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Chapter 2
The Time-Dependent Schrödinger Equation
Revisited: Quantum Optical and Classical
Maxwell Routes to Schrödinger’s Wave
Equation1

Marlan O. Scully

2.1 Introduction

In a previous paper [1, 2] we presented quantum field theoretical and classical
(Hamilton–Jacobi) routes to the time-dependent Schrödinger equation (TDSE) in
which the time t and position r are regarded as parameters, not operators. From this
perspective, the time in quantum mechanics is argued as being the same as the time
in Newtonian mechanics. We here provide a parallel argument, based on the photon
wave function, showing that the time in quantum mechanics is the same as the time
in Maxwell equations.

The next section is devoted to a review of the photon wave function which is
based on the premise that a photon is what a photodetector detects. In particular, we
show that the time-dependent Maxwell equations for the photon are to be viewed
in the same way we look at the time-dependent Dirac–Schrödinger equation for the
(massive) π meson particle or (massless) neutrino.

In Sect. 2.3 we then recall previous work which casts the classical Maxwell
equations into a form which is very similar to the Dirac equation for the neutrino.
Thus, we are following de Broglie more closely than did Schrödinger, who followed
a Hamilton–Jacobi approach to the quantum mechanical wave equation. In this
way, with nearly a century of hindsight, we arrive naturally at the time-dependent
Schrödinger equation without operator baggage. Figures 2.1 and 2.2 summarize the
physics of the present chapter.
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Fig. 2.1 Comparison of the quantum field, wave mechanical, and classical descriptions of the spin
1 photon, spin 1

2 neutrino, and spin 0 meson; adapted from Scully and Zubairy “Quantum Optics”
[3]

Fig. 2.2 Top Down: The time-dependent Schrödinger wave equation follows from the quantum
optical “a photon is what a photodetector detects” definition. This is in accord with the usual wave
function definition Ψ (r, t) = 〈r|Ψ (t)〉 since |r〉 = Ψ̂ +(r )|0〉. Bottom Up: The time-dependent
Schrödinger wave follows nicely from the classical Maxwell equations by, for example, working
with a combination of electric and magnetic fields

2.2 The Quantum Optical Route to the Time-Dependent
Schrödinger Equation

Quantum optics is an offshoot of quantum field theory in which we are often inter-
ested in intense light beams such as provided by the laser. However the issue of the
photon concept, and how we should think of the “photon,” is a topic of current and
reoccurring discussion.

Perhaps the most logical, at least the most operational, approach is to say that the
photon is what a photodetector detects. In this spirit we consider the excitation of a
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single atom at point r at time t to be our photodetector and, following [3], write the
probability of exciting the atom as

PΨ (r, t) = η〈Ψ ∣
∣Ê†(r, t)Ê(r, t)

∣
∣Ψ 〉 . (2.1)

Several points should be made:

1. We consider the state |Ψ 〉 to be a single photon state. For example, the state
generated by the emission of a single photon (see [3], Eq. 6.3.18)

∣
∣ψγ 〉 =

∑

k

ck |k〉 , (2.2)

where the state |k〉 is expressed in terms of the radiation creation operator â†
k as

|k〉 = â†
k |0〉 and in the simple case of a scalar photon, we find

ck = gk
e−ik·r0

(νk − ω0) + iΓ/2
, (2.3)

where gk is the atom-field coupling constant, r0 is the atomic position vector, νk

and ω0 are the photon and atomic frequencies, and Γ is the atomic decay rate.
2. The uninteresting photodetection efficiency constant η will be ignored in the

following.
3. Ê†(r, t) and Ê(r, t) are the creation and annihilation operators defined by

Ê†(r, t) =
∑

k,λ

ε
(λ)
k Ek â†

k,λe
−iνk t+ik·r , (2.4)

where ελk is the unit vector for light having polarization λ and wave vector k,
νk = ck = c|k| and the electric field “per photon” Ek = √

�νk/2ε0V , where we
use MKS units so that ε0μ0 = 1/c2 and V is the quantization volume.

