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Chapter 2
Deformed Gauge Theories

Julius Wess

Gauge theories are studied on a space of functions with the Moyal product. The
development of these ideas follows the differential geometry of the usual gauge the-
ories, but several changes are forced upon us. The Leibniz rule has to be changed
such that the theory is now based on a twisted Hopf algebra. Nevertheless, this
twisted symmetry structure leads to conservation laws. The symmetry has to be
extended from Lie algebra valued to enveloping algebra valued and new vector po-
tentials have to be introduced. As usual, field equations are subjected to consistency
conditions that restrict the possible models. Some examples are studied.

2.1 Introduction

Gauge theories have been formulated and developed on the algebra of functions
with a pointwise product:

μ{ f ⊗g} = f ·g. (2.1)

This product is associative and commutative.
Recently, algebras of functions with a deformed product have been studied in-

tensively [1–5]. These deformed (star) products remain associative but not commu-
tative.

The simplest example is the Moyal product,1 see Chap. 1 for details

μ�{ f ⊗g} = μ{e
i
2 θ

ρσ ∂ρ⊗∂σ f ⊗g}. (2.2)

It had its first appearance in quantum mechanics [6, 7].
The star product can be seen as a higher order f -dependent differential operator

acting on the function g. For the example of the Moyal product this is

1 Note that in this and in the following chapters in the first part of the book the deformation
parameter h is absorbed in θρσ . Therefore, from now on we refer to θρσ as the deformation
parameter.
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f �g =
∞

∑
n=0

1
n!

(
i
2

)n

θρ1σ1 . . .θρnσn
(
∂ρ1 . . .∂ρn f

)
(∂σ1 . . .∂σng) . (2.3)

The differential operator maps the function g to the function f �g.
The inverse map also exists [8, 9]. It �-maps the function g to the function ob-

tained by pointwise multiplying it with f

X�
f �g = f ·g (2.4)

For the Moyal product we obtain

X�
f =

∞

∑
n=0

1
n!

(
− i

2

)n

θρ1σ1 . . .θρnσn
(
∂ρ1 . . .∂ρn f

)
�∂ �

σ1
. . .∂ �

σn
. (2.5)

The star-acting derivatives we denote by ∂ �
ρ . For the Moyal product the

�-derivatives and the usual derivatives are the same. Star differentiation and star
differential operators have been thoroughly discussed in Chap. 1 and in [9, 10].

In this chapter we are going to study gauge transformations on Moyal or
θ -deformed spaces.2

2.2 Gauge transformations

Undeformed infinitesimal gauge transformations are Lie algebra valued:

δαφ(x) = iα(x)φ(x),
α(x) =∑

a
αa(x)T a, (2.6)

[T a,T b] = i f abcT c,

[δα ,δβ ]φ = [α,β ]φ = −iδ[α,β ]φ ,

where φ(x) is a matter field which belongs to an irreducible representation of the
gauge group.

In the previous chapter deformed gauge transformations were introduced. Here
we analyze them in more detail. They are defined as follows [11, 12]:

δ �
αφ = iX�

α �φ = iX�
αa T a �φ = iα ·φ . (2.7)

From the fact that X�
f �X�

g = X�
f ·g, we conclude

[X�
α

�, X�
β ] = X�

−i[α,β ],

[δ �
α ,δ �

β ]φ = −iδ �
[α,β ]φ . (2.8)

2 A comparison between the present approach to noncommutative gauge theories and an earlier
one, so-called Seiberg–Witten map approach, is in Chap. 5.
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The �-transformations δ �
α represent the algebra via the usual3 commutator. How-

ever, written in terms of the operators X�
α the same algebra is represented via the

�-commutator.

Before we construct gauge theories we have to learn how products of fields trans-
form.

In the undeformed situation we use, without even thinking, the Leibniz rule:

δα(φ ·ψ) = (δαφ) ·ψ+φ · (δαψ), (2.9)

and we can easily verify that this Leibniz rule is consistent with the Lie algebra:

[δα ,δβ ](φ ·ψ) = −iδ[α,β ](φ ·ψ). (2.10)

For the deformed transformation law of a �-product of fields we demand a trans-
formation law that is in the class of transformations defined in (2.7) [8, 9, 11, 13, 14].
This amounts to first decomposing the representation φ �ψ for x-independent pa-
rameters into its irreducible parts and then follow (2.7) for gauging

δ �
α(φ �ψ) = iX�

αa �{T aφ �ψ+φ �T aψ}. (2.11)

