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V

Entropy and the Stability of Classical Solutions

It is a tenet of continuum physics that the Second Law of thermodynamics is es-
sentially a statement of stability. In the examples discussed in the previous chapters,
the Second Law manifests itself in the presence of companion balance laws, to be
satisfied identically, as equalities, by classical solutions, and to be imposed as ther-
modynamic admissibility inequality constraints on weak solutions of the systems of
balance laws. A recurring theme in the exposition of the theory of hyperbolic systems
of balance laws in this book will be that companion balance laws induce stability un-
der various guises. Here the reader will get a glimpse of the implications of entropy
inequalities on the stability of classical solutions.

It will be shown that when the system of balance laws is endowed with a com-
panion balance law induced by a convex entropy, the initial value problem is locally
well-posed in the context of classical solutions: sufficiently smooth initial data gen-
erate a classical solution defined on a maximal time interval, typically of finite dura-
tion. However, in the presence of damping induced by relaxation or other dissipative
mechanisms, and when the initial data are sufficiently small, the classical solution
exists globally in time. Classical solutions are unique and depend continuously on
their initial values, not only within the class of classical solutions but even within
the broader class of weak solutions that satisfy the companion balance law as an
inequality admissibility constraint.

Similar existence and stability results will be established, even when the entropy
fails to be convex, in the following two situations: (a) the entropy is convex only in
the direction of a certain cone in state space but the system is equipped with spe-
cial companion balance laws, called involutions, whose presence compensates for
the lack of convexity in complementary directions; or (b) the system is endowed
with complementary entropies and the principal entropy is polyconvex. This struc-
ture arises in elastodynamics and electromagnetism.

The chapter will close with a brief discussion of the existence of classical solu-
tions to the initial-boundary value problems.

From the standpoint of analytical technique, this chapter presents the aspects of
the theory of quasilinear hyperbolic systems of balance laws that can be tackled by
the methodology of the linear theory, namely energy estimates and Fourier analysis.

C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,
Grundlehren der mathematischen Wissenschaften 325,
DOI: 10.1007/978-3-642-04048-1 V, c© Springer-Verlag Berlin Heidelberg 2010
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5.1 Convex Entropy and the Existence of Classical Solutions

As in Chapter IV, we consider here the Cauchy problem

(5.1.1) ∂tU(x,t)+
m

∑
α=1

∂αGα(U(x,t)) = 0, x ∈ R
m, t > 0,

(5.1.2) U(x,0) = U0(x), x ∈ R
m,

for a homogeneous system of conservation laws in canonical form, endowed with an
entropy η(U). For any U ∈ O , we define the n×n matrices

(5.1.3) A(U) = D2η(U),

(5.1.4) Jα(U) = A(U)DGα(U) , α = 1, · · · ,m,

which are symmetric, by virtue of (3.2.4).
The aim is to establish local existence of classical solutions, by employing

energy-type estimates induced by the entropy. In particular, this section will discuss
the case of convex entropy; Section 5.4 will consider the situation where the entropy
is merely convex in the direction of a certain cone; and Section 5.5 will deal with
entropy satisfying a weaker condition, called polyconvexity. The discussion will be
restricted to homogeneous conservation laws just for simplicity, as the extension to
general balance laws (3.1.1) is routine.

Throughout this chapter, a multi-index r will stand for a m-tuple of nonnegative
integers: r = (r1, · · · ,rm). We put |r| = r1 + · · ·+ rm and ∂ r = ∂ r1

1 · · ·∂ rm
m . Thus ∂ r is

a differential operator of order |r|. We also employ the notation ∇= (∂1, · · · ,∂m).
For � = 0,1,2, · · · , H� will be the Sobolev space W �,2(Rm;Mn×m) of n × m

matrix-valued functions on R
m. The norm of H� will be denoted by ‖ · ‖�. By the

Sobolev embedding theorem, for � > m/2, H� is continuously embedded in the space
of continuous n×m matrix-valued functions on R

m.
The main result of this section is the following

5.1.1 Theorem. Assume the system of conservation laws (5.1.1) is endowed with a
C3 entropy η(U), such that D2η(U) is positive definite on O . Suppose the initial
data U0 are continuously differentiable on R

m, take values in some compact subset
of O and ∇U0 ∈ H� for some � > m/2. Moreover, let G ∈ C�+2. Then there exists
T∞ ≤∞, and a unique continuously differentiable function U on R

m × [0,T∞), taking
values in O , which is a classical solution of the Cauchy problem (5.1.1), (5.1.2) on
[0,T∞). Furthermore,

(5.1.5) ∇U(·,t) ∈
�⋂

k=0

Ck([0,T∞);H�−k).

The interval [0,T∞) is maximal in that if T∞ < ∞ then
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(5.1.6)
∫ T∞

0
‖∇U(·,t)‖L∞(Rm)dt = ∞

and/or the range of U(·,t) escapes from every compact subset of O , as t ↑ T∞.

The traditional proof of the above theorem, presented in the literature cited in
Section 5.7, and also in earlier editions of this book, determines the solution of
(5.1.1), (5.1.2), in a suitable function space F , as a fixed point of the map that carries
V ∈ F to the solution U ∈ F of the linearized system

(5.1.7) ∂tU(x,t)+
m

∑
α=1

DGα(V (x,t))∂αU(x,t) = 0,

under initial conditions (5.1.2). This approach is effective when η(U) is convex,
because in that case multiplication by D2η(V ) renders (5.1.7) symmetric hyperbolic;
but it is inapplicable under weaker hypotheses on η(U), to be introduced in Sections
4.5 and 4.6, where the a priori estimates are inexorably tied to the geometric structure
of (5.1.1) and do not carry over to the linearized form (5.1.7). Accordingly, we shall
employ here the vanishing viscosity method, which determines solutions to (5.1.1)
as the ε ↓ 0 limit of solutions of the parabolic system

(5.1.8) ∂tU(x,t)+
m

∑
α=1

∂αGα(U(x,t)) = εΔU(x,t).

This approach is lengthier, but it starts at a more elementary level (the sole prerequi-
site is the solution of the Cauchy problem for the classical heat equation) and, more
importantly, it affords a unifying treatment of the various cases to be considered in
this chapter.

The first step is to establish local existence for the Cauchy problem for (5.1.8),
with fixed ε > 0. The leading term is the Laplacian, so hyperbolicity and entropy
will play no role at this stage.

5.1.2 Lemma. Assume U0 takes values in a compact subset of an open bounded set
C whose closure C is contained in O , and let ∇U0 ∈ H�, with � > m/2. For any
fixed ω > ‖∇U0‖�, there exists a solution U of (5.1.8), (5.1.2) on a time interval
[0,Tε),0 < Tε ≤ ∞, such that, for each fixed t ∈ [0,Tε), U(·,t) takes values in a
compact subset of C , and

(5.1.9) ∇U(·,t) ∈C0([0,Tε);H�)
⋂

L2([0,Tε);H�+1),

with

(5.1.10) ‖∇U(·,t)‖� < ω ,

for all t ∈ [0,Tε). The interval [0,Tε) is maximal, in that if Tε < ∞ then, as t tends to
Tε ,‖∇U(·,t)‖� → ω and/or the range of U(·,t) escapes from every compact subset
of C .



100 V Entropy and the Stability of Classical Solutions

Proof. With the fixed ω and with T to be selected later, we associate the class V of
Lipschitz functions V defined on R

m × [0,T ], taking values in C , and satisfying

(5.1.11) V (·,t)−U0(·) ∈ L∞([0,T ];L2), ∇V (·,t) ∈ L∞([0,T ];H�),

(5.1.12) sup
[0,T ]

‖V (·,t)−U0(·)‖L2 ≤ ω , sup
[0,T ]

‖∇V (·,t)‖� ≤ ω .

By standard weak lower semicontinuity of Lp norms, V is a complete metric space
under the metric

(5.1.13) ρ(V,V̄) = sup
[0,T ]

‖V (·,t)− V̄(·,t)‖0 .

For given V ∈ V , we construct the solution U on R
m × [0,T ] of the linear

parabolic system

(5.1.14) ∂tU(x,t)− εΔU(x,t) = −
m

∑
α=1

∂αGα(V (x,t)) ,

with initial condition (5.1.2). Thus

(5.1.15) (4πε)
m
2 U(x,t) =

∫

Rm
t−

m
2 exp

[

−|x− y|2
4εt

]

U0(y)dy

−
∫ t

0

∫

Rm
(t − τ)−m

2 exp

[

− |x− y|2
4ε(t − τ)

] m

∑
α=1

∂αGα(V (y,τ))dydτ .

We proceed to show that if T is sufficiently small, then U ∈ V and the map that
carries V to U is a contraction. The unique fixed point of that map will then be the
desired solution of (5.1.8), (5.1.2) on [0,T ].

In what follows, c will stand for a generic constant that may depend solely on �
and on bounds of G(U) and its derivatives on C .

From (5.1.14), (5.1.11) and ‖∇U0‖� < ω , we deduce

(5.1.16) sup
[0,T ]

‖U(·,t)−U0(·)‖L∞ ≤ cω(1 +
√

T )
√

T ,

(5.1.17) sup
[0,T ]

‖U(·,t)−U0(·)‖L2 ≤ cωT,

which shows, in particular, that when T is sufficiently small, then, for any fixed
t ∈ [0,T ],U(·,t) takes values in a compact subset of C , and ‖U(·,t)−U0(·)‖L2 < ω .

We now fix any multi-index r of order 1 ≤ |r| ≤ �+ 1 and apply ∂ r to (5.1.14),
which yields

(5.1.18) ∂tUr(x,t)− εΔUr(x,t) = −
m

∑
α=1

∂α∂ rGα(V (x,t)),
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where Ur stands for ∂ rU . We also set U0r = ∂ rU0. By virtue of (5.1.12) and standard
Moser-type inequalities,

(5.1.19) sup
[0,T ]

‖∂ rGα(V (·,t))‖0 ≤ cω .

By standard theory of the heat equation, the solution Ur of (5.1.18) lies in
C0([0,T ];L2). Furthermore, the energy estimate, obtained formally by multiplying
(5.1.18) by 2U�

r , integrating over R
m × [0,t], for t ∈ [0,T ], and integrating by parts,

is here valid:

(5.1.20)
∫

Rm
|Ur(x,t)|2dx + 2ε

∫ t

0

∫

Rm
|∇Ur|2dxdτ

=
∫

Rm
|U0r(x)|2dx + 2

∫ t

0

∫

Rm

m

∑
α=1

∂αU�
r ∂

rGα(V )dxdτ

≤
∫

Rm
|U0r(x)|2dx + ε

∫ t

0

∫

Rm
|∇Ur|2dxdτ+

cTω2

ε
.

Therefore, upon summing over all multi-indices r of order 1 ≤ |r| ≤ �+ 1,

(5.1.21) sup
[0,T ]

‖∇U(·,t)‖2
� ≤ ‖∇U0(·)‖2

� +
cTω2

ε
.

Since ‖∇U0‖� < ω , when T is sufficiently small, ‖∇U(·,t)‖� < ω , for all t ∈ [0,T ],
and hence U ∈ V .

We now fix V and V̄ and consider the solutions U and Ū of (5.1.14), (5.1.2),
induced by them. Then

(5.1.22) ∂t(U −Ū)− εΔ(U −Ū) = −
m

∑
α=1

∂α [Gα(V )−Gα(V̄ )].

Multiplying (5.1.22) by 2(U − Ū)�, integrating over R
m × [0,t], and integrating by

parts yields

(5.1.23)
∫

Rm
|U(x,t)−Ū(x,t)|2dx + 2ε

∫ t

0

∫

Rm
|∇(U −Ū)|2dxdτ

= 2
∫ t

0

∫

Rm

m

∑
α=1

∂α(U −Ū)�[Gα(V )−Gα(V̄ )]dxdτ

≤ ε
∫ t

0

∫

Rm
|∇(U −Ū)|2dxdτ+

cT
ε

sup
[0,T ]

∫

Rm
|V (x,τ)− V̄(x,τ)|2dx.

Recalling (5.1.13), we conclude that cT/ε = μ2 < 1 implies contraction,
ρ(U,Ū) ≤ μρ(V,V̄), which establishes the existence of a single fixed point and
thereby the existence of a unique solution U to (5.1.8), (5.1.2) on [0,T ].
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Since ‖∇U(·,T )‖� < ω and U(·,T ) takes values in a compact subset of C , we
may repeat the above construction and extend U to a longer time interval [0,T ′].
Continuing this process, we end up with a solution U to (5.1.8), (5.1.2) defined on a
maximal interval [0,Tε), such that if Tε < ∞ then, as t ↑ Tε ,‖∇U(·,t)‖� → ω and/or
the range of U(·,t) escapes from every compact subset of C . The proof is complete.

