃ = X − mX
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and called the centered random variable. This new random variable X̃ (sometimes
called the fluctuation of X) has zero average (mean) value and a variance equal to
the variance of the original random variable X,

mX̃ = 0, σ 2
X̃

= σ 2
X.

Such decompositions of random variables are often applied in error analysis. In
the above procedure we interpret the random variable X as the result of a mea-
surement with some random error, the mean value mX as the nominal value of the
measured quantity, and the fluctuation X̃ as the random measurement error itself.

2.4 The Normal Probability Distribution

The normal distribution, called also the Gaussian distribution, plays a basic role
in error calculus. In most engineering applications random variables, such as small
errors of measurements, small errors of positioning accuracy of certain mechanisms,
e.g., robot manipulators or small deviations of magnitudes of certain parameters
of objects in mass production, may be treated as those having normal probability
distribution. They are called normal (Gaussian) random variables.

In the normal distribution, the probability density function takes the form [2]:

f (x) = 1

σ
√

2π
exp

[
− (x − x)2

2σ 2

]
, (2.35)

where x is the average value, comp. (2.22), and σ stands for the standard deviation
(comp. (2.24)).

Introducing a new random variable

T = X − x

σ
, (2.36)

which is called the normalized random variable corresponding to X (comp. [19]),
we get another form of the probability density function,

φ (t) = 1√
2π

exp

[
− t2

2

]
. (2.37)

Between the two forms of the probability density function, there exists the relation

f (x) = 1

σ
√

2π
exp

[
− (x − x)2

2σ 2

]
= 1

σ
φ (t) , t = x − x

σ
. (2.38)

The numerical values of the normalized Gaussian distribution φ(t) may be cal-
culated with the use of a computer or even a pocket calculator. Moreover, they are
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Table 2.1 The probability density function φ(t) of the normalized Gaussian distribution

t 0 2 4 6 8

0.0 0.3989 0.3989 0.3986 0.3982 0.3977

0.1 0.3970 0.3961 0.3951 0.3939 0.3925

0.2 0.3910 0.3894 0.3876 0.3857 0.3836

0.3 0.3814 0.3790 0.3765 0.3739 0.3712

0.4 0.3683 0.3653 0.3621 0.3589 0.3555

0.5 0.3521 0.3485 0.3443 0.3410 0.3372

0.6 0.3332 0.3292 0.3251 0.3209 0.3166

0.7 0.3123 0.3079 0.3034 0.2989 0.2943

0.8 0.2897 0.2850 0.2803 0.2756 0.2709

0.9 0.2661 0.2613 0.2565 0.2516 0.2468

1.0 0.2420 0.2371 0.2323 0.2275 0.2227

1.1 0.2179 0.2131 0.2033 0.2036 0.1989

1.2 0.1942 0.1895 0.1849 0.1804 0.1758

1.3 0.1714 0.1669 0.1626 0.1582 0.1539

1.4 0.1497 0.1456 0.1415 0.1374 0.1334

1.5 0.1295 0.1257 0.1219 0.1182 0.1145

1.6 0.1109 0.1074 0.1040 0.1006 0.0973

1.7 0.0940 0.0909 0.0878 0.0848 0.0818

1.8 0.0790 0.0761 0.0734 0.0707 0.0681

1.9 0.0656 0.0632 0.0608 0.0584 0.0562

2.0 0.0540 0.0519 0.0498 0.0478 0.0459

2.1 0.0440 0.0422 0.0404 0.0387 0.0371

2.2 0.0355 0.0339 0.0325 0.0310 0.0297

2.3 0.0283 0.0270 0.0258 0.0246 0.0235

2.4 0.0224 0.0213 0.0203 0.0194 0.0184

2.5 0.0175 0.0167 0.0158 0.0151 0.0143

2.6 0.0136 0.0129 0.0122 0.0116 0.0110

2.7 0.0104 0.0099 0.0093 0.0089 0.0084

2.8 0.0079 0.0075 0.0071 0.0063 0.0063

2.9 0.0060 0.0056 0.0053 0.0050 0.0047

3.0 0.0044 0.0042 0.0039 0.0037 0.0035

tabulated in numerous books (comp. [9, 10]). To make this book sufficiently self-
contained, the values are given in Table 2.1.4 Knowing the function φ(t) and the
standard deviation σ of a particular non-normalized normal distribution, we may