Next we insert a sum over a complete set of states,
∑

n |n〉〈n| = 1 in Eq. (2.1) and
note that since there is only one photon in ψγ (and Ê(r, t) annihilates it), only the
vacuum term |0〉〈0| will contribute. Hence we have

Pψγ (r, t) = 〈ψγ |Ê†(r, t)|0〉〈0|Ê(r, t)|ψγ 〉 , (2.5)

and we are therefore led to define the single photon detection amplitude as

ΨE (r, t) = 〈0|Ê(r, t)|ψγ 〉 . (2.6)

As shown in detail in Sect. 2.4, the one photon state |ψγ 〉 yields

ΨE (r, t) = E
Δr
Θ

(

t − Δr

c

)

e−i(t−Δr/c)(ω−iΓ/2) , (2.7)
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where E is a constant, Δr is the distance from the atom to the detector, and Θ(x) is
the usual step function. More generally we have

ΨE (r, t) = 〈0|Ê(r, t)|ψγ 〉 =
〈

0

∣
∣
∣
∣

∑

k,λ

ε̂λk

√

�νk

2ε0V
âk,λe

−iνk t+ik·r
∣
∣
∣
∣
ψγ

〉

. (2.8)

The field is sharply peaked about the frequency ω so that we may replace the
frequency νk as it appears in the square root factor by ω and write

ΨE (r, t) =
√

�ω

2ε0
ϕγ (r, t) , (2.9)

where

ϕγ (r, t) =
∑

k,λ

ε̂
(λ)
k

〈

0

∣
∣
∣
∣
âk,λ

e−iνk t+ik·r
√

V

∣
∣
∣
∣
ψγ

〉

. (2.10)

The complete “photon wave function” also involves the magnetic analog of the
proceeding. To that end we write

ΨH(r, t) = 〈0|Ĥ (r, t)|ψγ 〉 , (2.11)

where Ĥ (r, t) is the annihilation operator for the magnetic field which is given by

Ĥ (r, t) =
∑

r,λ

k
k
× ε̂(λ)

k

√

�νk

2μ0
âk,λ

e−iνk t+ik·r
√

V
, (2.12)

and we introduce the notation

ΨH(r, t) =
√

�ω

2μ0
χγ (r, t) , (2.13)

where

χγ (r, t) =
〈

0

∣
∣
∣
∣

∑

k,λ

k
k
× ε̂(λ)

k ak,λ
e−iνk t+ik·r

√
V

∣
∣
∣
∣
ψγ

〉

. (2.14)

Finally, we write ϕγ (r, t) and χγ (r, t) in matrix form as

ϕγ =
⎡

⎣

ϕx

ϕy

ϕz

⎤

⎦ , χγ =
⎡

⎣

χx

χy

χz

⎤

⎦ , (2.15)
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in terms of which Maxwell equations may be written as

i�
∂

∂t

[

ϕγ
χγ

]

=
[

0 −cs · p
cs · p 0

] [

ϕγ
χγ

]

, (2.16)

where p = �

i ∇ and

sx =
⎡

⎣

0 0 0
0 0 −1
0 1 0

⎤

⎦ , sy =
⎡

⎣

0 0 1
0 0 0
−1 0 0

⎤

⎦ , sz =
⎡

⎣

0 −1 0
1 0 0
0 0 0

⎤

⎦ (2.17)

are the 3 × 3 matrices for the (spin 1) photon.
Finally, we note the close correspondence with the two-component (spin 1

2 )
neutrino,

[

ϕphoton

χphoton

]

←→
[

ϕneutrino

χneutirno

]

, (2.18)

and the Dirac equation for the neutrino

i�
∂

∂t

[

ϕν
χν

]

=
[

0 −cσ · p
cσ · p 0

] [

ϕν
χν

]

, (2.19)

where σ is given in terms of the 2 × 2 Pauli matrices and p = �

i ∇.
We conclude by noting that, just as in the quantum field theory [4, 5] route to

the Schrödinger equation, the appearance of ∂
∂t and ∇ in Eq. (2.16) has not arisen

from operator arguments. In the next sections, we follow a de Broglie wave–particle
duality path to the Schrödinger equation.