Next we construct solutions to the hyperbolic system (5.1.1). The presence of a
convex entropy will now play a crucial role.

5.1.3 Lemma. Let U0 and C be as in Lemma 5.1.2. Then there is a positive constant
c0, depending solely on � and C , such that with any fixedω > c0‖∇U0‖� is associated
T > 0 and a unique classical solution U of (5.1.1), (5.1.2) on [0,T ], having the
following properties: For each t ∈ [0,T ], U(·,t) takes values in C ,∇U(·,t) ∈ H� and
‖∇U(·,t)‖� ≤ ω .

Proof. Assume, temporarily, that ∇U0 ∈ H�+2. Fix ε ∈ (0,1) and consider the solu-
tion of (5.1.8), (5.1.2), defined on a maximal time interval [0,Tε), as established by
Lemma 5.1.2. The aim is to show that Tε is bounded below by some T > 0, uniformly
in ε , and establish a priori bounds for U on [0,T ], independent of ε , which will allow
us to construct the solution to (5.1.1), (5.1.2) by passing to the limit ε ↓ 0.

For the remainder of this section, c will stand for a generic constant that depends
solely on � and on bounds of the functions Gα ,η and their derivatives on C .

We fix any multi-index r of order 1 ≤ |r| ≤ �+ 1 and apply ∂ r to (5.1.8), which
yields

(5.1.24) ∂tUr(x,t)+
m

∑
α=1

∂ r∂αGα(U(x,t)) = εΔUr(x,t),

with Ur = ∂ rU . Since ∇U0 ∈ H�+2,∂tUr ∈ L∞([0,Tε);L2). Multiplying (5.1.24) by
∂tU�

r , integrating over R
m × [0,t],0 < t < Tε , and integrating by parts, we obtain

(5.1.25)
∫ t

0

∫

Rm
|∂tUr|2dxdτ+

ε
2

∫

Rm
|∇Ur(x,t)|2dx

=
ε
2

∫

Rm
|∇U0r(x)|2dx−

∫ t

0

∫

Rm
∂tU

�
r

m

∑
α=1

∂ r∂αGα(U)dxdτ.

By Moser-type estimates, for any r of order |r| ≤ �,

(5.1.26) ‖∂ r∂αGα(U(·,τ))‖L2 ≤ c‖∇U(·,τ)‖� .

Hence, applying the Cauchy-Schwarz inequality to (5.1.25) and then summing over
all multi-indices r of order |r| ≤ �,

(5.1.27)
∫ t

0
‖∂tU(·,τ)‖2

W �,2 dτ ≤ ε‖∇U0(·)‖2
� + c

∫ t

0
‖∇U(·,τ)‖2

� dτ.

Next we rewrite (5.1.24) as
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(5.1.28)

∂tUr +
m

∑
α=1

DGα(U)∂αUr =
m

∑
α=1

{DGα(U)∂αUr − ∂ r[DGα(U)∂αU ]}+ εΔUr ,

we multiply by 2U�
r A(U), where A(U) is the symmetric positive definite matrix

defined by (5.1.3), and integrate over R
m × [0,t]. Notice that

(5.1.29) 2U�
r A(U)∂tUr = ∂t [U�

r A(U)Ur]−U�
r ∂tA(U)Ur,

(5.1.30) U�
r A(U)ΔUr

=
m

∑
α=1

∂α [U�
r A(U)∂αUr]−

m

∑
α=1

∂αU�
r A(U)∂αUr −

m

∑
α=1

U�
r ∂αA(U)∂αUr .

By the Cauchy inequality, since A(U) is positive definite,

(5.1.31) −
m

∑
α=1

U�
r ∂αA(U)∂αUr ≤

m

∑
α=1

∂αU�
r A(U)∂αUr + c|∇U |2|Ur|2.

Furthermore, recalling the definition (5.1.4) of the symmetric matrices Jα :
(5.1.32)

m

∑
α=1

2U�
r A(U)DGα(U)∂αUr =

m

∑
α=1

∂α [U�
r Jα(U)Ur]−

m

∑
α=1

U�
r ∂αJα(U)Ur.

We thus obtain

(5.1.33)
∫

Rm
U�

r (x,t)A(U(x,t))Ur(x,t)dx ≤
∫

Rm
U�

0r(x)A(U0(x))U0r(x)dx

+
∫ t

0

∫

Rm
2U�

r A(U)
m

∑
α=1

{DGα(U)∂αUr − ∂ r[DGα(U)∂αU ]}dxdτ

+
∫ t

0

∫

Rm
U�

r {∂tA(U)+
m

∑
α=1

∂αJα(U)}Urdxdτ+ cε
∫ t

0

∫

Rm
|∇U |2|Ur|2dxdτ.

Notice the Moser-type estimate

(5.1.34) ‖DGα(U(·,τ))∂αUr(·,τ)− ∂ r[DGα(U(·,τ))∂αU(·,τ)]‖L2

≤ c‖∇U(·,τ)‖L∞‖∇U(·,τ)‖� .

Therefore, upon summing (5.1.33) over all multi-indices r of order 1 ≤ |r| ≤ �+ 1,
we obtain the estimate

(5.1.35) ‖∇U(·,t)‖2
� ≤ c‖∇U0(·)‖2

� +
∫ t

0
g(τ)‖∇U(·,τ)‖2

�dτ ,

where
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(5.1.36) 0 ≤ g(τ) ≤ c{‖∇U(·,τ)‖L∞ +‖∂tU(·,τ)‖L∞ + ε‖∇U(·,τ)‖2
L∞}.

By Gronwall’s inequality,

(5.1.37) ‖∇U(·,t)‖2
� ≤ c‖∇U0(·)‖2

� exp
∫ t

0
g(τ)dτ.

On the other hand, by virtue of (5.1.36), (5.1.27), Schwarz’s inequality and the
Sobolev lemma,

(5.1.38)
{∫ t

0
g(τ)dτ

}2

≤ ct

{

ε‖∇U0(·)‖2
� +

∫ t

0
‖∇U(·,τ)‖2

�dτ
}

+cε2
{∫ t

0
‖∇U(·,τ)‖2

�dτ
}2

.

It is now clear that there is c0 such that if one fixes ω > c0‖∇U0‖� , then, for T
sufficiently small, (5.1.16) implies that U(·,t) takes values in C and (5.1.37), (5.1.38)
together imply that ‖∇U(·,t)‖� < ω , for any t ∈ [0,T ]. Moreover, by (5.1.27),

(5.1.39)
∫ T

0
‖∂tU(·,t)‖2

W �,2dt ≤ c(T + 1)ω2.

It should be emphasized that some T with the above specifications may be selected
independently of ε and it is thus a common lower bound of Tε , for all ε ∈ (0,1).

Suppose now ∇U0 ∈ H�. We fix a sequence {U0ν}, with ∇U0ν ∈ H�+2, and a
sequence {εν} in (0,1), such that U0ν → U0, pointwise, ∇U0ν → ∇U0, in H�, and
εν → 0, as ν → ∞. Let Uν denote the solution of (5.1.8), with ε = εν and initial
data Uν(·,0) = U0ν(·), restricted to the time interval [0,T ], with T as above. By
virtue of the above estimates, {∇Uν} is contained in a bounded set of L∞([0,T ];H�)
and {∂tUν} is contained in a bounded set of L2([0,T ];W �,2). By standard embed-
ding theorems, {Uν} is then uniformly equicontinuous on R

m× [0,T ]. Therefore, we
may extract a subsequence, again denoted by {Uν}, that converges to a continuous
function U , uniformly on compact subsets of R

m × [0,T ]. In particular, U(·,t) takes
values in C , for all t ∈ [0,T ]. Clearly, U satisfies the system (5.1.1) on [0,T ], in the
sense of distributions, and also satisfies the initial conditions (5.1.2). Furthermore,
for any fixed t ∈ [0,T ],{∇Uν(·,t)} converges to ∇U(·,t), weakly in H�, and hence
∇U(·,t) ∈ L∞([0,T ];H�), with ‖∇U(·,t)‖� ≤ ω . It then follows from (5.1.1) that
∂tU(·,t) ∈ L∞([0,T ];W �,2). In particular, since � > m/2,∇U and ∂tU are bounded,
|∇U | ≤ cω , |∂tU | ≤ cω , so that U is a classical solution of (5.1.1), (5.1.2).

The uniqueness of the above solution will be established, in a far more general
setting, in Section 5.3, and so it will be taken henceforth for granted. The proof is
complete.

The next proposition highlights the local dependence property for solutions of
the hyperbolic system (5.1.1). In what follows, for ρ > 0 and � = 0,1,2, · · · ,H�(Bρ)
stands for the Sobolev space W �,2(Bρ ;Mn×m) on the ball Bρ .

5.1.4 Lemma. In the setting and under the assumptions of Lemma 5.1.3, there are
positive constants a,b,λ , depending solely on � and C , such that
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(5.1.40)

‖∇U(·,t)‖2
H�(Bρ ) ≤ a‖∇U0(·)‖2

H�(Bρ+λ t )
exp{b

∫ t

0
‖∇U(·,τ)‖L∞(Bρ+λ(t−τ))dτ}.

In particular, letting ρ → ∞,

(5.1.41) ‖∇U(·,t)‖2
� ≤ a‖∇U0(·)‖2

� exp{b
∫ t

0
‖∇U(·,τ)‖L∞(Rm)dτ}.

Proof. Assume, temporarily, ∇U0 ∈ H�+2, so that ∇U(·,t) ∈ L∞([0,T ];H�+2). For
any multi-index r of order 1 ≤ |r| ≤ �+ 1 we apply ∂ r to (5.1.1) to get

(5.1.42) ∂tUr +
m

∑
α=1

DGα(U)∂αUr =
m

∑
α=1

{DGα(U)∂αUr − ∂ r[DGα(U)∂αU ]},

where Ur = ∂ rU . All the terms in (5.1.42) are at least in W 1,2(Rm), so we may
multiply by 2U�

r A(U) and use (5.1.29) and (5.1.32), which yields

(5.1.43) ∂t [U�
r A(U)Ur]+

m

∑
α=1

∂α [U�
r Jα(U)Ur] = Ir ,

where

(5.1.44) Ir = 2U�
r A(U)

m

∑
α=1

{DGα(U)∂αUr − ∂ r[DGα(U)∂αU ]}

+U�
r {∂tA(U)+

m

∑
α=1

∂αJα(U)}Ur .

We fix λ > 0 so large that the matrices

(5.1.45) λA(U)+
m

∑
α=1

ξαJα(U)

are positive definite, for all ξ ∈ Sm−1 and U ∈ C . Then we integrate (5.1.43) over
the frustum {(x,τ) : 0 ≤ τ ≤ σ , |x| ≤ ρ + λ (t − τ)}, for σ in (0,t], and apply the
divergence theorem. The resulting integral over the lateral surface of the frustum is
nonnegative, because the matrices (5.1.45) are positive definite. We thus end up with
the estimate

(5.1.46)∫

Bρ+λ(t−σ)

U�
r (x,σ)A(U(x,σ))Ur(x,σ)dx−

∫

Bρ+λ t

U�
0r(x)A(U0(x))U0r(x)dx

≤
∫ σ

0

∫

Bρ+λ(t−τ)
Ir(x,τ)dxdτ.
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Using the estimate (5.1.34), albeit for the ball Bρ+λ (t−τ) rather than for the whole
R

m, we deduce

(5.1.47)
∫

Bρ+λ(t−τ)
Ir(x,τ)dτ ≤ c‖∇U(·,τ)‖L∞(Bρ+λ(t−τ))‖∇U(·,τ)‖2

H�(Bρ+λ(t−τ))
.

Let us sum (5.1.46) over all r with 1≤ |r| ≤ �. Since A(U) is positive definite, set-
ting ‖∇U(·,τ)‖L∞(Bρ+λ(t−τ)) = g(τ),‖∇U(·,τ)‖2

H�(Bρ+λ(t−τ))
= u(τ), and combining

(5.1.46) with (5.1.47), we end up with an estimate of the form

(5.1.48) u(σ) ≤ au(0)+
∫ σ

0
g(τ)u(τ)dτ, 0 ≤ σ ≤ t,

whence (5.1.40) follows, by virtue of Gronwall’s inequality.