4The numbers 0, 2, 4, 6 and 8 in the heading of the table are values of the second fractional digit
of the number t .
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Fig. 2.4 The normalized probability density function of the normal (Gaussian) distribution

calculate by means of formula (2.38) the values of f (x) for any value of the inde-
pendent variable x. In practical calculations one can use the graph of the function
φ(t) shown in Fig. 2.4. The graph has two inflexion points P, for t = +1 and for
t = −1.

In Fig. 2.4 is also shown a simple graphical procedure allowing us to find the
graph of the function f (x) if the graph of the normalized density function φ(t)

is given. The smaller is the standard deviation σ of the normal distribution, the
smaller will be the dispersion of the random variable X around the average value x.
This property of normal distribution is illustrated in Fig. 2.5, in which three various
normal distributions are presented. Their average value is of the same magnitude
x = 0, while standard deviations are different having the values σ = 0.5, σ = 1.0,

and σ = 2.0, respectively.
The diagrams of normal probability densities are symmetrical with respect to the

average value x, at which they have a maximum. This maximum value of the density
is given by the formula

f (x) = 1

σ
√

2π
. (2.39)

The relation between the half-width tα of any arbitrarily chosen range (−tα, tα)

and the probability α that the random variable T takes the value located inside this
range is of great practical significance. Some selected values of the pairs tα, (1 −α)

are collated in Table 2.2 (comp. Fig. 2.6). The quantity (1 −α) is called the residual
probability.

In practice, certain specific ranges are often used, bounded by the multiplicities
of the standard deviation σ, namely:

(−σ,σ ) , the probability is α = 0.6826,

(−2σ,2σ) , the probability is α = 0.9544,
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Fig. 2.5 The probability density function of the normal distribution for several values of the stan-
dard deviation

Table 2.2 The residual probabilities of the
normal distribution tα 1 − α

0.0 1.0000

0.5 0.6170

1.0 0.3174

1.5 0.1336

2.0 0.0456

2.5 0.0124

3.0 0.0027

(−3σ,3σ) , the probability is α = 0.9973.

These numbers indicate that the normal distribution of a random variable is con-
centrated in the vicinity of the average value x. The probability that the value of a
random variable X with the normal distribution differs from its average value by
more than 3σ equals 0.0027. Such a significant property justifies to a certain degree
the so-called three-sigma rule, that is, often used also in cases when other distribu-
tions are involved, not only when the normal distribution is considered. This rule
should not, however, be used uncritically for any arbitrary probability distribution
(comp. [6]).
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Fig. 2.6 The residual
probability (1 − α)

Fig. 2.7 The cumulative
distribution function of the
standard normal distribution

Between the standard deviation σ of the normal probability distribution and its
average deviation d we have the following, sometimes useful, relation:

d =
√

2

π
σ ≈ 0.798σ. (2.40)

The cumulative distribution function of the normal random variable is given by
the formula

F (x) = 1

σ
√

2π

∫ x

−∞
exp

[
− (ξ − x)2

2σ 2

]
dξ ≡ Φ (t) , t = x − x

σ
, (2.41)

where Φ(t) is the cumulative distribution function of the normalized Gaussian ran-
dom variable:

Φ (t) = 1√
2π

∫ t

−∞
exp

[
−1

2
τ 2

]
dτ. (2.42)

The function Φ(t) is tabulated, see Table 2.3; its graph is presented in Fig. 2.7.
This distribution is sometimes called the standard normal distribution N(0,1).
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Table 2.3 The cumulative distribution function of the normalized Gaussian distribution

t Φ(t) t Φ(t) t Φ(t) t Φ(t) t Φ(t)