Certainly it is consistent with the Lie algebra:

[δ �
α ,δ �

β ](φ �ψ) = −iδ �
[α,β ](φ �ψ). (2.12)

Because φ �ψ is a function we can use the definition of X�
f given in (2.4) and

simplify (2.11)
δ �
α(φ �ψ) = iαa · {T aφ �ψ+φ �T aψ}. (2.13)

As αa does not commute with the �-operation this is different from (2.9). To see
this difference more clearly we expand (2.13) in θ

δ �
α(φ �ψ) = iαa

{
T aφ ·ψ+φ ·T aψ

+
i
2
θρσ

(
T a∂ρφ ·∂σψ+∂ρφ ·T a∂σψ

)
+O(θ 2)

}
. (2.14)

The final version of the Leibniz rule for the �-product should be entirely ex-
pressed with �-operations. Thus we express (2.14) with �-products. A short calcu-
lation (see Chap. 1, Sect. 1.6 for details) shows

δ �
α(φ �ψ) = i(αφ)�ψ+ iφ � (αψ) (2.15)

− i
2
θρσ

(
i
(
(∂ρα)φ

)
� (∂σψ)+(∂ρφ)� i((∂σα)ψ)

)
+O(θ 2).

3 Here the usual commutator [A, B] = AB−BA stands in contrast to the �-commutator which is
defined in the following way [A �, B] = A�B−B�A.
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With more work we can prove by induction to all orders in θ the following equation:

δ �
α(φ �ψ) = i(αφ)�ψ+ iφ � (αψ)

+i
∞

∑
n=1

1
n!

(
− i

2

)n

θρ1σ1 . . .θρnσn{(∂ρ1 . . .∂ρnα)φ � (∂σ1 . . .∂σnψ)

+(∂ρ1 . . .∂ρnφ)� (∂σ1 . . .∂σnα)ψ}. (2.16)

This is different from what we obtain by putting just stars in the Leibniz rule (2.9).
But this difference has a well-defined meaning if we use the Hopf algebra language
to derive the Leibniz rule.

2.3 Hopf algebra techniques

The essential ingredient for a Hopf algebra [15, 16] is the comultiplication Δ(α):
For the undeformed situation we define

Δ(α) = α⊗1+1⊗α. (2.17)

It allows us to write the Leibniz rule (2.9) in the Hopf algebra language:

δα(φ ·ψ) = μ{Δ(α)φ ⊗ψ}. (2.18)

In the deformed situation we use a twisted coproduct:

ΔF (α) = F (α⊗1+1⊗α)F−1,

F = e−
i
2 θ

ρσ ∂ρ⊗∂σ . (2.19)

Here F is a twist that has all the properties to define a Hopf algebra with ΔF (α) as
a comultiplication [17–24]. Details about Hopf algebra methods, twists, and twisted
Hopf algebras will be given in Chaps. 7 and 8. We can show that the transformation
(2.16) can be written in the form

δ �
α(φ �ψ) = iμ�{ΔF (α)φ ⊗ψ}, (2.20)

with the multiplication μ� defined in (2.2). Equation (2.20) defines the Leibniz rule
in terms of the twisted comultiplication and the product μ�. To show this we start
from Eq. (2.13) and write it with the explicit definition of the �-product:

δ �
α(φ �ψ) = iαaμ

{
e

i
2 θ

ρσ ∂ρ⊗∂σ (T aφ ⊗ψ+φ ⊗T aψ)
}

= i
∞

∑
n=0

1
n!

(
i
2

)n

θρ1σ1 . . .θρnσn
(
αaT a(∂ρ1 . . .∂ρnφ)(∂σ1 . . .∂σnψ)

+(∂ρ1 . . .∂ρnφ)αaT a(∂σ1 . . .∂σnψ)
)
. (2.21)
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This we now rewrite as follows:

δ �
α(φ �ψ) = iμ(α⊗1+1⊗α)e

i
2 θ

ρσ ∂ρ⊗∂σ φ ⊗ψ

= iμ
{

e
i
2 θ

ρσ ∂ρ⊗∂σ · e− i
2 θ

ρσ ∂ρ⊗∂σ (α⊗1+1⊗α)e
i
2 θ

ρσ ∂ρ⊗∂σ φ ⊗ψ
}

= iμ�{ΔF (α)φ ⊗ψ}. (2.22)

The last line is exactly (2.20).
Gauge fields can be included in this formalism as well. In the undeformed situ-

ation they are Lie algebra valued, Aμ(x) = Aa
μ(x)T a, and under infinitesimal gauge

transformations transform as follows:

δAμ = ∂μα+ iαa[T a,Aμ ]. (2.23)

Let us calculate the contribution of the gauge field to the Leibniz rule. As an example
we calculate

δ �
α(Aμ �φ) = μ�{ΔF (α)Aμ ⊗φ} (2.24)

and obtain

δ �
α(Aμ �ψ) = iαa ([T a,Aμ ]�ψ

)
+ iαa (Aμ �T aψ

)
+(∂μαa)T aψ

= iαa ((T aAμ)�ψ− (AμT a)�ψ
)

+iαa(AμT a)�ψ+(∂μαa)T aψ
= iαaT a(Aμ �ψ)+(∂μα)ψ. (2.25)

Now we define a covariant derivative

D�
μψ = ∂μψ− iAμ �ψ. (2.26)

It will transform covariantly

δ �
α(D�

μψ) = iαaT a(D�
μψ) = iX�

αa �T a(D�
μψ), (2.27)

if the vector field Aμ transforms as in (2.23)

δ �
αAμ = ∂μα+ iαa[T a,Aμ ] = ∂μα+ iX�

αa � [T a,Aμ ]. (2.28)

From (2.28) we see that a Lie algebra valued vector field remains Lie algebra valued
by the transformation (2.28).

2.4 Field equations

Now we proceed as in the undeformed situation. First we define the field strength
tensor:

Fμν = i[D�
μ

�, D�
ν ]
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= ∂μAν −∂νAμ − i[Aμ �, Aν ]. (2.29)

Here we see already that Fμν will not be Lie algebra valued even for Lie algebra-
valued vector fields. Namely, assuming that the gauge field is Lie algebra valued
Aμ = Aa

μT a the field strength tensor Fμν (2.29) can be decomposed in two parts

Fμν = Fa
1μνT a +Fab

2μν
1
2
{T a,T b}. (2.30)

Since anticommutator of generators {T a,T b} is not Lie algebra valued in general,
the full Fμν will not be Lie algebra valued in general.

Using the twisted gauge transformations of the gauge field Aμ (2.28) and the
deformed Leibniz rule (2.16) we derive the transformation law of the field strength
tensor:

δ �
αFμν = iX�

αa � [T a,Fμν ] = i[α,Fμν ]. (2.31)

The expression Fμν �Fμν = ημρηνσFμνFρσ will transform accordingly

δ �
α(Fμν �Fμν) = iX�

αa � [T a,Fμν �Fμν ] = i[α,Fμν �Fμν ]. (2.32)

Hint, use the transformation law (2.31) and the deformed Leibniz rule (2.16).
The Lagrangian that is invariant under the twisted gauge transformations (2.28)

we define as in the gauge theory on commutative space:

L =
1
c

Tr(Fμν �Fμν), (2.33)

where c is an arbitrary constant. It is invariant and it is a deformation4 of the unde-
formed Lagrangian of a gauge theory.

To speak about an action we have to define integration. We take the usual integral
over x on the commutative space and we can verify that

∫
d4x f �g =

∫
d4x g� f =

∫
d4x f ·g (2.34)

by partial integration. This is called the trace property of the integral or cyclicity .
Equation (2.34) allows a cyclic permutation of the fields under the integral. To

derive the field equations we use the usual Leibniz rule for the functional variation,
that is, we vary the field where it stands. The trace property is then used to derive
the final result. As an example we look at the action for the gauge field

S =
1
c

∫
d4x Tr(Fμν �Fμν). (2.35)

4 One can expand the �-products appearing in the Lagrangian (2.33) and check that in the zeroth or-
der in the deformation parameter θρσ the Lagrangian of the undeformed theory is obtained. Higher
order terms give new contributions due to the noncommutativity (deformation) of the commutative
space.



2 Deformed Gauge Theories 29

From the trace property we compute

δS
δAρ(z)

=
1
c

δ
δAρ(z)

∫
d4x Tr(Fμν �Fμν)

=
1
c

∫
d4x Tr

((
δFμν(x)
δAρ(z)

)
�Fμν +Fμν �

(
δFμν(x)
δAρ(z)

))

=
2
c

∫
d4x Tr

δFμν(x)
δAρ(z)

�Fμν(x) (2.36)

=
2
c

∫
d4x Tr

δ
δAρ(z)

(∂μAν −∂νAμ − i[Aμ �, Aν ])�Fμν(x)

=
4
c

∫
d4x Tr

δ
δAρ(z)

(∂μAν − iAμ �Aν)�Fμν(x)

because Fμν is antisymmetric. Then we have

δS
δAρ(z)

=
4
c

∫
d4x Tr{−δ (4)(x− z)� (∂μFμρ)

−iδ (4)(x− z)�Aμ �Fρμ − iAμ �δ (4)(x− z)�Fμρ} (2.37)

= −4
c

∫
d4x Trδ (4)(x− z)�{∂μFμρ − iAμ �Fμρ + iFμρ �Aμ}.