Assume now U is the solution of (5.1.1), (5.1.2), with ∇U0 ∈ H�. We fix a se-
quence {U0ν}, with∇U0ν ∈H�+2, such that U0ν →U0 uniformly on compact subsets
of R

m, and ∇U0ν → ∇U0 in H�, as ν→∞. Let Uν be the solution of (5.1.1) with ini-
tial value U0ν . We write (5.1.40) for the solutions Uν and let ν → ∞. As {∇Uν} is
confined in a bounded set of L∞([0,τ];H�),{∇Uν(·,t)} converges to∇U(·,t), weakly
in H�, for any fixed t ∈ [0,T ]. Since � > m/2,∇Uν(·,t) → ∇U(·,t), uniformly on
Bρ+λ (t−τ), for all τ ∈ [0,t]. Therefore, (5.1.40) holds even when ∇U0 is merely in
H�. This completes the proof.

The remaining ingredient is the following regularity result.

5.1.5 Lemma. Let U be the solution of (5.1.1), (5.1.2) on [0,T ], derived in Lemma
5.1.3. Then t �→ ∇U(·,t) is continuous in H� on [0,T ].

Proof. Since (5.1.1) is invariant under time translations, (x,t) �→ (x,t + τ), as well
as under reflections, (x,t) �→ (−x,−t), it will suffice to show that t �→ ∇U(·,t) is
right-continuous in H� at t = 0, i.e., for any multi-index r of order 1 ≤ |r| ≤ �+ 1,
we have Ur(·,t) →U0r(·) in L2(Rm), as t → 0. This will be attained with the help of
the identity

(5.1.49) (V̄ −V)�A(U)(V̄ −V) = V̄�A(Ū)V̄ −V�A(U)V

−V̄�[A(Ū)−A(U)]V̄ −2(V̄ −V)�A(U)V.

As in the proof of Lemma 5.1.4, we fix some sequence {U0ν}, with∇U0ν ∈H�+2,
such that U0ν → U0, uniformly on R

m, and ∇U0ν → ∇U0 in H�, as ν → ∞. Let Uν
denote the solution of (5.1.1) with initial value U0ν . In particular, Uνr should satisfy
(5.1.46) and so, for any ρ > 0,

(5.1.50)∫

Bρ
U�
νr(x,t)A(Uν (x,t))Uνr(x,t)dx ≤

∫

Bρ+λ t

U�
0νr(x)A(U0ν(x))U0νr(x)dx + cω3t,

with c independent of ρ .
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We now write (5.1.49) for U = U(x,t),Ū = Uν(x,t),V = Ur(x,t),V̄ = Uνr(x,t)
and integrate with respect to x over the ball Bρ . In the resulting equation, the left-
hand side is nonnegative, as A(U) is positive definite, while the last two terms on
the right-hand side tend to zero, as ν → ∞, the first one because Uν(·,t) → U(·,t),
uniformly on Bρ , and the second because Uνr(·,t) →Ur(·,t), weakly in L2. Thus,

(5.1.51)∫

Bρ
U�

r (x,t)A(U(x,t))Ur(x,t)dx ≤ liminf
ν→∞

∫

Bρ
U�
νr(x,t)A(Uν (x,t))Uνr(x,t)dx.

Combining (5.1.50) with (5.1.51), and then letting ρ → ∞,

(5.1.52)
∫

Rm
U�

r (x,t)A(U(x,t))Ur(x,t)dx ≤
∫

Rm
U�

0r(x)A(U0(x))U0r(x)dx + cω3t.

We return to (5.1.49), set U = U0(x),Ū = U(x,t),V = U0r(x),V̄ = Ur(x,t) and
integrate with respect to x over R

m. On the right-hand side of the resulting equa-
tion, the difference of the first two terms is bounded from above by cω3t, by
virtue of (5.1.52); the third (penultimate) term is also bounded by cω3t, because
|U(x,t)−U0(x)| ≤ cωt, for all x ∈ R

m; finally, the last term tends to zero, as t → 0,
since Ur(·,t) →U0r(·), in the sense of distributions and thus also weakly in L2(Rm).
Therefore,

(5.1.53) limsup
t→0

∫

Rm
[Ur(x,t)−U0r(x)]�A(U0(x))[Ur(x,t)−U0r(x)]dx ≤ 0,

whence Ur(·,t) →U0r(·) (strongly) in L2(Rm), as t → 0. This completes the proof.

Proof of Theorem 5.1.1. By Lemma 5.1.3, a classical solution U to (5.1.1), (5.1.2)
exists on a time interval [0,T ], such that U(·,T ) takes values in a compact subset of
O and ∇U(·,T ) ∈ H�. We may thus repeat the above construction and extend U to a
longer interval [0,T ′]. Continuing this process, we end up with a solution U defined
on a maximal interval [0,T∞), and if T∞ <∞ then, as t → T∞,‖∇U(·,t)‖� →∞ and/or
the range of U escapes from every compact subset of O . However, (5.1.41) implies
that ‖∇U(·,t)‖� cannot blow up as t → T∞ unless (5.1.6) holds.

Lemma 5.1.5 implies∇U(·,t) ∈C0([0,T∞);H�). Applying to (5.1.1) the operator
∂ r

t , for r = 0, · · · , �− 1, one shows by induction that ∂ r+1
t U(·,t) ∈ C0([0,T∞);H�−r)

and this establishes (5.1.5). The proof is complete.

As we saw in Sections 3.3.5 and 3.3.6, for the systems governing the isentropic
or nonisentropic gas flow (Euler equations) the entropy is convex and hence Theorem
5.1.1 establishes the local existence of classical solutions to the Cauchy problem, un-
der smooth initial data with positive density. At the same time, as shown in Chapter
IV, finite life span is the rule rather than the exception for classical solutions of these
systems.

5.1.6 Remark. The proof of Theorem 5.1.1 hinges on the existence of a symmetric
positive definite matrix-valued function A(U) that acts as a symmetrizer by rendering
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the matrix-valued functions Jα(U), defined by (5.1.4), symmetric. For that purpose,
one may employ symmetrizers A(U) that are not necessarily Hessians of convex
entropies, as it was assumed above. This extra flexibility has been exploited for con-
structing solutions to the Euler equations with regions of vacuum, where hyperbolic-
ity breaks down. The method extends to the broader class of systems endowed with
so-called symbolic symmetrizers. This includes all systems in which the multiplicity
of each characteristic speed λi(ν;U) does not vary with ν or U .

5.2 The Role of Damping and Relaxation

In this section we consider the Cauchy problem

(5.2.1) ∂tU(x,t)+ divG(U(x,t))+ P(U(x,t)) = 0, x ∈ R
m, t > 0,

(5.2.2) U(x,0) = U0(x), x ∈ R
m,

for a homogeneous hyperbolic system of balance laws in canonical form, where
G(U) and P(U) are smooth functions defined on O . We assume that P(Ū) = 0, for
some Ū ∈ O , so that U ≡ Ū is a constant equilibrium solution of (5.2.1).

Suppose (5.2.1) is endowed with a C3 entropy-entropy flux pair (η ,Q), where
η(U) is locally uniformly convex, so that any classical solution satisfies the addi-
tional balance law

(5.2.3) ∂tη(U(x,t))+ divQ(U(x,t))+ Dη(U(x,t))P(U(x,t)) = 0.

Without loss of generality, we may assume η(Ū) = 0, Dη(Ū) = 0, Q(Ū) = 0,
DQα(Ū) = 0, α = 1, . . . ,m, since otherwise we simply replace (η ,Q) with the pair
(η̄ ,Q̄) defined by (4.1.6), (4.1.7).

For initial data U0 with ∇U0 ∈ H�, � > m/2, a straightforward extension of The-
orem 5.1.1 yields the existence of a classical solution to (5.2.1), (5.2.2) on a maximal
time interval [0,T∞). The aim is to investigate whether the mechanism that causes the
breaking of waves may be offset by a dissipative source term that keeps ‖∇U(·,t)‖L∞

bounded for all t > 0. Our experience with Equation (4.2.2), in Section 4.2, indicates
that dissipation is likely to prevail near equilibrium.

Damping manifests itself in that the entropy production is nonnegative on some
open neighborhood B ⊂ O of Ū :

(5.2.4) Dη(U)P(U) ≥ 0, U ∈ B.

Under this assumption, for as long as U takes values in B,

(5.2.5) ‖U(·,t)−Ū‖L2 ≤ a‖U0(·)−Ū‖L2 ,

which is obtained by integrating (5.2.3) over R
m × (0,t). This, combined with the

“interpolation” estimate
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(5.2.6) ‖U(·,t)−Ū‖L∞ ≤ b‖∇U(·,t)‖ρL∞‖U(·,t)−Ū‖1−ρ
L2 ,

where ρ = 1
2 m(� + 1), in turn implies that U(·,t) will lie in B for as long as

‖∇U(·,t)‖L∞ stays sufficiently small.
As in Section 5.1, we fix any multi-index r of order 1 ≤ |r| ≤ � + 1, then set

∂ rU = Ur , and apply ∂ r to the equation (5.2.1) to get

(5.2.7) ∂tUr +
m

∑
α=1

DGα(U)∂αUr + DP(U)Ur

=
m

∑
α=1

{DGα(U)∂ r∂αU − ∂ r[DGα(U)∂αU ]}+{DP(U)∂ s∂βU − ∂ s[DP(U)∂βU ]},

where β is any fixed index in {1, . . . ,m} with rβ ≥ 1, and s is the multi-index with
sγ = rγ , for γ �= β , and sβ = rβ −1. We recall (5.1.34) and note its analog

(5.2.8) ‖DP(U)∂ s∂βU − ∂ s[DP(U)∂βU ]‖L2 ≤ c‖∇U‖L∞‖∇U‖� .

Here and below c stands for a generic constant depending solely on the maximum on
B of U , all derivatives |DkG(U)| up to order k = �+2, and all derivatives |DkP(U)|
up to order k = �+ 1.

When (5.2.4) holds, the matrix A(Ū)DP(Ū), with A defined by (5.1.3), is at least
positive semidefinite. In particular, P is strongly dissipative at Ū if

(5.2.9) W�A(Ū)DP(Ū)W ≥ μ > 0, W ∈ Sn−1.

In that case, multiplying (5.2.7), from the left, by 2U�
r A(Ū), summing over all multi-

indices r with 1 ≤ |r| ≤ �+1, and integrating the resulting equation over R
m× (0,t),

we arrive at an estimate of the form

(5.2.10) ‖∇U(·,t)‖2
� + 2μ

t∫

0

‖∇U(·,τ)‖2
�dτ

≤ c‖∇U0(·)‖2
� + c

t∫

0

{‖∇U(·,τ)‖L∞ +‖U(·,τ)−Ū‖L∞}‖∇U(·,τ)‖2
�dτ.

So long as ‖∇U(·,τ)‖ stays small, the integral on the left-hand side of (5.2.10) dom-
inates the integral on the right-hand side and induces ‖∇U‖2

� ≤ c‖∇U0‖2
� . Since

‖∇U‖L∞ ≤ κ‖∇U‖� , we conclude that if ‖∇U0‖� is sufficiently small, then ‖∇U‖� ,
and thereby ‖∇U‖L∞ , stay small throughout the life span of the solution and thus the
life span cannot be finite.

Unfortunately, assumption (5.2.9) is too stringent, as it generally rules out the
type of source term associated with the dissipative mechanisms encountered in con-
tinuum physics. A typical example is the system that governs isentropic gas flow
through a porous medium, namely (3.3.36) with body force −v:
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(5.2.11)

⎧
⎨

⎩

∂tρ+ div(ρv�) = 0

∂t(ρv)+ div(ρvv�)+ grad p(ρ)+ρv = 0.

This difficulty is also encountered in systems with source terms induced by relaxation
effects, for instance (3.3.25). Typically, in the applications, A(Ū)DP(Ū) is merely
positive semidefinite. In this situation, the damping fails to be effective, unless the
source term satisfies an additional condition which ensures that waves of any char-
acteristic family, propagating in any direction ν ∈ Sm−1, are properly damped. The
appropriate assumption, similar to the Kawashima condition (4.6.4), reads

(5.2.12) DP(Ū)Ri(ν;Ū) �= 0, ν ∈ Sm−1, i = 1, . . . ,n,

where Ri(ν;U) is any eigenvector of the matrix Λ(ν;U), in (4.1.2), associated with
the eigenvalue λi(ν;U). To see the implications of (5.2.12), linearize (5.2.1) about
Ū :

(5.2.13) ∂tV (x,t)+
m

∑
α=1

DGα(Ū)∂αV (x,t)+ DP(Ū)V (x,t) = F(x,t).