−3.00 0.0013 −1.75 0.0401 −0.50 0.3085 0.75 0.7734 2.00 0.9773

−2.95 0.0016 −1.70 0.0446 −0.45 0.3264 0.80 0.7881 2.05 0.9798

−2.90 0.0019 −1.65 0.0495 −0.40 0.3446 0.85 0.8023 2.10 0.9821

−2.85 0.0022 −1.60 0.0548 −0.35 0.3632 0.90 0.8159 2.15 0.9842

−2.80 0.0026 −1.55 0.0606 −0.30 0.3821 0.95 0.8289 2.20 0.9861

−2.75 0.0030 −1.50 0.0668 −0.25 0.4013 1.00 0.8413 2.25 0.9878

−2.70 0.0035 −1.45 0.0745 −0.20 0.4207 1.05 0.8531 2.30 0.9893

−2.65 0.0040 −1.40 0.0808 −0.15 0.4404 1.10 0.8643 2.35 0.9906

−2.60 0.0047 −1.35 0.0885 −0.10 0.4602 1.15 0.8749 2.40 0.9918

−2.55 0.0056 −1.30 0.0968 −0.05 0.4801 1.20 0.8849 2.45 0.9929

−2.50 0.0062 −1.25 0.1056 0.00 0.5000 1.25 0.8944 2.50 0.9938

−2.45 0.0071 −1.20 0.1151 0.05 0.5199 1.30 0.9032 2.55 0.9946

−2.40 0.0082 −1.15 0.1251 0.10 0.5398 1.35 0.9115 2.60 0.9953

−2.35 0.0094 −1.10 0.1357 0.15 0.5596 1.40 0.9192 2.65 0.9960

−2.30 0.0107 −1.05 0.1469 0.20 0.5793 1.45 0.9265 2.70 0.9965

−2.25 0.0122 −1.00 0.1587 0.25 0.5987 1.50 0.9332 2.75 0.9979

−2.20 0.0139 −0.95 0.1711 0.30 0.6179 1.55 0.9394 2.80 0.9974

−2.15 0.0158 −0.90 0.1841 0.35 0.6368 1.60 0.9452 2.85 0.9978

−2.10 0.0179 −0.85 0.1977 0.40 0.6554 1.65 0.9505 2.90 0.9981

−2.05 0.0202 −0.80 0.2119 0.45 0.6736 1.70 0.9554 2.95 0.9984

−2.00 0.0227 −0.75 0.2266 0.50 0.6915 1.75 0.9599 3.00 0.9987

−1.95 0.0256 −0.70 0.2420 0.55 0.7088 1.80 0.9641 – –

−1.90 0.0287 −0.65 0.2578 0.60 0.7257 1.85 0.9678 – –

−1.85 0.0322 −0.60 0.2743 0.65 0.7422 1.90 0.9713 – –

−1.80 0.0359 −0.55 0.2912 0.70 0.7580 1.95 0.9744 – –

In practical calculations often the so-called error function,

erf(t) = 1√
2π

∫ t

0
exp

[
−1

2
τ 2

]
dτ, (2.43)

is used instead of the cumulative distribution function of the normalized Gaussian
random variable. The error function is tabulated and given in various books (comp.,
e.g., [1, 10]). Its values are also given in Table 2.4.

The error function is directly connected with the cumulative distribution function
Φ(t) by the simple formulas:

Φ (t) = 1

2
− erf (−t) for t ≤ 0,

Φ (t) = 1

2
+ erf (t) for t > 0.

(2.44)



32 2 Random Variables and Probability; Normal Distribution

Table 2.4 The error function
t erf(f ) t erf(t) t erf(t)