The field equations follow after using (2.34)

δS
δAρ(z)

= −4
c

∫
d4x Trδ (4)(x− z){∂μFμρ − iAμ �Fμρ + iFμρ �Aμ}. (2.38)

These are exactly the equations we have expected from covariance:

D�
μFμν = ∂μFμν − i[Aμ �, Fμν ] = 0. (2.39)

We have already seen that Fμν cannot be Lie algebra valued. From the field equa-
tions (2.39), considered as equations for the vector potential Aμ , we see that Aμ
cannot be Lie algebra valued either. We have to consider Fμν and Aμ to be envelop-
ing algebra valued. The additional vector fields (coming from the non-Lie algebra-
valued parts) will introduce additional ghosts in the Lagrangian. To eliminate them
we have to enlarge the symmetry to be enveloping algebra valued as well. For sim-
plicity we assume α , Aμ , and Fμν to be matrix valued when the matrices act in the
representation space of T a.

From the field equations (2.39) follows a consistency equation because Fμν is
antisymmetric in μ and ν :

∂ν [Aμ �, Fμν ] = 0. (2.40)

To verify this condition we have to use the field equations (2.39). First we differen-
tiate (2.40)

∂ν [Aμ �, Fμν ] = [∂νAμ �, Fμν ]+ [Aμ �, ∂νFμν ]. (2.41)
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In the first term we replace ∂νAμ by 1
2 (∂νAμ −∂μAν) because Fμν is antisymmetric

in μ and ν . Then we express this term by Fμν according to (2.29):

1
2
(∂νAμ −∂μAν) =

i
2

Fνμ +
i
2
[Aν �, Aμ ]. (2.42)

The �-commutator [Fμν �, Fμν ] = Fμν � Fμν −Fμν � Fμν vanishes and we are left
with i

2 [[Aν �, Aμ ] �, Fμν ] for the first term in (2.41). For the second term in (2.41)
we use the field equations (2.39). Finally all terms left add up to zero if we use the
Jacobi identity. In all these equations Aμ and Fμν are supposed to be matrices. We
have suppressed the matrix indices.

A conserved current is found

jν = [Aμ �, Fμν ], ∂ν jν = 0. (2.43)

For θρσ = 0 this is the current of a non-abelian gauge theory on commutative
space.

2.5 Matter fields

Matter fields can be coupled covariantly to the gauge fields via a covariant deriva-
tive. We start from a multiplet of the gauge group ψA not necessarily irreducible.
The index A denotes the component of the field ψ in the representation space. The
transformation law of ψ is δ �

αψA = iX�
αAB

�ψB = iαABψB. For the usual gauge trans-
formations αAB will be Lie algebra valued. The covariant derivative is

(D�
μψ)A = ∂μψA − iAμAB �ψB. (2.44)

The gauge potential Aμ in now supposed to be matrix valued in the representation
space spanned by the matter fields.

For a spinor field
ψ̄αA � γμαβ (D�

μψ)A (2.45)

will be invariant and therefore suitable for a covariant Lagrangian.
We consider the Lagrangian

L =
1
c

Tr(Fμν �Fμν)+ ψ̄ � γμ(i∂μ +Aμ�)ψ−mψ̄ �ψ. (2.46)

We have suppressed the matrix indices.
The field equations are obtained from (2.46) by varying the fields in the same

way as in Sect. 2.4:

δL

δAρ
= ∂μFμρ

AB + i[Aμ �, Fρμ ]AB + γραβψβA � ψ̄αB = 0, (2.47)
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and for the matter fields

δL

δψ̄
= γμ(∂μψA − iAμAB �ψB)+ imψA = 0 (2.48)

δL

δψ
= (∂μψ̄Aγμ + iψ̄Bγμ � iAμAB)− imψ̄A = 0.

Again, Eq. (2.47) leads to a consistency relation that can be verified with the help
of the field equations. It is, however, important that the representation space for the
field ψ and the vector potential AμAB are the same. The representation space of the
matter fields determines the space for the gauge potentials.