Notice that when (5.2.12) is violated for some i and ν , then (5.2.13), with F ≡ 0,
admits traveling wave solutions (4.6.5), which are not attenuated by the damping.
On the other hand, it can be shown that when (5.2.12) holds, then, for any ν ∈ Sm−1,
there exists a skew symmetric n×n matrix K(ν) such that the matrix

(5.2.14) K(ν)Λ(ν;Ū)+ A(Ū)DP(Ū)

is positive definite. This in turn implies that solutions of (5.2.13) satisfy an estimate

(5.2.15)
t∫

0

∫

Rm

|V |2(x,τ)dxdτ ≤ κ
t∫

0

∫

Rm

V�(x,τ)A(Ū)DP(Ū)V (x,τ)dxdτ

+κ
∫

Rm

[|V |2(x,t)+ |V |2(x,0)]dx +κ
t∫

0

∫

Rm

|F|2(x,τ)dxdτ.

As before, we multiply (5.2.7), from the left, by 2U�
r A(Ū), we sum over all

multi-indices r with 1 ≤ |r| ≤ �+1, and integrate over R
m × (0,t). Upon combining

the resulting equation with the estimate (5.2.15), one reestablishes (5.2.10), for some
μ > 0, thus proving the following

5.2.1 Theorem. Consider the hyperbolic system of balance laws (5.2.1), with G
in C�+2 and P in C�+1, for some � > m/2. Assume P(Ū) = 0 and DP(Ū) satisfies
(5.2.12). Furthermore, let η be a C3 entropy for (5.2.1) such that D2η(Ū) is positive
definite and (5.2.4) holds on some neighborhood B of Ū. When U0 − Ū ∈ L2(Rm),
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∇U0 ∈ H� and ‖∇U0‖� is sufficiently small, then the Cauchy problem (5.2.1), (5.2.2)
admits a unique classical solution U on the upper half-space, such that

(5.2.16) ∇U(·,t) ∈C0([0,∞);H�)∩L2([0,∞);H�).

When Ū is a strict minimum of Dη(U)P(U), it is expected that dissipation will
drive the solution obtained in the above theorem to this isolated equilibrium point, as
t →∞. Of far greater interest is the long time behavior of solutions of (5.2.1), (5.2.2)
when the source vanishes on a manifold in state space. This is typically the case with
systems governing relaxation phenomena.

Upon rescaling the coordinates by (x,t) �→ (μx,μt), where μ > 0 is the so-called
relaxation parameter, we recast (5.2.1) in the form

(5.2.17) ∂tU(x,t)+ divG(U(x,t))+
1
μ

P(U(x,t)) = 0, x ∈ R
m , t > 0.

Thus, the asymptotic behavior of solutions of (5.2.1), as t ↑ ∞, will be derived from
the asymptotic behavior of solutions of (5.2.17), as μ ↓ 0.

The following assumptions on P embody the structure typically encountered in
systems governing relaxation phenomena:

(a) For some k < n, there is a constant k×n matrix K such that KP(U) = 0, for all
U ∈ O .

(b) There is a k-dimensional local equilibrium manifold, embedded in O , which is
defined by a smooth function U = E(V ), V ∈ V ⊂ R

k, such that P(E(V )) = 0
and KE(V ) = V , for all V ∈ V .

As a representative example, consider the system

(5.2.18)

⎧
⎨

⎩

∂t u(x,t)+ ∂xv(x,t) = 0

∂tv(x,t)+ ∂x p(u(x,t))+ 1
μ [v(x,t)− f (u(x,t))] = 0

of two balance laws in one spatial variable, where p′(u) = a2(u), a(u) > 0. Here
K = (1,0), V = u, and E(u) = (u, f (u))� .

The expectation is that, as μ ↓ 0, the stiff source will induce U to relax on its local
equilibrium manifold U = E(V ), with V satisfying the relaxed system of conservation
laws

(5.2.19) ∂tV (x,t)+ divĜ(V (x,t)) = 0, x ∈ R
m, t > 0,

where

(5.2.20) Ĝ(V ) = KG(E(V )), V ∈ V .

For the system (5.2.18), (5.2.19) reduces to the scalar conservation law

(5.2.21) ∂t u(x,t)+ ∂x f (u(x,t)) = 0.
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We now explore the implications of the dissipativeness of the source P as en-
coded in the existence of an entropy-entropy flux pair (η ,Q) for (5.2.17) which sat-
isfies (5.2.4), for all U ∈ O . In particular, Dη(U)P(U) is minimized on the local
equilibrium manifold, and so

(5.2.22) Dη(E(V ))DP(E(V )) = 0, V ∈ V .

We also have KDP(U) = 0, U ∈ O . Hence, assuming that the rank of DP(E(V )) is
n− k, for any V ∈ V , we conclude

(5.2.23) Dη(E(V )) = M(V )K, V ∈ O,

for some k-row vector-valued function M on O .
We now set

(5.2.24) η̂(V ) = η(E(V )), Q̂(V ) = Q(E(V )),

and show that (η̂ ,Q̂) is an entropy-entropy flux pair for the relaxed system (5.2.19).
Indeed, recalling (4.1.4), (5.2.20), (5.2.23) and noting that KE(V ) = V implies
KDV E = I, we deduce, by the chain rule,

(5.2.25) DV η̂DV Ĝα = DUηDV E K DU Gα DV E = MK DV E K DU Gα DV E

= M K DU Gα DV E = DUηDU Gα DV E = DU Qα DV E = DV Q̂α .

It has also been shown (references in Section 5.7) that if D(U)P(U) is strictly
positive away from the local equilibrium manifold and D2η(U) is positive definite on
O , then D2η̂(V ) is positive definite on V , in which case the relaxed system (5.2.19) is
hyperbolic. Moreover, all characteristic speeds of (5.2.19), in any direction ν ∈ Sm−1

and state V ∈ V , are confined between the minimum and the maximum characteristic
speed of (5.2.17), in the direction ν and state U = E(V ). This last property expresses
the subcharacteristic condition which has important implications for stability.

As noted above, the objective is to demonstrate that, as μ ↓ 0, the solution Uμ
of (5.2.17), (5.2.2) converges to E(V ), where V is the solution of the relaxed system
(5.2.19) with initial value V0 = KU0 . When the initial data U0 do not lie on the local
equilibrium manifold, i.e., U0 �= E(V0), then as μ ↓ 0, Uμ will develop a boundary
layer across t = 0, connecting U0 to E(V0).

The asymptotic behavior of Uμ , as μ ↓ 0, has been analyzed within the context of
classical solutions, for quite general systems. The reader should consult the relevant
references cited in Section 5.7. Additional information can be found in Sections 6.6
and 16.5.

An intimate relation exists between dissipation induced by relaxation and dissi-
pation induced by viscosity. The reader may catch a first glimpse through the follow-
ing formal calculation for the simple system (5.2.18).

We set

(5.2.26) v = f (u)+ μw
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and substitute into (5.2.18). Dropping, formally, all terms of order μ and then elimi-
nating ∂t u between the two equations of the system yields

(5.2.27) w = [ f ′(u)2 −a(u)2]∂xu.

Upon combining (5.2.18)1 with (5.2.26) and (5.2.27), we deduce that, formally, to
leading order, u satisfies the equation

(5.2.28) ∂tu + ∂x f (u) = μ∂x{[a2(u)− f ′(u)2]∂xu}.
For well-posedness we need

(5.2.29) −a(u) < f ′(u) < a(u).

Since ±a(u) are the characteristic speeds of (5.2.18) and f ′(u) is the characteris-
tic speed of (5.2.21), (5.2.29) expresses the subcharacteristic condition encountered
above.

An analogous calculation, with analogous conclusions, applies to the general
system (5.2.17) as well. In fact the Kawashima-type conditions (4.6.4) and (5.2.12)
are intimately related. The reader can find details in the literature cited in Section
5.7.

In continuum physics, one encounters a host of evolutionary systems with the
feature that wave amplification induced by nonlinear advection cohabits and com-
petes with some kind of dissipation; and the former is in control far from equilib-
rium, while the latter prevails in the vicinity of equilibrium, securing the existence
of smooth solutions in the large. Such systems are generally treated by methods akin
to those employed in this section, namely “energy” type estimates that bring out the
balance between amplification and damping. This subject, which already commands
a large body of literature, lies beyond the scope of the present book. Nevertheless, in
order to give a taste of the wide diversity of systems with such features, a few repre-
sentative examples will be recorded below, and a small sample of relevant references
will be listed in Section 5.7.

We begin with the so-called Euler-Poisson system

(5.2.30)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ+ div(ρv�) = 0

∂t(ρv)+ div(ρvv�)+ grad p(ρ) = aρ gradψ

Δψ = b(ρ− ρ̄),

which models the movement of electrons in a plasma. In that connection, the aggre-
gate of the electrons is regarded as an elastic fluid with density ρ and pressure p(ρ),
flowing with velocity v; while the much heavier ions are assumed stationary, merely
providing a uniform background of positive charge, proportional to ρ̄ . The combined
charge of electrons and ions, which is proportional to ρ − ρ̄ , generates the electro-
static potential ψ , and thereby the electric field gradψ that sets the electrons in mo-
tion. The constants a and b are positive. As in (5.2.11), we are dealing here with the
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hyperbolic system of the Euler equations, with a source induced by some feedback
mechanism, which derives from the Poisson equation (5.2.30)3 and is dissipative at
least when the flow of electrons is irrotational, curlv = 0. Recall from Section 3.3.6
that flows starting out irrotational stay irrotational for as long as they are smooth. It
has been shown that sufficiently smooth, irrotational Cauchy data, close to equilib-
rium ρ = ρ̄,v = 0,ψ = 0, generate globally defined smooth solutions. On the other
hand, solutions starting out far from equilibrium generally develop singularities in a
finite time.

The situation is similar for the system

(5.2.31)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ+ div(ρv�) = 0

∂t(ρv)+ div(ρvv�)+ grad p(ρ)+ μ−1ρv = aρ gradψ

Δψ = b(ρ− ρ̄),

associated with the hydrodynamic model of semiconductors. Here μ > 0 is a relax-
ation parameter. Notice that (5.2.31) combines the dissipative mechanisms encoun-
tered in (5.2.11) and (5.2.30).

The balance laws for continuous media with internal friction, such as viscosity
and heat conductivity, yield systems exhibiting similar behavior. The reason is that
one may trace the lineage of these media back to elasticity, and hence, even though
the resulting systems are not hyperbolic, they inherit features of hyperbolicity, giving
rise to a destabilizing wave amplification mechanism that competes with the damping
induced by the internal friction.

A first example is the system (4.6.2), which governs the flow of heat conducting
thermoviscoelastic fluids with Newtonian viscosity. Internal friction manifests itself
on the right-hand side of the second and the third equation, while the first equation
retains its hyperbolic character.

Still another example with similar features is the system

(5.2.32)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t u− ∂xv = 0

∂tv− ∂xσ(u,θ ) = 0

∂t [ε(u,θ )+ 1
2v2]− ∂x[σ(u,θ )v] = ∂xq(u,θ ,∂xθ ),

which governs rectilinear motion, in Lagrangian coordinates, of a heat-conducting
thermoelastic medium. Here u is the strain (deformation gradient), v is the velocity,
θ is the (absolute) temperature, σ is the stress, ε is the internal energy, q is the
heat flux, and the reference density is taken to be one. For compliance with (2.5.28)
and (2.5.29), the material response functions ε,σ and q must satisfy εu = σ − θσθ
and q(u,θ ,g)g ≥ 0. These should be supplemented with the natural assumptions
σu > 0, εθ > 0 and qg > 0. Here internal friction is provided by thermal diffusion.

Internal friction of yet another nature, but with similar effects, is induced by
fading memory, encountered in viscoelastic continuous media in which the stress σ
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at the particle x and time t is no longer solely determined, as in elastic materials,
by the deformation gradient at (x,t), but also depends on the past history of the
deformation gradient at x. The balance laws are then expressed by functional-partial
differential equations. A simple, one-dimensional model system that captures the
damping effect of memory reads

(5.2.33)

⎧
⎪⎨

⎪⎩

∂t u(x,t)+ ∂xv(x,t) = 0

∂tv(x,t)+ ∂x p(u(x,t))+
∫ t

−∞
k′(t − τ)∂xq(u(x,τ))dτ = 0,

where k is a smooth integrable relaxation kernel on [0,∞), with k(τ) > 0, k′(τ) < 0
and k′′(τ) ≥ 0, for τ ∈ [0,∞), and p′(u) > k(0)q′(u) > 0. Notice that (5.2.33) is
intimately related to (5.2.18), as the latter system, for f ≡ 0, may be rewritten in the
form

(5.2.34)

⎧
⎪⎪⎨

⎪⎪⎩

∂t u(x,t)+ ∂xv(x,t) = 0

∂tv(x,t)+ ∂x p(u(x,t))+
∫ t

−∞
[exp(− t − τ

μ
)]′∂x p(u(x,τ))dτ = 0.