0.00 0.0000 1.00 0.3413 2.00 0.4773

0.05 0.0199 1.05 0.3531 2.05 0.4798

0.10 0.0398 1.10 0.3643 2.10 0.4821

0.15 0.0596 1.15 0.3749 2.15 0.4842

0.20 0.0793 1.20 0.3849 2.20 0.4861

0.25 0.0987 1.25 0.3944 2.25 0.4878

0.30 0.1179 1.30 0.4032 2.30 0.4893

0.35 0.1368 1.35 0.4115 2.35 0.4906

0.40 0.1554 1.40 0.4192 2.40 0.4918

0.45 0.1736 1.45 0.4265 2.45 0.4929

0.50 0.1915 1.50 0.4332 2.50 0.4938

0.55 0.2088 1.55 0.4394 2.55 0.4946

0.60 0.2257 1.60 0.4452 2.60 0.4953

0.65 0.2422 1.65 0.4505 2.65 0.4960

0.70 0.2580 1.70 0.4554 2.70 0.4965

0.75 0.2734 1.75 0.4599 2.75 0.4979

0.80 0.2881 1.80 0.4641 2.80 0.4974

0.85 0.3023 1.85 0.4678 2.85 0.4978

0.90 0.3159 1.90 0.4713 2.90 0.4981

0.95 0.3289 1.95 0.4744 2.95 0.4984

– – – – 3.00 0.4987

The error function erf(t) is a special function and has no representation in the form
of a combination of elementary functions. However, in certain books one can find
approximate expressions allowing one to calculate the values of that function by
means of elementary functions. Two such practical methods are presented below.
They are based on the asymptotic expansions (comp. [1, 7]).

Method 2.1

erf (t) = 1 −
(
a1z + a2z

2 + a3z
3 + a4z

4 + a5z
5
)

exp
[−t2] + ε (t) , (2.45)

where

z = 1

1 + pt
, |ε (t)| ≤ 1.5 × 10−7

and

p = 0.3275911, a1 = 0.254829592,

a2 = −0.284496736, a3 = 1.421413741,



2.4 The Normal Probability Distribution 33

Fig. 2.8 Experimental generation of the normal distribution, the Galton box

a4 = −1.453152027, a5 = 1.061405429.

Method 2.2

erf (t) = 1 − 1

(a1t + a2t2 + a3t3 + a4t4 + a5t5 + a6t6)16
+ ε(t), (2.46)

where

|ε (t)| ≤ 3 × 10−7

and

a1 = 0.0705230784, a2 = 0.0422820123,

a3 = 0.0092705272, a4 = 0.0001520143,

a5 = 0.0002765672, a6 = 0.0000430638.

The numerical values of the error function calculated according to each of these
approximate formulas are often more accurate (the accuracy order 10−7 for all x ∈
[0,∞)) than those given in the popular textbooks.

For clarity, the generation of the normal distribution can be demonstrated by
using simple devices, such as that shown in Fig. 2.8 (cf. [5]). Small metal balls
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Fig. 2.9 The scheme of cells in the Galton box

falling down from a container T and striking numerous metal pins are randomly
directed to the right or to the left. Finally, they fall at random into one of the separate
small containers at the bottom of the device. The distribution of the number of balls
in consecutive containers is close to the normal distribution. Similar examples may
be found in [21].

Such a result of this educational experiment may be interpreted in two ways.
From the mathematical point of view we can say that the normal distribution is
formed as the consequence of the so-called central limit theorem, comp. [6]. Each
ball falling down is randomly directed to the right or to the left, suffering a unit
displacement with the same probability. Its final location in a specific container
at the bottom is the sum of such displacements, which is the sum of independent
random variables.

The fact that the distribution obtained in such an experimental device tends to the
normal distribution may be proved by simple calculus, see [17]. Let us consider an
arbitrary set of three cells A, B , C separated from the device in Fig. 2.8, and, more-
over, let us assume that the probability distribution in the model may be described by
a continuous function P(x, y), if the distances between the pins are tending to zero
(a → 0 and b → 0). The configuration of these separated cells is shown in Fig. 2.9.

Let the probabilities that a moving downwards ball falls to the cell B or C are:

P (x − a, y) and P (x + a, y) ,

respectively. Hence, we may express the momentary probabilities of migration of
balls to the cell A located in the lower layer (marked as y + b), using the formula
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for the complete probability, see (2.8). We obtain:

P (x, y + b) = 1

2
P (x − a, y) + 1

2
P (x + a, y) . (2.47)

Then, using Taylor’s expansion of all terms of (2.47) around the point (x, y), we
can write:

P (x, y + b) − P (x, y) = b
∂P (x, y)

∂y
+ 1

2
b2 ∂2P(x, y)

∂y2
+ · · ·,

P (x − a, y) − P (x, y) = −a
∂P (x, y)

∂x
+ 1

2
a2 ∂2P(x, y)

∂x2
+ · · ·,

P (x + a, y) − P (x, y) = a
∂P (x, y)

∂x
+ 1

2
a2 ∂2P(x, y)

∂x2
+ · · ·.