2.3 The Classical Maxwell Route to the Schrödinger Equation

In the previous section, we followed a top-down quantum field route to the
Schrödinger equation, see Fig. 2.2. In particular, we saw that the quantum opti-
cal analysis of the single photon wave equation provided an interesting connection
between the Schrödinger (Dirac) equations for photons and neutrinos.

In the present section, we start with the classical Maxwell equations and obtain
a Schrödinger equation for the combination E + iH which previous workers [6, 7]
call the photon wave function. It is then natural to follow de Broglie and associate a
wave function with matter waves. This provides another (operator-free) route to the
Schrödinger equation.
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Thus, we define the “classical” photon wave function as

Ψm(r, t) = E(r, t) + iH(r, t) =
⎡

⎣

ψx (r, t)
ψy(r, t)
ψz(r, t)

⎤

⎦ , (2.20)

where the subscript m stands for Maxwell. Along the lines of the discussion in
Sect. 2.2, we may write the Maxwell equations as

i�Ψ̇m(r, t) = −cs · pΨm(r, t) , (2.21)

where p = �

i ∇, as before, but now

sx =
⎡

⎣

0 0 0
0 0 −i
0 i 0

⎤

⎦ , sy =
⎡

⎣

0 0 i
0 0 0
−i 0 0

⎤

⎦ , sz =
⎡

⎣

0 −i 0
i 0 0
0 0 0

⎤

⎦ . (2.22)

The present s matrix is related to the s of Sect. 2.2 by the factor i . It also should be
noted that the present photon wave function ψm is a 1×3 matrix whereas that of 2.2
is a 1 × 6 matrix. That is, the quantum optical analysis involves a two-component
wave function inΨε andΨH; in the present analysis we find it convenient to combine
the electric and magnetic contributions at the outset.

Since the energy per photon is �ω = �ck = cp, we write

i�Ψ̇m(r, t) = HΨm(r, t) , (2.23)

where the Hamiltonian is given by

H = −cs · p . (2.24)

The natural extension of this Schrödinger equation for the spin one massless
photon to the case of a spin zero particle of mass m is clear. That is, since E =
√

m2
0c4 + p2c2 is the finite mass extension of E = pc, we follow the lead of de

Broglie and write

i�Ψ̇ (r, t) =
√

m2
0c4 + p2c2Ψ (r, t) , (2.25)

where p = �

i ∇, just as it is for the photon.

Hence when m0c2 � pc we may write
√

m2
0c4 + p2c2 ∼= p2

2m + m0c2, and we
have

i�Ψ̇ (r, t) = −�
2

2m0
∇2Ψ (r, t) , (2.26)
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which is the non-relativistic wave equation, again obtained without introducing
operator-valued time or momentum.

2.4 The Single Photon and Two Photon Wave Functions

The photon wave function concept really comes into its own when solving problems
involving photon–photon correlations. Then, as is explained in [8], the two photon
wave function

ψ (2)(r1, t1; r2, t2) ≡ 〈0|Ê(r2, t2)Ê(r1, t1)|Ψ 〉 (2.27)

is the subject of interest. Under some conditions this may be written in terms of
single photon wave functions, as in the case of two photon cascade discussed below.
Some of the calculational details will be given since the physics (and the devil) is in
the details.

Consider first the single photon wave function. From Eqs. (2.3) and (2.4) and
ignoring polarization, we find

〈0|Ê(r, t)|ψγ 〉 =
√

�

2ε0V

∑

k

(νk)1/2gke−iνk t eik·(r−r0) 1

(νk − ω) + iΓ/2
. (2.28)

We now evaluate this function by converting the sum into an integral. The φ- and θ -
integrations can be carried out by choosing a coordinate system in which the vector
r−r0 points along the z-axis. We then carry out the integration over |k| by evaluating
the density of states and matrix elements at resonance. We are left with the integral

∫ ∞

−∞
dνk

e−iνk t+iνkΔr/c

(νk − ω) + iΓ/2
,

which is evaluated via contour methods and where Δr = |r − r0| is the distance
from the atom located at position r0 to the detector. For t < Δr/c, the contour lies
in the upper half-plane and if t > Δr/c, in the lower half-plane. On performing the
integration, we find

〈0|Ê(r, t)|ψγ 〉 = E
Δr
Θ

(

t − Δr

c

)

e−i(t− Δr
c )(ω−iΓ/2) , (2.29)

whereΘ is a unit step function and E is an overall constant with the units of electric
field.