The above systems, (5.2.32) and (5.2.33), share the property that smooth initial
data near equilibrium generate globally defined smooth solutions, while smooth so-
lutions starting out from “large” initial values generally blow up in finite time. See
the relevant references in Section 5.7.

An alternative decay mechanism acting on the systems of balance laws of con-
tinuum physics is dispersion. It is particularly effective when the dimension of the
space is large and solutions stay close to equilibrium. In systems that are fully non-
linear, such as the Euler equations, dispersion may delay but not prevent the breaking
of waves. However, in systems with gentler nonlinearity, satisfying the so-called null
condition, dispersion renders the existence of globally defined smooth solutions to
the Cauchy problem, with initial data close to equilibrium. As a typical example,
consider the system (3.3.19) of equations of isentropic elastodynamics. For conve-
nience, assume that the reference space coincides with the physical space, and that
the reference configuration, with F ≡ I, is an isotropic equilibrium state, so that the
internal energy ε(F) is a function (2.5.21) of the principal invariants (J1,J2,J3) of
the right stretch tensor (2.1.7). Assume, further, that ε(F) is rank-one convex and
satisfies the null condition

(5.2.35)
3

∑
i, j,k=1

3

∑
α ,β ,γ=1

∂ 3ε(F)
∂Fiα∂Fjβ ∂Fkγ

νανβ νγνiν jνk = 0,

at F = I, for any vector ν ∈ R
3. Then the Cauchy problem with initial data (F0,v0)

close to (I,0), in an appropriate Sobolev space, admits a unique, globally defined
classical solution. For isotropic incompressible elastic media, the relevant null con-
dition is automatically satisfied. There is voluminous literature on these issues, a
sample of which is cited in Section 5.7.
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5.3 Convex Entropy and the Stability of Classical Solutions

The aim here is to show that the presence of a convex entropy guarantees that clas-
sical solutions of the initial value problem depend continuously on the initial data,
even within the broader class of admissible bounded weak solutions.

5.3.1 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
entropy-entropy flux pair (η ,Q), where D2η(U) is positive definite on O . Suppose Ū
is a classical solution of (5.1.1) on [0,T ), taking values in a convex compact subset
D of O , with initial data Ū0 . Let U be any weak solution of (5.1.1) on [0,T ), taking
values in D , which satisfies the entropy admissibility condition (4.5.3), and has initial
data U0 . Then

(5.3.1)
∫

|x|<r
|U(x,t)−Ū(x,t)|2dx ≤ aebt

∫

|x|<r+st
|U0(x)−Ū0(x)|2dx

holds for any r > 0 and t ∈ [0,T ), with positive constants s,a, depending solely on
D , and b that also depends on the Lipschitz constant of Ū . In particular, Ū is the
unique admissible weak solution of (5.1.1) with initial data Ū0 and values in D .

Proof. On D ×D we define the functions

(5.3.2) h(U,Ū) = η(U)−η(Ū)−Dη(Ū)[U −Ū ],

(5.3.3) Yα(U,Ū) = Qα(U)−Qα(Ū)−Dη(Ū)[Gα(U)−Gα(Ū)],

(5.3.4) Zα(U,Ū) = A(Ū)
{

Gα(U)−Gα(Ū)−DGα(Ū)[U −Ū]
}
,

all of quadratic order in U − Ū (recall (4.1.4) and (5.1.3)). Consequently, since
D2η(U) is positive definite, uniformly on D , there is a positive constant s such that

(5.3.5) |Y (U,Ū)| ≤ sh(U,Ū).

Let us fix any nonnegative, Lipschitz continuous test function ψ with compact
support on R

m× [0,T ) and evaluate h,Y and Z along the two solutionsU(x,t),Ū(x,t).
Since U satisfies the inequality (4.5.3), while Ū , being a classical solution, satisfies
identically (4.5.3) as an equality, we deduce

(5.3.6)
∫ T

0

∫

Rm
[∂tψ h(U,Ū)+

m

∑
α=1

∂αψYα(U,Ū)]dxdt +
∫

Rm
ψ(x,0)h(U0(x),Ū0(x))dx

≥−
∫ T

0

∫

Rm
{∂tψDη(Ū)[U −Ū]+

m

∑
α=1

∂αψDη(Ū)[Gα (U)−Gα(Ū)]}dxdt

−
∫

Rm
ψ(x,0)Dη(Ū0(x))[U0(x)−Ū0(x)]dx.

Next we write (4.3.2) for both solutions U and Ū , using the Lipschitz continuous
vector field ψDη(Ū) as test functionΦ , to get
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(5.3.7)
∫ T

0

∫

Rm
{∂t [ψDη(Ū)][U −Ū ]+

m

∑
α=1

∂α [ψDη(Ū)][Gα(U)−Gα(Ū)]}dxdt

+
∫

Rm
ψ(x,0)Dη(Ū0(x))[U0(x)−Ū0(x)]dx = 0.

Since Ū is a classical solution of (5.1.1), and by virtue of (5.1.3), (5.1.4),

(5.3.8)

∂tD2η(Ū) = ∂tŪ
�A(Ū) = −

m

∑
α=1

∂αŪ�Jα(Ū)� = −
m

∑
α=1

∂αŪ�A(Ū)DGα(Ū)

so that, recalling (5.3.4),

(5.3.9) ∂tDη(Ū)[U−Ū ]+
m

∑
α=1

∂αDη(Ū)[Gα(U)−Gα(Ū)] =
m

∑
α=1

∂αŪ�Zα(U,Ū).

Combining (5.3.6), (5.3.7) and (5.3.9) yields

(5.3.10)

∫ T

0

∫

Rm
[∂tψ h(U,Ū)+

m

∑
α=1

∂αψYα(U,Ū)]dxdt +
∫

Rm
ψ(x,0)h(U0(x),Ū0(x))dx

≥
∫ T

0

∫

Rm
ψ

m

∑
α=1

∂αŪ�Zα(U,Ū)dxdt.

We now fix t ∈ (0,T ) and r > 0. For any σ ∈ (0,t] and ε positive small, write
(5.3.10) for the test function ψ(x,τ) = χ(x,τ)ω(τ), with

(5.3.11) ω(τ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 0 ≤ τ < σ

ε−1(σ − τ)+ 1 σ ≤ τ < σ + ε

0 σ + ε ≤ τ < ∞

(5.3.12) χ(x,τ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 |x|− r− s(σ− τ) < 0

ε−1[r + s(t − τ)−|x|]+ 1 0 ≤ |x|− r− s(t − τ) < ε

0 |x|− r− s(t − τ) ≥ ε
where s is the constant appearing in (5.3.5). The calculation gives
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(5.3.13)

1
ε

∫ σ+ε

σ

∫

|x|<r+s(t−σ)
h(U(x,τ),Ū(x,τ))dxdτ ≤

∫

|x|<r+st
h(U0(x),Ū0(x))dx

− 1
ε

∫ σ

0

∫

r+s(t−τ)<|x|<r+s(t−τ)+ε

[

sh(U,Ū)+
Y (U,Ū)x

|x|
]

dxdτ

−
∫ σ

0

∫

|x|<r+s(t−τ)

m

∑
α=1

∂αŪ�Zα (U,Ū)dxdτ+ O(ε).

We let ε ↓ 0. The second integral on the right-hand side of (5.3.13) is nonnegative on
account of (5.3.5). Hence,

(5.3.14)
∫

|x|<r+s(t−σ)
h(U(x,σ),Ū(x,σ))dx ≤

∫

|x|<r+st
h(U0(x),Ū0(x))dx

−
∫ σ

0

∫

|x|<r+s(t−τ)

m

∑
α=1

∂αŪ�Zα(U,Ū)dxdτ,

for all points σ of L∞ weak* continuity of η(U(·,τ)) in (0,t). As noted above,
h(U,Ū) and the Zα(U,Ū) are of quadratic order in U −Ū and, in addition, h(U,Ū)
is positive definite, due to the convexity of η . Thus, upon setting

(5.3.15) u(τ) =
∫

|x|<r+s(t−τ)
|U(x,τ)−Ū(x,τ)|2dx ,

(5.3.14) implies

(5.3.16) u(σ) ≤ au(0)+ b
∫ σ

0
u(τ)dτ ,

for almost all σ ∈ (0,t). Since u(·) is weakly lower semicontinuous, (5.3.16) holds
for all σ ∈ [0,t]. Then Gronwall’s inequality yields u(t)≤ au(0)ebt , which is (5.3.1).
Notice that a and s depend solely on D while b also depends on the Lipschitz constant
of Ū . This completes the proof.

It is remarkable that a single entropy inequality, with convex entropy, manages
to weed out all but one solution of the initial value problem, so long as a classical
solution exists. As we shall see, however, when no classical solution exists, just one
entropy inequality is no longer generally sufficient to single out any particular weak
solution. In particular, it has been shown recently (references in Section 4.8) that the
Cauchy problem for the Euler equations (3.3.36), under specially constructed initial
data, admits infinitely many weak solutions satisfying the entropy admissibility con-
dition (4.5.3), relative to the entropy ρε(ρ) + 1

2ρ |v|2, as an equality. The issue of
uniqueness of weak solutions is knotty and will be a major topic of discussion in
subsequent chapters.
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The functions h(U,Ū) and Y (U,Ū), defined by (5.3.2) and (5.3.3), are commonly
called the relative entropy and associated relative entropy flux, with respect to the
state Ū .

5.3.2 Remark. In the proof of Theorem 5.3.1 one needs only that h(U,Ū) be positive
definite for all Ū in the range of the classical solution. This may well hold, even for
η that fails to be convex, when the classical solution is special, e.g., it is a constant
state Ū which is a strong minimum of η .

5.4 Involutions

The previous three sections have illustrated the beneficent role of convex entropies.
Nevertheless, the entropy associated with systems of balance laws in continuum
physics is not always convex. Indeed, we have already encountered, in Chapter III,
the cases of isentropic elastodynamics (Section 3.3.3) and electrodynamics (Section
3.3.8), in which invariance, dictated by physics, is incompatible with global con-
vexity of the entropy. The objective in this, and the following sections is to identify
special structure in such systems that may compensate for the failure of convexity in
the entropy.

Recall that solutions of the system (3.3.19) with relevance to elastodynamics
should also satisfy the equations (3.3.10). Notice that (3.3.10) is not independent
of (3.3.19). Indeed, in a Cauchy problem, (3.3.19)1 implies that when (3.3.10) is
satisfied by the initial data, then it will hold for all t > 0.

The equations of electrodynamics exhibit similar behavior: in addition to the
hyperbolic system (3.3.66), the magnetic induction and the electric displacement
must also satisfy (3.3.67). However, in a Cauchy problem, by virtue of (3.3.66) and
(3.3.68), (3.3.67) will hold automatically for all t > 0, so long as they are satisfied
by the initial data.

One recognizes a similar structure in many other systems arising in contin-
uum physics, and so an examination of its implications in a general framework is
warranted:

5.4.1 Definition. The first order system

(5.4.1)
m

∑
α=1

Mα∂αU = 0

of differential equations, with Mα k×n matrices, α = 1, . . . ,m, is called an involution
of the system (5.1.1) of conservation laws if any (generally weak) solution of the
Cauchy problem (5.1.1),(5.1.2) satisfies (5.4.1) identically, whenever the initial data
do so.

Thus (3.3.10) is an involution of (3.3.19) and (3.3.67) is an involution of (3.3.66).
A sufficient condition for (5.4.1) to be an involution of (5.1.1) is
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(5.4.2) MαGβ (U)+ MβGα(U) = 0, α,β = 1, · · · ,m,

for any U ∈ O . We shall focus our investigation on this special case which covers,
in particular, the prototypical examples (3.3.10) and (3.3.67). The aim is to demon-
strate that, in the presence of involutions, one may establish existence and stability
of classical solutions under the weaker hypothesis that the entropy is convex just in
the direction of a certain cone in state space, which is constructed by the following
procedure:

With any ν ∈ Sm−1, we associate the k×n matrix

(5.4.3) N(ν) =
m

∑
α=1

ναMα .

5.4.2 Definition. The involution cone in R
n of the involution (5.4.1) is

(5.4.4) C =
⋃

ν∈Sm−1

kerN(ν).

In light of the notation (4.1.2), (5.4.2) implies

(5.4.5) N(ν)Λ(ν;U) = 0.