Substituting the above equations in (2.47) and decreasing the dimensions of the cells
to a zero limit in such a way that simultaneously two conditions are satisfied:

a → 0, b → 0, and
a2

2b
= D = const., (2.48)

we obtain the following partial differential equation for the probability density func-
tion P(x, y):

∂P (x, y)

∂y
− D

∂2P(x, y)

∂y2
= 0. (2.49)

Equation (2.49), obtained in [17], is of the same type as the equation of conduc-
tion of heat in solids, cf., e.g., [4]. Its solution can be written in the form

P (x, y) = β√
y

exp

[
− x2

4Dy

]
. (2.50)

To make the solution P(x, y) of (2.50) to be a probability density function we take
the parameter β such that the integral with respect to x of the right-hand of (2.50),
for each y = const. is equal to 1,

∫ ∞

−∞
P (x, y) dx = 2β

√
πD = 1,

from which it follows that

β = 1

2
√

πD
. (2.51)

Thus, the solution to (2.49) can be written as

P (x, y) = 1

2
√

πDy
exp

[
− x2

4Dy

]
, (2.52)
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Fig. 2.10 Approximation of
a histogram presented in
Fig. 1.2 by the normal
probability density function

and after substitution

σ = √
2Dy (2.53)

as

P (x, y) ≡ f (x) = 1

σ
√

2π
exp

[
− x2

2σ 2

]
. (2.54)

Comparing the obtained expression (2.54) with the known probability density
function of the normal distribution (2.35) of a zero mean value (x̄ = 0) we obtain
an argument that the probability distribution, which is a result of random symmetric
(that is with probability 1

2 in every side) reflections of balls on pins of the Galton
box presented in Fig. 2.8, is really the normal distribution.

This result can be also interpreted more generally: we deal with the normal prob-
ability distribution of a random variable when this variable is influenced by numer-
ous independent factors. Such an interpretation explains why the normal distribution
corresponds so well to the distribution of errors of measurements, which usually
arise as a result of numerous unknown external factors.

Let us now consider an example of application of the continuous normal dis-
tribution to the description of the quasi-stepwise distribution shown in the form of
the histogram presented in Fig. 1.2. For the quasi-stepwise distribution, the average
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Fig. 2.11 Examples of distributions of certain mechanical properties of metal alloys, see [8]

value and the standard deviation are equal, respectively, to

t̄ = 3.48 µm, σ = 3.11 µm.

The diagram of the normal distribution calculated for such values of t̄ and σ is
presented in Fig. 2.10 along with the transformed original histogram. The area be-
low the upper stepwise boundary of the transformed histogram equals unity. It is
seen that this stepwise boundary corresponds fairly well to the graph of the normal
probability distribution.

As another example, Fig. 2.11 shows distributions of the yield locus σpl and
limit stress σn under uniaxial tension of a steel sheet 2 mm thick, measured during a
tension test on 330 specimens cut out at various places of the same sheet, comp. [8].
For an aluminum alloy sheet, results of similar tests also shown in the figure display
much smaller dispersion of the limit stress.

Random distributions of mechanical properties observed even in one large piece
of a material contribute to the so-called scale effect: large specimens display smaller
limit stress and yield locus than small specimens made of the same material.