Next we consider the problem of “interrupted” emission, see Fig. 2.3. The first
photon, associated with the a ↔ b transition, is described in the long time limit by
our “old friend”
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Fig. 2.3 Figure illustrating
decay of atom excited to state
a at a rate γa to non-decaying
level b. Upon detection of
a → b photon, population in
level b is transferred to b′ by
means of an external field
indicated by wavy line. Level
b′ decays to c at rate γb

|γ 〉 =
∑

k

ga,ke−ik·r

(ωab − c|k|) − iγa
|1k〉 . (2.30)

Likewise the second photon, associated with the b′ → c transition, is given in
the long time limit by

|φ〉 =
∑

q

gb,qe−i(q·r−cqt0)

(ωac − c|q|) − iγb
|1q〉 , (2.31)

where t0 is the time of detection of γ photon and the transfer from b → b′.
Using (2.30) and (2.31), it is easy to calculate the two photon wave function

Ψ (2)(r1, t1; r2, t2) as defined by (2.27). We find

ψ (2)(r1, t1; r2, t2) = ψγ (r1, t1)ψφ(r2, t2) + ψφ(r1, t1)ψγ (r2, t2) , (2.32)

where

ψγ (ri , ti ) = εγ

Δri
Θ

(

ti − Δri

c

)

e−γa (ti− Δri
c )e−iωab(ti− Δri

c ), (2.33)

and

ψφ(ri , ti ) = εφ

Δri
Θ

(

ti − t0 − Δri

c

)

e−γa (ti−t0− Δri
c )e−iωbc(ti−t0− Δri

c ), (2.34)

where i = 1, 2 designates the detector positions.

2.5 Conclusions

One motive for this chapter is to show that the time appearing in the classical
Maxwell equations is the same as the time parameter which appears in the TDSE.
Thus, the times appearing in classical mechanics and electrodynamics and quantum
mechanics are all the same.

Another motivation involves the definition of the photon wave function in terms
of the electric and magnetic operators as
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ΨE (r, t) = 〈0|Ê(r)|Ψ (t)〉, (2.35)

and

ΨH(r, t) = 〈0|Ĥ (r)|Ψ (t)〉. (2.36)

Equations (2.6) and (2.11) are the analog of the matter wave probability
amplitudes

Ψ (r, t) = 〈0|ψ̂(r)|Ψ (t)〉 (2.37)

discussed at length in Sect. 2.1.
As explained in [3], the discussion of the proceeding paragraph serves to put the

nice question of Kramers [9] in perspective. Specifically, Kramers asks,

When in 1924 De Broglie suggested that material particles should show wave phenom-
ena . . . such a comparison was of great heuristic importance. Now that wave mechanics has
become a consistent formalism one could ask whether it is possible to consider the Maxwell
equations to be a kind of Schrödinger equation of light particles . . .?

Kramers answers his question in the negative, he says,

Thus it is natural to ask what are the φ’s for photons? Strictly speaking there are no such
wave functions! One may not speak of particles in a radiation field in the same sense as
in the elementary quantum mechanics of systems of particles as used in the last chapter.
The reason is that the wave equation . . . solutions of Schrödinger’s time dependent wave
function corresponding to an energy Eλ have a circular frequency ωλ = +Eλ/�, while the
monochromatic solutions of the wave equation have both ±ωλ.

In other words, Kramers is saying that “the real electric wave has both exp(−iνk t)
and exp(iνk t) parts while the matter wave has only exp(−iνpt) type terms.”

However, from the quantum optical perspective, we see that the photon wave
functions (2.35) and (2.36) and the matter wave function (2.37) are identical in spirit.
An earlier discussion of the importance of the analytical (positive frequency) signal
in this context was given by Sudarshan [10].

The present measurement theory, “a-photon-is-what-a-photodetector-detects”
point-of-view is discussed further in [3]. We have also included in Sect. 2.4 a
detailed photon–photon correlation analysis [8] for the convenience of the reader.
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