Thus involutions are related to stationary fronts and the rows of N(ν) are left eigen-
vectors of Λ(ν;U), with zero characteristic speed, λ (v;U) = 0. To simplify the pre-
sentation, we shall proceed under the assumption that the rows of N(ν) span the left
eigenspace of Λ(ν,U) associated with the zero eigenvalue, i.e., for any ν ∈ Sm−1,
the rank of N(ν) equals the dimension of the kernel ofΛ(ν;U). This condition is in-
deed satisfied in the prototypical systems (3.3.19), of isentropic elastodynamics, and
(3.3.66), of electrodynamics, but it is not universally valid. For example, it fails in
the system (3.3.4) of nonisentropic elastodynamics in which the zero characteristic
speed has multiplicity seven whereas the rank of N(ν) induced by the involutions
(3.3.10) is only six. Nevertheless, even (3.3.4) can be treated by the methods ex-
pounded below, albeit at the expense of complicating the formalism, which should
be avoided here.

The implications of our assumptions become clear if one considers shock waves
for systems (5.1.1) endowed with involutions (5.4.1). The Rankine-Hugoniot jump
condition (3.1.3) reads

(5.4.6)
m

∑
α=1

να [Gα(U+)−Gα(U−)] = s[U+−U−].

The shock will also satisfy the involution (5.4.1) if

(5.4.7) N(ν)[U+ −U−] = 0.

Thus the amplitude U+−U− of any shock satisfying the involution lies on the invo-
lution cone C .
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Notice that (5.4.6) and (5.4.2) imply

(5.4.8) sN(ν)[U+ −U−] =
m

∑
α=1

m

∑
β=1

νανβMα [Gβ (U+)−Gβ (U−)] = 0.

Hence any shock with nonzero speed automatically satisfies the involution (5.4.7).
By (5.4.6) and (4.1.2), shocks with speed s = 0 must satisfy Λ̄ [U+−U−] = 0, where

(5.4.9) Λ̄ =
∫ 1

0
Λ(ν;(1− τ)U− + τU+)dτ.

In particular, any right eigenvector of Λ(ν;U) with zero characteristic speed can be
the amplitude of a stationary shock, but none of these shocks is compatible with
the involution (5.4.7), under the assumption that the rows of N(ν) span the left
eigenspace associated with the eigenvalue λ (ν;U) = 0. Thus the involution rules
out all stationary shocks of (at least) small strength.

For the system (3.3.19) of isentropic elastodynamics, with involutions (3.3.10),
the involution cone C consists of the states (F,v), with velocity v ∈ R

3 and defor-
mation gradient F of rank one, F = uw�,u ∈ R

3,w ∈ R
3. Notice that the entropy

ε(F) + 1
2 |v|2 may not be globally convex but it is convex at least in the direction

of C . This follows from the assumption that the internal energy is rank-one convex,
(3.3.7), so that the system is hyperbolic. Here the project is to investigate whether,
in the presence of involutions, mere convexity of the entropy in the direction of the
involution cone would suffice for existence and stability of solutions to the Cauchy
problem. This will be attained with the help of the following

5.4.3 Lemma. Assume the system of conservation laws (5.1.1) is endowed with an
involution (5.4.1) with involution cone C . Suppose P is a symmetric n× n matrix-
valued L∞ function on R

m which is uniformly positive definite in the direction of C ,
i.e.,

(5.4.10) X�P(x)X ≥ μ |X |2, X ∈ C , x ∈ R
m,

for some μ > 0. Furthermore, there is a covering of R
m by the union of open sets

Ω0,Ω1, · · · ,ΩK , such that, for J = 0,1, · · · ,K,

(5.4.11) |P(y)−P(x)|< μ−2δ , x,y ∈ΩJ ,

with δ > 0. Then there is b, depending solely on the covering, such that

(5.4.12)
∫

Rm
V�(x)P(x)V (x)dx ≥ δ‖V‖2

L2 −b‖V‖2
W−1,2

holds for any V ∈ L2(Rm;Rn) that satisfies the involution

(5.4.13)
m

∑
α=1

Mα∂αV = 0,
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in the sense of distributions on R
m.

Proof. Fix Ũ ∈ O and consider the differential operator

(5.4.14) L =
m

∑
β=1

DGβ (Ũ)∂β .

We constructΦ ∈W 1,2(Rm,Rn) such that

(5.4.15) LΦ+Φ = V,

(5.4.16)
m

∑
α=1

Mα∂αΦ = 0.

We solve the above equations by using Fourier transform. Recalling (4.1.2) and
(5.4.3), (5.4.15) and (5.4.16) imply

(5.4.17) {i|ξ |Λ(|ξ |−1ξ ;Ũ)+ I}Φ̂(ξ ) = V̂ (ξ ),

(5.4.18) N(|ξ |−1ξ )Φ̂(ξ ) = 0.

The above linear system is solvable because, by virtue of (5.4.13),

(5.4.19) N(|ξ |−1ξ )V̂ (ξ ) = 0.

Furthermore, we have

(5.4.20) |Φ̂(ξ )|2 ≤ a2(1 + |ξ |2)−1|V̂ (ξ )|2,
which implies

(5.4.21) ‖Φ‖L2 ≤ a‖V‖W−1,2 .

Next we fix a partition of unity φ0,φ1, · · · ,φK subordinate to the covering
Ω0,Ω1, · · · ,ΩK , i.e., for J = 0, · · · ,K, φJ ∈C∞(Rm), sptφJ ⊂ΩJ and

(5.4.22)
K

∑
J=0

φ2
J (x) = 1, x ∈ R

m.

We also fix any yJ ∈ΩJ, J = 0, · · · ,K, and write

(5.4.23)
∫

Rm
V�(x)P(x)V (x)dx =

K

∑
J=0

∫

Rm
φ2

J (x)V�(x)P(x)V (x)dx

=
K

∑
J=0

∫

Rm
φ2

J (x)V�(x)P(yJ)V (x)dx +
K

∑
J=1

∫

Rm
φ2

J (x)V�(x)[P(x)−P(yJ)]V (x)dx.
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By virtue of (5.4.11),

(5.4.24)
K

∑
J=0

∫

Rm
φ2

J (x)V�(x)[P(x)−P(yJ)]V (x)dx ≥−(μ−2δ )‖V‖2
L2 .

For each J = 0, · · · ,K, we split φJV into

(5.4.25) φJV = SJ + TJ ,

where

(5.4.26) SJ = L (φJΦ),

(5.4.27) TJ = [φJI−
m

∑
β=1

∂β φJDGβ (Ũ)]Φ.

Notice that

(5.4.28) N(|ξ |−1ξ )ŜJ(ξ ) = i|ξ |N(|ξ |−1ξ )Λ(|ξ |−1ξ ;Ũ)(φ̂JΦ) = 0,

so that both the real and imaginary part of ŜJ(ξ ) are in C , for any ξ ∈ R
m and for

J = 0, . . . ,K. Thus, applying Parseval’s relation and using (5.4.10) results in

(5.4.29)
∫

Rm
S�J (x)P(yJ)SJ(x)dx =

∫

Rm
Ŝ∗J(ξ )P(yJ)ŜJ(ξ )dξ ≥ μ

∫

Rm
|S∗J(x)|2dx.

Moreover, from (5.4.27) and (5.4.22) we infer, for J = 1, · · · ,K,

(5.4.30)
∫

Rm
|TJ(x)|2dx ≤ c‖V‖2

W−1,2 .

We now return to (5.4.23). From (5.4.25), (5.4.29) and (5.4.30) it follows that

(5.4.31)
∫

Rm
φ2

J (x)V�(x)P(yJ)V (x)dx

≥
(

1− δ
2μ

)∫

Rm
S�J (x)P(yJ)SJ(x)dx− 2μ

δ

∫

Rm
T�

J (x)P(yJ)TJ(x)dx

≥
(

μ− δ
2

)∫

Rm
|SJ(x)|2dx− c‖V‖2

W−1,2 .

Again by (5.4.25) and (5.4.30),

(5.4.32)
∫

Rm
|SJ(x)|2dx ≥

(

1− δ
2μ

)∫

Rm
φ2

J (x)|V (x)|2dx− c‖V‖2
W−1,2 .

Combining (5.4.23), (5.4.22), (5.4.31) and (5.4.32), we arrive at (5.4.12). The proof
is complete.
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5.4.4 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
involution (5.4.1) and is equipped with a C3 entropy η , with D2η(U) positive definite
in the direction of the involution cone C . Suppose the initial data U0 take values in
a compact subset of O , satisfy the involution (5.4.1) and also U0 − Ū ∈ L2(Rm),
for some constant state Ū ∈ O , and ∇U0 ∈ H�, for some � > m/2. Moreover, let
G ∈ C�+2. Then there exists T∞ ≤ ∞ and a unique classical solution U of (5.1.1),
(5.1.2) on R

m × [0,T∞), taking values in O , such that

(5.4.33) ∇U(·,t) ∈
�⋂

k=0

W k,∞
loc ([0,T∞);H�−k).

The interval [0,T∞) is maximal in that if T∞ < ∞ then

(5.4.34) limsup
t↑T∞

‖∇U(·,t)‖� = ∞

and/or the range of U(·,t) escapes from every compact subset of O , as t ↑ T∞.

Proof. We apply the method used for proving Theorem 5.1.1, by constructing the
solution to (5.1.1), (5.1.2) as the ε ↓ 0 limit of solutions to (5.1.8), (5.1.2).

Lemma 5.1.2, which establishes the existence of a solution U to (5.1.8), (5.1.2)
on a time interval [0,Tε), carries over here, without any modification, as it does
not rely on any special properties of the flux G. By virtue of (5.4.2), the function
Z = ∑Mα∂αU satisfies the parabolic system ∂tZ = εΔZ. Since Z(·,0) = 0, Z must
vanish identically on R

m × [0,Tε), and thus U will satisfy (5.4.1) on R
m × [0,Tε).

Furthermore, the matrix A(U(x,t)), defined by (5.1.3), will be positive definite in the
direction of the involution cone, i.e.,

(5.4.35) X�A(U(x,t))X ≥ μ |X |2, X ∈ C , x ∈ R
m, t ∈ [0,Tε),

for some μ > 0. Using that U0(·)− Ū ∈ L2(Rm) and ‖∇U‖� < ω , one easily infers
from (5.1.8) that

(5.4.36) |A(U(x,t))−A(Ū)| < 1
4
μ, x ∈Ω0, t ∈ [0,T ],

where Ω0 is the complement of a closed ball Bρ , of sufficiently large radius ρ ,
and T ∈ (0,Tε) is sufficiently small. Both ρ and T are selected independently of the
parameter ε > 0. Next we notice that, since |∇U | < cω , one may cover Bρ by the
union of balls Ω1, · · · ,ΩK , of sufficiently small radii so that, for J = 1, · · · ,K,

(5.4.37) |A(U(y,t)) = A(U(x,t))| < 1
2
μ , x,y ∈ΩJ , t ∈ [0,T ].

After this preparation, we move on to Lemma 5.1.3 and retrace the steps in its
proof, without any modification, up until (5.1.30) is derived. However, we no longer
have (5.1.31), as A(U) is not necessarily positive definite. In its place, we integrate
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(5.1.30) over R
m and employ Lemma 5.4.3, together with the Cauchy inequality, to

derive an estimate of the form

(5.4.38) −
∫

Rm
U�

r A(U)ΔUrdx ≥ 1
4
μ
∫

Rm
|∇Ur |2dx−c

∫

Rm
|∇U |2|Ur |2dx,

with a constant c that does not depend on t ∈ [0,T ] or on ε > 0. With the help of
(5.4.38) and (5.1.32), we thus reestablish (5.1.33).

We must use Lemma 5.4.3 in order to estimate the left-hand side of (5.1.33). For
|r| = 2, · · · , �+ 1,

(5.4.39)
∫

Rm
U�

r (x,t)A(U(x,t))Ur(x,t)dx ≥ 1
4
μ
∫

Rm
|Ur(x,t)|2dx−c‖∇U(·,t)‖2

r−2

while for |r| = 1

(5.4.40)
∫

Rm
U�

r (x,t)A(U(x,t))Ur(x,t)dx ≥ 1
4
μ
∫

Rm
|Ur(x,t)|2dx−c

∫

Rm
|U(x,t)−Ū |2dx.