Another example of a practical application of the normal distribution to the de-
scription of the cohesion c of soils is presented in Fig. 2.12. The figure was prepared
on the basis of the experimental results given in [18].
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Fig. 2.12 Application of the normal distribution to the description of the cohesion c of soils,
see [18]

2.5 Two-dimensional Gravity Flow of Granular Material

Before giving more information concerning probability distributions, let us ana-
lyze an example showing that using even the elementary theory of probability one
can solve numerous problems of real practical significance. In the papers [15–17]
J. Litwiniszyn ingeniously analyzed the inverse problem in which the cavities in a
bulk of a loose material move randomly upwards from the bottom. To illustrate his
idea, let us consider a two-dimensional problem of a relatively wide container with
an outlet at the middle of the bottom. Fig. 2.13 shows the assumed initial system of
finite cells analogous to that shown previously in Fig. 2.9. The width to height ratio
of cells connected with the parameter (2.48) should be determined experimentally
for the granular medium in question; for details see [23].

A portion of the loose medium has just now left cell A leaving an empty space
in it. The cavity in A formed in such a manner migrates upwards. We assume, as
in the inverse problem shown in Fig. 2.8 that each time a portion of that cavity
moves upwards, the probability of migrating into the right-hand or into the left-hand
cell lying just above is equal to 1

2 . It means that at the beginning of the migration
process, one half of the initial cavity A moves to the cell B and the other half is
shifted to the cell C. If the volume of each cell is assumed to be a unit volume, the
numbers in consecutive cells indicate how large a portion of the initial unit volume
A passed through the cell during the migration process. Since after migration each
portion of empty space must be filled by the granular medium falling downwards,
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Fig. 2.13 Assumed system of cells for the problem of gravity flow from a bin

these numbers correspond to the average vertical displacement of the medium in
particular cells. These vertical displacements are represented in Fig. 2.14. However,
each particle of the medium is displaced also horizontally.

Below is presented a simple approximate method of determining total displace-
ments [22]. Let us analyze an arbitrary set of three adjacent cells taken from the
system of cells shown in Fig. 2.13. They are represented in Fig. 2.15a. The num-
bers in them correspond to the fraction of the initial volume of the cavity A, which
passed through the cell during the migration towards the free surface of the bulk of
the medium. According to the finite cells methodology, only one half of these frac-
tions migrates from each cell A and B to the cell C. It is assumed that this migration
takes place along the respective lines A − C or B − C joining central points of the
cells. Directions and magnitudes of these migrating portions of the cavity may be
represented by vectors WBC and WAC as shown in Fig. 2.15b. They may be treated
as components of the resulting vector Wcav representing the direction and the mag-
nitude of the averaged momentary flux of the cavity into cell C during the migration
process. The opposite vector Wmat may be treated as a representation of the flux
of the mass of granular medium filling the space left by cavities moving upwards.
In order to calculate the magnitude of the averaged displacement vector u of the
particles of the medium, it is assumed that its direction coincides with the direction
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Fig. 2.14 Vertical displacement of granular material in cells

of the vector Wmat . To make this procedure consistent with that described before,
it is assumed that the vertical component of the displacement vector u is equal to
the vertical displacement of the respective sector of the stepwise deformed bound-
ary between the rows of cells (cf. Fig. 2.14). Using this approximate procedure, the
vectors of displacements have been calculated for the problem shown in Fig. 2.13
and Fig. 2.14. Results are shown in Fig. 2.16.

In Fig. 2.17 is presented an analogous solution for prediction of the movements
of a crowd in a relatively narrow exit [14].

Figure 2.18 shows the theoretical field of displacements vectors calculated in the
manner described above.

In order to verify experimentally such a theoretical motion pattern, a preliminary
simple experimental simulation model composed of an assembly of coins of three
different diameters has been used. The initial configuration of the assembly corre-
sponding to the theoretical problem shown in Fig. 2.17 is presented in Fig. 2.19. The
coins are located on a glass plate in the initial horizontal position. Then the plate is
inclined with respect to the horizontal plane and the coins begin to slide downwards
due to the gravity forces. This movement is disturbed by random mutual contacts
between neighbors. The final configuration of displaced coins is shown in Fig. 2.20.
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Fig. 2.15 Calculation of
displacements of the granular
material in cells, after [22]

Fig. 2.16 Calculated displacements of granular medium in a bin, after [22]

The experiment was performed in three stages. In each stage one of the blocking
strips at the bottom was removed. For each stage displacements of particular coins
were measured. They are shown in Fig. 2.21. The stochastic nature of the move-
ments of coins is visible. Let us notice, however, that their general layout is close to
that shown previously in Fig. 2.18.
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Fig. 2.17 Assumed system of finite cells and vertical displacements in a crowd in narrow exits,
see [14]

Fig. 2.18 Calculated displacements of a crowd in a narrow exit, see [14]

The next example concerns the problem of terrain subsidence caused by subter-
ranean exploitation. The solution is shown in Fig. 2.22 (cf. [24]).