We conclude that there is a conserved current:

jρAB = i[Aμ �, Fμρ ]AB − γραβψβA � ψ̄αB. (2.49)

We were again able to find a conserved current as a consequence of a deformed
symmetry. Even if we put the vector potential to zero there remains the part from
the matter field. There are conservation laws due to a deformed symmetry. It is
remarkable that we have found conserved currents in the twisted theory as well. In
the undeformed theory we can derive them with the help of the Noether theorem.
In the deformed theory this is not possible. Nevertheless the property that a theory
has a conserved current is preserved by a deformation. This is an important step to
convince ourselves that a deformed gauge theory has properties close to what we
need for physics.

2.6 Examples

1) Maxwell equations

We start from the simplest gauge theory based on U(1) and describing gauge
fields only. We proceed schematically. The transformation law of the gauge field
Aμ :

δ �
αAμ = ∂μα. (2.50)

The covariant derivative:

D�
μ = ∂μ − iAμ � . (2.51)

The field strength tensor:

Fμν = [D�
μ

�, D�
ν ] = ∂μAν −∂νAμ − i[Aμ �, Aν ]. (2.52)

The Lagrangian:

L = −1
4

Fμν �Fμν . (2.53)
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The field equations:
∂ μFμν − i[Aμ �, Fμν ] = 0. (2.54)

Consistency equations:
∂ν [Aμ �, Fμν ] = 0. (2.55)

A schematic proof of the consistency condition:

[∂νAμ �, Fμν ]+ [Aμ �, ∂νFμν ] = (2.56)

=
i
2
[[Aν �, Aμ ] �, Fμν ]+ i[Aμ �, [Aν �, Fμν ]]. (2.57)

We have used the field equations and the fact that [Fμν �, Fμν ] = 0. The terms left
can now be rearranged

[[Aν �, Aμ ] �, Fμν ]+ [[Aμ �, Fμν ] �, Aν ]+ [[Fμν �, Aν ] �, Aμ ] (2.58)

and vanish due to the Jacobi identity.
We found a conserved current:

jν = [Aμ �, Fμν ], ∂ν jν = 0. (2.59)

2) Electrodynamics with one charged spinor field

Transformation law of the gauge field and the spinor field:

δ �
αψ = iαψ, δ �

αAμ = ∂μα. (2.60)

Covariant derivative:

D�
μ = (∂μ − iAμ�), D�

μψ = (∂μ − iAμ�)ψ. (2.61)

Field strength:
Fμν = ∂μAν −∂νAμ − i[Aμ �, Aν ]. (2.62)

Lagrangian:

L = −1
4

Fμν �Fμν + ψ̄ � γμ(i∂μψ+Aμ �ψ)−mψ̄ �ψ. (2.63)

Field equations:

∂μFμρ + i[Aμ �, Fρμ ]+ γρψ � ψ̄ = 0,

γμ(∂μψ)− iγμAμ �ψ+ imψ = 0, (2.64)

(∂μψ̄)γμ + iψ̄γμ �Aν − imψ̄ = 0.
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Consistency condition:

∂ρ([Aμ �, Fρμ ]+ γρψ � ψ̄) = 0. (2.65)

Proof: As before, the spinor terms have to be added in the current and the field
equations.

Current:
jρ = [Aν �, Fρν ]+ γρψ � ψ̄ , ∂ν jν = 0. (2.66)

3) Electrodynamics with several charged fields

We try to formulate a model with one vector potential and differently charged
matter fields as we do in the undeformed situation. This amounts to introduce an
U(1) gauge-invariant action for the gauge potential and for the matter fields.

Let us consider the part of the vector potential first.
The transformation law is

δ �
αAμ = ∂μα. (2.67)

The covariant derivative
D�
μ = (∂μ − iAμ�) (2.68)

gives the following field strength tensor

Fμν = ∂μAν −∂νAμ − i[Aμ �, Aν ]. (2.69)

As an invariant Lagrangian we choose

LA = −1
4

Fμν �Fμν . (2.70)

Next we consider the matter fields ψr with charges gr, r = 1, . . . , n. They trans-
form as follows:

δ �
αψr = igrαψr. (2.71)

The covariant derivative depends on the charge of the field it acts on:

D�
μψr = (∂μ − igrAμ�)ψr. (2.72)

The U(1) gauge-invariant action can be chosen as follows:

Lψ =∑
r
ψ̄r � γμ

(
i(∂μψ)+grAμ �ψr)−mrψ̄r �ψr. (2.73)

As the total Lagrangian we take the sum

L = LA +Lψ . (2.74)

It is U(1) gauge invariant and it is a deformation of the usual electrodynamics with
different charged fields. This Lagrangian now leads to the field equations:
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∂μFμρ + i[Aμ �, Fρμ ]+∑
r

grγρψr � ψ̄r = 0,

γμ(∂μψ)− igrγμAμ �ψ+ imrψr = 0, (2.75)

∂μψ̄rγμ + iψ̄rγμ �grAν − imrψ̄r = 0.