The last term is estimated with the help of

(5.4.41)
∫

Rm
|U(x,t)−Ū |2dx ≤ 2

∫

Rm
|U0(x)−Ū |2dx+ct

∫ t

0

∫

Rm
|∇U(x,t)|2dxdτ,

which is easily derived from (5.1.8). Therefore, upon summing (5.1.33) over all
multi-indices r of order 1 ≤ |r| ≤ � + 1 and using (5.1.34), (5.4.39), (5.4.40) and
(5.4.41), one ends up with an estimate of the form

(5.4.42)

‖∇U(·,t)‖2
� ≤ c‖∇U0(·)‖2

� + c‖U0(·)−Ū‖L2 +
∫ t

0
[ct + g(τ)]‖∇U(·,τ)‖2

�dτ,

where g is bounded as in (5.1.36).
By retracing the remaining steps in the proof of Lemma 5.1.3, which require

virtually no modification, we establish the existence of a classical solution U to
(5.1.1), (5.1.2), on a time interval [0,T ], with ∇U(·,t) ∈ L∞([0,T ];H�). In particular,
∇U(·,T ) ∈ H�. Furthermore, by virtue of (5.4.41), U(·,T )− Ū ∈ L2(Rm). We may
thus repeat the construction and extend U to a longer interval [0,T ′]. By continuing
the process, we end up with a solution on a maximal interval [0,T∞), and if T∞ < ∞
then (5.4.34) holds and/or the range of U(·,t) escapes from every compact subset of
O , as t ↑ T∞. From ∇U(·,t) ∈ L∞loc([0,T∞);H�) and (5.1.1) one shows inductively that
∂ k

t ∇U(·,t) ∈ L∞loc([0,T∞);H�−k) thus establishing (5.4.33). The proof is complete.

The next proposition, akin to Theorem 5.3.1, establishes the uniqueness of clas-
sical solutions within the broader class of admissible weak solutions of sufficiently
small local oscillation.

5.4.5 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
involution (5.4.1), and is equipped with an entropy-entropy flux pair (η ,Q), where
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D2η(U) is positive definite in the direction of the involution cone C . Let Ū be a
classical solution of (5.1.1), on a time interval [0,T ], which takes values in a convex,
compact subset D of O and has initial values Ū0 satisfying the involution. Suppose
U is any weak solution of (5.1.1) which also takes values in D , satisfies the entropy
admissibility condition (4.5.3), and has the same initial values Ū0 as Ū . Moreover,
assume that U(x,t)−Ū(x,t) → 0, as |x| → ∞, uniformly in t ∈ [0,T ], and

(5.4.43) limsup
x→y t→τ

|U(x,t)−U(y,τ)| < κ , y ∈ R
m, τ ∈ [0,T ].

Then, if κ is sufficiently small, U coincides with Ū .

Proof. Retracing the steps in the proof of Theorem 5.3.1, we write (5.3.14) for r =∞
and U0 ≡ Ū0:

(5.4.44)
∫

Rm
h(U(x,σ),Ū(x,σ))dx ≤−

∫ σ

0

∫

Rm

m

∑
α=1

∂αŪ�Zα(U,Ū)dxdτ,

for any point σ of L∞ weak∗ continuity of η(U(·,τ)) in (0,T ). From (5.3.2),

(5.4.45) h(U,Ū) = (U −Ū)�Ā(U,Ū)(U −Ū),

where

(5.4.46) Ā(U,Ū) =
∫ 1

0

∫ λ

0
A(ρU +(1−ρ)Ū)dρdλ .

In particular,

(5.4.47) X�Ā(U,Ū)X ≥ μ |X |2, X ∈ C .

We fix r sufficiently large so that, setting Ω0 = B
c
r ,

(5.4.48) |U(x,t)−Ū(x,t)| < κ , x ∈Ω0, t ∈ [0,T ].

Next we note that since Ū is continuous and U satisfies (5.4.43), there is δ > 0 such
that, for any t ∈ [0,T ] and x,y ∈ Br , with |y− x|< δ ,

(5.4.49) |Ū(x,t)−Ū(y,t)| < κ , |U(x,t)−U(y,t)|< 2κ .

Hence, if we cover Br by the union of balls Ω1, · · · ,ΩK of radius 1
2δ , and select κ

sufficiently small, then, for J = 0, · · · ,K,

(5.4.50) |Ā(U(y,t),Ū(y,t))− Ā(U(x,t),Ū(x,t))| < 1
2
μ,

for any t ∈ [0,T ] and any x,y ∈ΩJ .
We now return to (5.4.4) and apply Lemma 5.4.3 to get

(5.4.51)
∫

Rm
h(U(x,σ),Ū(x,σ))dx ≥ 1

4
μ‖U(·,σ)−Ū(·,σ)‖2

L2 −b‖U(·,σ)−Ū(·,σ)‖2
W−1,2
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Upon using that both U and Ū satisfy (5.1.1),

(5.4.52) ‖U(·,σ)−Ū(·,σ)‖W−1,2 ≤
∫ σ

0
‖∂t [U(·,τ)−Ū(·,τ)]‖W−1,2dτ

≤
∫ σ

0

m

∑
α=1

‖Gα(U(·,τ))−Gα(Ū(·,τ))‖L2 dτ

≤ c
∫ σ

0
‖U(·,τ)−Ū(·,τ)‖L2 dτ.

Therefore, combining (5.4.44), (5.3.4), (5.4.51) and (5.4.52), we infer

(5.4.53) ‖U(·,σ)−Ū(·,σ)‖2
L2 ≤ c(1 + T)

∫ σ

0
‖U(·,τ)−Ū(·,τ)‖2

L2 dτ,

for almost all σ ∈ (0,T ), whence U ≡ Ū . The proof is complete.

In particular, Theorems 5.4.4 and 5.4.5 establish the existence and uniqueness of
classical solutions to the Cauchy problem for the system (3.3.19) of isentropic elas-
todynamics, when the internal energy is not globally convex, but it merely satisfies
the rank-one convexity condition (3.3.7). By contrast, the above theorems provide
no relief for the system (3.3.66) of electrodynamics, with no convex electromagnetic
field energy, because in that case the involution cone C coincides with the whole
state space R

6.
The reader must have noticed that Theorem 5.1.1 ascribes to solutions a higher

level of regularity than does Theorem 5.4.4. The reason is that in the latter case one
cannot depend on Lemma 5.1.5, which requires weak lower semicontinuity of the
entropy, induced by the convexity. It should be noted, however, that convexity is
merely a sufficient condition for weak lower semicontinuity. The following, more
general, condition is necessary as well as sufficient.

5.4.6 Definition. An entropy η for the system of conservation laws (5.1.1), endowed
with an involution (5.4.1), is called quasiconvex if for any U ∈ L∞(Rm;O), which is
periodic in xα , α = 1, . . . ,m, with period one, satisfies (5.4.1) and has mean

(5.4.54) Û =
∫

K

U(y)dy

over the standard hypercube K in R
m with edge length one, it is

(5.4.55) η(Û) ≤
∫

K

η(U(y))dy.

Roughly, quasiconvexity stipulates that the uniform state minimizes the total en-
tropy, among all states that are compatible with the involution and have the same
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“mass”. This is in the spirit of the fundamental law of classical thermostatics, which
affirms that the physical entropy is maximized at the equilibrium state.

The relevance of quasiconvexity is demonstrated by the following proposition,
whose proof may be found in the references cited in Section 5.7:

5.4.7 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
entropy η and an involution (5.4.1), such that the rank of N(ν) is constant, for any
ν ∈ Sm−1, and equal to the dimension of the kernel of Λ(ν;U). Then

∫

|x|<r
η(U)dx is

weak∗ lower semicontinuous on the space of L∞ vector fields U that satisfy (5.4.1), if
and only if η is quasiconvex. Furthermore, any quasiconvex η is necessarily convex
in the direction of the involution cone C .

Because of the above proposition, the notion of quasiconvexity plays a funda-
mental role in the calculus of variations. Unfortunately, Definition 5.4.6 does not
provide any clue as to how to test whether a given entropy is quasiconvex. The con-
jecture that convexity in the direction of the involution cone is also sufficient for qua-
siconvexity is valid when the entropy is quadratic: η = U�AU . In general, however,
quasiconvexity is a more stringent condition than mere convexity in the direction of
the involution cone.

The above may be illustrated in the context of our prototypical example, namely
the system (3.3.19) of isentropic elastodynamics, with involution (3.3.10) and en-
tropy η = ε(F)+ 1

2 |v|2. In that case, η is quasiconvex when ε(F) is quasiconvex
in the sense of Morrey: For any constant deformation gradient F̂ and any Lipschitz
function χ from K to R

3, with compact support in K ,

(5.4.56) ε(F̂) ≤
∫

K

ε(F̂ +∇χ)dy.

In other words, a homogeneous deformation of K minimizes the total internal en-
ergy among all placements of K with the same boundary values. Any quasiconvex
internal energy is rank-one convex (3.3.7). On the other hand, there exist rank-one
convex functions ε(F) that fail to be quasiconvex.

A placement of an elastic body is in (isentropic) equilibrium when its total in-
ternal energy

∫
ε(F)dx is minimum over all placements with the same boundary

conditions. Thus, quasiconvexity is necessary and sufficient for attaining equilibria
by minimizing sequences of placements that are merely bounded in W 1,∞.

As null Lagrangians, ±detF and the entries of ±F∗ are all quasiconvex. There-
fore, detF and F∗ are L∞ weak* continuous functions on the space of F that satisfy
the involution (3.3.10).

To conclude this section, it should be noted that there are systems of conser-
vation laws equipped with nonlinear involutions, that is nonlinear functions of the
state vector and its spatial derivatives that are preserved by classical or weak so-
lutions to the Cauchy problem, once introduced by the initial data. For example,
(2.2.12) and (2.2.13) may be regarded as nonlinear involutions of the system (3.3.19)
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of isentropic elastodynamics. As another example, notice that if one writes the sys-
tem (3.3.19) in Eulerian coordinates then the linear involutions (3.3.10) become non-
linear: Fjβ∂ jFiα−Fjα∂ jFiβ = 0 (with summation convention). At the same time, the
reader should be warned that there may be linear combinations of derivatives that
are conserved by smooth solutions, without being involutions. A case in point is the
irrotationality condition ω = curlv = 0 which is preserved by smooth solutions of
the Euler equation (3.3.36), but it breaks down after discontinuities develop.

5.5 Contingent Entropies and Polyconvexity

The attempt in the previous section to compensate for the breakdown of convexity
in the entropy by employing involutions was met with partial success in the case
of elastodynamics and with failure in the case of electrodynamics. Here, we shall
address these difficulties with the help of the special structure manifested in the pres-
ence of equations like (3.3.11), (3.3.12), for elastodynamics, and (3.3.74),
for electrodynamics. At first glance, these equations seem to identify additional
entropy-entropy flux pairs for the systems (3.3.19) and (3.3.66). However, this is not
accurate, because, as it was already pointed out in Section 3.3, (3.3.11) and (3.3.12)
hold only for solutions of (3.3.19) that satisfy the involutions (3.3.10); and similarly
(3.3.74) holds only for solutions of (3.3.66) that satisfy the involutions (3.3.67). It is
thus expedient to introduce extended entropy balance laws that hold only contingent
on the involutions.

5.5.1 Definition. In a system of conservation laws (5.1.1), endowed with the invo-
lution (5.4.1), a smooth, scalar-valued function η(U) on O is a contingent entropy,
associated with the 1× k matrix-valued contingent entropy flux Q(U), if there is a
k-vector-valued function Ξ(U) on O such that

(5.5.1) DQα(U) = Dη(U)DGα(U)+Ξ(U)�Mα , α = 1, · · · ,m.

In particular, any entropy is a contingent entropy, withΞ(U) zero. Clearly, (5.5.1)
implies that

(5.5.2) ∂tη(U(x,t))+
m

∑
α=1

∂αQα(U(x,t)) = 0

holds for any classical solution U of (5.1.1) that satisfies the involution (5.4.1). Thus,
Ξ(U) plays the role of a Lagrange multiplier.

In our prototypical examples, detF and the nine entries of F∗ are contingent
entropies for the system (3.3.19) of elastodynamics, and the three components of
B∧D are contingent entropies for the system (3.3.66) of electrodynamics.

The running assumption throughout this section will be that (5.1.1) is a system
of n conservation laws that is endowed with k involutions (5.4.1) and is equipped
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with a principal contingent entropy-entropy flux pair (η ,Q), as well as � supple-
mental linearly independent contingent entropy-entropy flux pairs. Admissibility of
weak solutions will be dictated by the inequality (4.5.3) for the principal contingent
entropy-entropy flux pair.

We set N = n+ � and compose the N-vector-valued function W (U) whose first n
components are the componentsU1, · · · ,Un of the state vector U while the remaining
� components are the supplemental contingent entropies. Thus

(5.5.3) ∂tW (U(x,t))+
m

∑
α=1

∂αXα(U(x,t)) = 0,

holds for any classical solution U of (5.1.1) that satisfies the involution (5.4.1), where
Xα is the α-th column vector of the N ×m matrix-valued function X whose I-th
row XI is the contingent entropy flux associated with the contingent entropy W I . In
particular, for I = 1, · · · ,n , XI

α = GI
α .