In the lower part of the soil resting on a bedrock, the empty space A−B −C −D

has been left by underground exploitation. In the following process of subsidence
this empty space will be filled by the soil migrating downwards. Let us divide this
empty space into a number of cells, each of them being of unit volume. These unit
cavities migrate upwards through the system of cells shown in the figure. It is as-
sumed that each time a cavity in the particular cell migrates upwards, the probability
that it moves to the left or to the right cell, just above it, is equal to 1/2. Numbers
shown in particular cells indicate how large was the portion of a unit cavity which
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Fig. 2.19 Initial configuration of coins located on a glass plate, see [14]

Fig. 2.20 Final configuration of coins in an experimental simulation of movements of a crowd,
see [14]

has passed through the cell during the migration process. On the basis of these num-
bers, the diagram representing a stepwise approximation of the final subsidence
shown in Fig. 2.23 has been prepared. The procedure described above allows us to
calculate the vectors of displacements in the entire deformation zone Fig. 2.24.
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Fig. 2.21 Experimentally
determined displacements of
coins in the test shown in
Figs. 2.19 and 2.20

Fig. 2.22 Assumed system
of finite cells for the analysis
of terrain subsidence, see [24]

Fig. 2.23 Vertical
displacement of granular
medium in cells of the
assumed system, see [24]

In Fig. 2.25 is presented a simple experimental simulation of such a subsidence
process. The coins of different diameters are located on a glass plate as shown in
the photograph. To simulate the initial configuration corresponding to that shown
in Fig. 2.22, two bottom rows on the right side have been left without coins. Then
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Fig. 2.24 Calculated
displacements of a granular
medium in the process of
terrain subsidence shown in
Figs. 2.22 and 2.23, after [24]

Fig. 2.25 Initial configuration of coins located on a glass plate, see [24]

the blocking strip at the bottom has been removed and the plate was inclined with
respect to its initial horizontal position. The coins slid downwards due to gravity
force. The final configuration of coins is shown in Fig. 2.26.

The displacements of central points of several coins resulting from this experi-
mental simulation are shown in Fig. 2.27.

Let us note that this experimental result is similar to that resulting from theoreti-
cal solution shown in Fig. 2.24.

Summarizing the considerations of this subsection we see that the calculation
methods proposed by J. Litwiniszyn were, both, very effective in solving quite in-
volved geotechnics problems and very illustrative. They were also an inspiration
for mathematically more advanced models, e.g., description of the random walk of
voids by means of diffusive Markov processes, cf. [3].
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Fig. 2.26 Final configuration of coins in an experimental simulation of terrain subsidence

Fig. 2.27 Experimentally determined displacements of coins in the test shown in Figs. 2.25 and
2.26, after [23]

Problem 2.1 Consider a system of four electric elements connected in series. The
probability of defective operation of these elements after one year of work is, re-
spectively, 0.6, 0.5, 0.4, and 0.3, and is independent one from the other. Calculate
the probability of defective operation of the system of elements. Calculate the prob-
ability that the system works correctly.

Problem 2.2 A sample of 200 mass-produced elements is tested by random choice
of 10 elements. It is rejected if at least one of the elements is defective. Calculate
the probability of the rejection of the sample of elements if 5% of the elements in
the sample are defective.

Problem 2.3 Calculate the probability that a sample of 100 mass-produced ele-
ments will be accepted if it contains 5 defective elements and we test 50 elements
allowing at the most two defective elements among them.
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23. Szczepiński, W.: On the stochastic approach to the three-dimensional problems of strata me-
chanics. Bull. Acad. Pol. Sci., Sér. Sci. Tech. 51(4), 335–345 (2003)
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