The first of these equations gives rise to a consistency condition:

∂ρ
(

i[Aν �, Fρν ]+∑
r

grγρψr � ψ̄r
)

= 0. (2.76)

From a direct calculation, using the field equations, follows:

∂ρ
(

i[Aν �, Fρν ]+∑
r

grγρψr � ψ̄r
)

(2.77)

= −∑
r

(g2
r −gr)[Aμ �, γμψr � ψ̄r]. (2.78)

The consistency condition is only satisfied if gr = g2
r or gr = 1. With one vector

potential we can in a U(1) model only describe particles with one charge. There can
be an arbitrary number of matter fields with this charge. This is different from the
usual undeformed situation. There the commutator in (2.69) vanishes and does not
give rise to an inconsistency.

This is not surprising, we forgot that the vector potential has at least to be en-
veloping algebra valued. This is demonstrated in the next example.

4) Electrodynamics of a positive and a negative charged matter field

The gauge group is supposed to be U(1) and the matter fields are in the multiplet
that transforms as follows:

δ �
αψ = iαQψ, Q =

(
1 0
0 −1

)
. (2.79)

As outlined in Sect. 2.5, the gauge potential has to be in the same representation of
the enveloping algebra as the matter fields are.

The enveloping algebra has two elements:

I and Q, Q2 = 1. (2.80)

We generalize the transformation law (2.79) to be enveloping algebra valued

δΛψ = iΛψ, Λ = λ0(x)I +λ1(x)Q. (2.81)

The vector potential Aμ has the analogous decomposition

Aμ = Aμ(x)I +Bμ(x)Q. (2.82)
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The covariant derivative is

D�
μψ = (∂μ − iAμ�)ψ = (∂μ − iAμ(x)� I − iBμ(x)�Q)ψ. (2.83)

The field strength can also be decomposed in the enveloping algebra

Fμν = Fμν I +GμνQ. (2.84)

From the definition of the field strength

Fμν = ∂μAν −∂νAμ − i[Aμ �, Aν ], (2.85)

follows

Fμν = ∂μAν −∂νAμ − i[Aμ �, Aν ]− i[Bμ �, Bν ],
Gμν = ∂μBν −∂νBμ − i[Aμ �, Bν ]− i[Bμ �, Aν ]. (2.86)

The matter fields couple to the vector potential via the covariant derivative

D�
μψ = (∂μ − iAμ�)ψ

= (∂μ − iAμ(x)� I − iBμ(x)�Q)ψ. (2.87)

This leads to the Lagrangian

L = −1
4
F μν �Fμν + ψ̄ � γμ

(
i(∂μψ)+Aμ �ψ

)
−mψ̄ �ψ (2.88)

and the field equations

δL

δAρ
: ∂μFμρ + i[Aμ �, Fρμ ]+ i[Bμ �, Gρμ ]+ iγρψ � ψ̄ = 0,

δL

δBρ
: ∂μGμρ + i[Bμ �, Fρμ ]+ i[Aμ �, Gρμ ]+ iγρψA � ψ̄BQAB = 0,

δL

δψ̄
: γμ(∂μψ)− iγμAμ �ψ+mψ = 0,

δL

δψ
: ∂μψ̄γμ + iψ̄γμ �Aμ −mψ̄ = 0. (2.89)

We obtain two consistency equations that render two transformation laws, in agree-
ment with the extended symmetry (2.81)

jρA = i[Aμ �, Fρμ ]+ i[Bμ �, Gρμ ]+ γρψA � ψ̄A, (2.90)

with
∂ρ jρA = 0 (2.91)

and
jρB = i[Bμ �, Fρμ ]+ i[Aμ �, Gρμ ]− iγρψA � ψ̄BQAB. (2.92)
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We learn that the deformed gauge theory leads to a theory with a larger symmetry
structure, the enveloping algebra structure. This structure survives in the limit θ →
0. We find the corresponding conservation laws and gauge transformations needed
for a consistent gauge theory.
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