The principal contingent entropy-entropy flux pair (η ,Q) satisfies (5.5.1) for
some Lagrange multiplier Ξ . Similarly,

(5.5.4) DXα(U) = DW (U)DGα(U)+Ω(U)�Mα , α = 1, · · · ,m,

whereΩ is the k×N-matrix-valued function whose I-th column vectorΩ I is the La-
grange multiplier associated with the contingent entropy-entropy flux pair (W I ,XI).
In particular, for I = 1, · · · ,n, Ω I = 0.

The objective of this section is to demonstrate that in the above setting the re-
quirement of convexity on the principal entropy may be relaxed into the following
weaker condition:

5.5.2 Definition. The principal contingent entropy η is called polyconvex, relative to
the contingent entropies W , if it admits a representation

(5.5.5) η(U) = θ (W (U)), U ∈ O,

where θ is a smooth function defined on an open neighborhood F of W (O) in R
N ,

whose Hessian matrix is positive definite at every W ∈ F .

In the example of elastodynamics, W = (F,v,F∗,detF), arranged as a 22-vector.
The principal entropy η = ε(F)+ 1

2 |v|2 will be polyconvex when the internal energy
function ε(F) admits a representation

(5.5.6) ε(F) = φ(F,F∗,detF),

where φ(F,H,δ ) is a smooth function with positive definite Hessian on an open
neighborhood of the manifold {(F,H,δ ) : detF > 0, H = F∗, δ = detF}, embed-
ded in R

19. This is a physically reasonable assumption which has been discussed
thoroughly in the literature, especially in the context of elastostatics. In particular,
the (isentropic) internal energy for elastic fluids is polyconvex, as it is of the form
ε(F) = φ(detF), with φ convex on (0,∞). Similarly, in electrodynamics, where
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W = (B,D,B∧ D), arranged as a 9-vector, polyconvexity is a natural assumption
for the electromagnetic field energy η , which serves as the principal entropy. Indeed,
in the Born-Infeld case (3.3.73), η is polyconvex.

We proceed to derive certain implications of polyconvexity. Notice first that
(5.5.1) and (5.5.4) yield the symmetry relations

(5.5.7) D2η(U)DGα(U)+ DΞ(U)�Mα = DGα(U)�D2η(U)+ M�
α DΞ(U),

(5.5.8) D2W I(U)DGα(U)+ DΩ I(U)�Mα = DGα(U)�D2W I(U)+ M�
α DΩ I(U),

for I = 1, · · · ,N.
In the sequel, θW (W ) will denote the differential of the function θ (W ), regarded

as a 1×N matrix with entries θW I = ∂θ/∂W I ; and θWW (W ) will stand for the N×N
Hessian matrix of θ (W ).

For U ∈ O , we define the symmetric n×n matrix

(5.5.9) A(U) = D2η(U)−
N

∑
I=1

θW I (W (U))D2W I(U).

Using (5.5.5),

(5.5.10) A(U) = DW (U)�θWW (W (U))DW (U),

so that A(U) is positive definite when η is polyconvex. Furthermore, by virtue of
(5.5.7) and (5.5.8), the n× n matrix-valued functions

(5.5.11) Jα(U) = A(U)DGα(U)+Γ (U)�Mα , α = 1, · · · ,m,

where

(5.5.12) Γ (U) = DΞ(U)−
N

∑
I=1

θW I (W (U))DΩ I(U),

are symmetric.
The following proposition establishes the existence of classical solutions to the

Cauchy problem.

5.5.3 Theorem. Assume the system of conservation laws (5.1.1) is endowed with the
involution (5.4.1) and is equipped with a C3 principal contingent entropy-entropy
flux pair (η ,Q), and with supplemental contingent entropy-entropy flux pairs that
render η(U) polyconvex, in the sense of Definition 5.5.2. Suppose the initial data
U0 are continuously differentiable on R

m, take values in some compact subset of O ,
satisfy the involution, and ∇U0 ∈ H�, for some � > m/2. Moreover, let G ∈ C�+2.
Then there exists T∞ ≤ ∞ and a unique continuously differentiable function U on
R

m× [0,T∞), taking values in O , which is a classical solution of the Cauchy problem
(5.1.1), (5.1.2) on [0,T∞). Furthermore,
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(5.5.13) ∇U(·,t) ∈
�⋂

k=0

Ck([0,T∞);H�−k).

The interval [0,T∞) is maximal in that if T∞ < ∞ then

(5.5.14)
∫ T∞

0
‖∇U(·,t)‖L∞(Rm)dt = ∞

and/or the range of U(·,t) escapes from every compact subset of O , as t ↑ T∞.

Proof. We apply the method used for proving Theorem 5.1.1, by constructing the
solution to (5.1.1), (5.1.2) as the ε ↓ 0 limit of solutions to (5.1.8), (5.1.2).

We begin with Lemma 5.1.2, which establishes the existence of a solution U to
(5.1.8), (5.1.2) on a time interval [0,Tε). This carries over here, without any change,
as it does not rely on any particular properties of G. As in the proof of Theorem 5.4.4,
it is important to remember that U satisfies the involution (5.4.1).

The next step is to construct a solution to (5.1.1), (5.1.2) on a time interval [0,T ]
by retracing the steps in the proof of Lemma 5.1.3. However, in the place of A and
Jα given by (5.1.3) and (5.1.4), we are here using A and Jα defined by (5.5.9) and
(5.5.11). Since A(U) is symmetric and positive definite, Equations (5.1.24)-(5.1.31)
are still valid here. However, in the place of (5.1.32) we now have

(5.5.15)
m

∑
α=1

2U�
r A(U)DGα(U)∂αUr =

m

∑
α=1

2U�
r [A(U)DGα(U)+Γ (U)�Mα ]∂αUr

=
m

∑
α=1

2U�
r Jα(U)∂αUr =

m

∑
α=1

∂α [U�
r Jα(U)Ur]−

m

∑
α=1

U�
r ∂αJα(U)Ur.

which follows from (5.5.11), (5.4.1) and the symmetry of Jα(U). Thus, the remaining
estimates (5.1.33)-(5.1.39), and thereby the assertion of Lemma 5.1.3, apply to the
present case as well.

The situation is similar with Lemmas 5.1.4 and 5.1.5. The estimates (5.1.40)-
(5.1.53) carry over to the present setting, with A and Jα defined through (5.5.9) and
(5.5.11). In particular, (5.1.43) and (5.1.44) now follow from (5.1.29) and (5.5.15).

Armed with Lemmas 5.1.2-5.1.5, one easily completes the proof of Theorem
5.5.3 by retracing the steps in the proof of Theorem 5.1.1.

We now turn to the question of uniqueness and stability of classical solutions
within a class of weak solutions that will be dubbed mild.

5.5.4 Definition. A locally bounded measurable function U , defined on R
m × [0,T )

and taking values in O , is a mild solution to (5.1.1), (5.1.2) if
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(5.5.16)
∫ T

0

∫

Rm
[∂tV

�W (U)+
m

∑
α=1

∂αV�Xα(U)]dxdt +
∫

Rm
V�(x,0)W (U0(x))dx = 0

holds for all Lipschitz N-vector-valued test functions V , with compact support in
R

m × [0,T ).

Notice that (5.5.16) holds when U satisfies (5.5.3), in the sense of distributions,
together with the initial condition W (U(·,t)) → W (U0(·)) in L∞ weak∗, as t → 0.
In particular, any mild solution of (5.1.1), (5.1.2) is a weak solution, as (5.1.1) is
embedded in (5.5.3). Clearly, any classical solution of (5.1.1), (5.1.2) is a mild so-
lution, because (5.5.3) and the initial conditions are automatically satisfied in that
case. However, it comes as a surprise that in the applications one often encounters
even discontinuous mild solutions. For example, any weak solution (F,v) of the sys-
tem (3.3.19) of isentropic elastodynamics is mild. Indeed, as we saw in Section 2.3,
(3.3.11) and (3.3.12) hold for any L∞ fields that satisfy (3.3.19)1 and the involution
(3.3.10). Moreover, as stated in the previous section, F∗ and detF are continuous
functions in L∞ weak∗, and hence F(·,t) → F0(·), as t → 0, in L∞ weak∗, implies
F∗(·,t) → F∗

0 (·) and detF(·,t) → detF0(·), as t → 0, in L∞ weak∗. Similarly, BV
weak solutions (B,D) of the system (3.3.66) of electrodynamics, with Born-Infeld
constitutive relations (3.3.73) and involutions (3.3.67), are necessarily mild solu-
tions, because all shocks satisfy (3.3.80). Thus (3.3.74) will hold for such solutions.
Moreover, in the BV setting there is enough regularity so that B(·,t) → B0(·) and
D(·,t) → D0(·), as t → 0, implies B(·,t)∧D(·,t) → B0(·)∧D0(·), as t → 0.

A mild solution U will be admissible if it is admissible as a weak solution, i.e.,
if (4.5.3) is satisfied for the principal contingent entropy-entropy flux pair. In par-
ticular, any BV solution of (3.3.66), under the Born-Infeld constitutive relation, is
admissible, as shocks do not incur energy production. Of course, this is not the case
with the system (3.3.19) of elastodynamics.

The following proposition should be compared with Theorem 5.3.1.

5.5.5 Theorem. Assume the system of conservation laws (5.1.1) is endowed with the
involution (5.4.1) and is equipped with a principal contingent entropy-entropy flux
pair (η ,Q), and also with supplemental contingent entropy-entropy flux pairs that
render η(U) polyconvex, in the sense of Definition 5.5.2. Let D be a compact subset
of O such that W (D) is contained in a convex subset of F . Suppose Ū is a classical
solution of (5.1.1) on [0,T ), taking values in D , with initial data Ū0 satisfying the
involution (5.4.1). Let U be any admissible mild solution of (5.1.1) on [0,T ), which
also takes values in D and has initial data U0 satisfying the involution (5.4.1). Then

(5.5.17)
∫

|x|<r
|U(x,t)−Ū(x,t)|2dx ≤ aebt

∫

|x|<r+st
|U0(x)−Ū0(x)|2dx

holds for any r > 0 and t ∈ [0,T ), with positive constants s,a, depending solely on
D , and b that also depends on the Lipschitz constant of Ū . In particular, Ū is the
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unique admissible mild solution of (5.1.1) with initial data Ū0.

Proof. We retrace the steps in the proof of Theorem 5.3.1, with the needed modifi-
cations. On D ×D we define

(5.5.18) h(U,Ū) = η(U)−η(Ū)−θW (W (Ū))[W (U)−W(Ū)],

(5.5.19) Yα(U,Ū) = Qα(U)−Qα(Ū)−θW (W (Ū))[Xα (U)−Xα(Ū)]

+[θW (W (Ū))Ω(Ū)�−Ξ(Ū)�]Mα [U −Ū],

(5.5.20) Zα(U,Ū) = −DGα(Ū)�DW (Ū)�θWW (W (Ū))[W (U)−W(Ū)]

+DW(Ū)�θWW (W (Ū))[Xα(U)−Xα(Ū)]

−DW(Ū)�θWW (W (Ū))Ω(Ū)�Mα [U −Ū]

+Γ (Ū)�Mα [U −Ū ],

where Γ is given by (5.5.12).
Recalling Definition 5.5.2, we see that h(U,Ū) is of quadratic order in U −Ū and

positive definite. Upon using (5.5.1), (5.5.4) and (5.5.5), we deduce

(5.5.21) DYα(U,Ū) = [θW (W (U))−θW (W (Ū))]DW (U)DGα(U)

+[Ξ(U)−Ξ(Ū)]�Mα−θW (W (Ū))[Ω(U)−Ω(Ū)]�Mα ,

which vanishes at U = Ū , so that Y (U,Ū) is also of quadratic order in U − Ū . In
particular, for s large, (5.3.5) holds.

Turning to Z(U,Ū), and by virtue of (5.5.4),

(5.5.22) DZα(U,Ū) = −DGα(Ū)�DW (Ū)�θWW (W (Ū))DW (U)

+DW (Ū)�θWW (W (Ū))DW (U)DGα(U)

+DW (Ū)�θWW (W (Ū))[Ω(U)−Ω(Ū)]�Mα

+Γ (Ū)�Mα .

Recalling (5.5.10), (5.5.11) and since Jα is symmetric, we conclude that
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(5.5.23)
DZα(Ū ,Ū) = −DGα(Ū)�A(Ū)+ A(Ū)DGα(Ū)+Γ (Ū)�Mα = M�

α Γ (Ū).

As in the proof of Theorem 5.3.1, we fix a nonnegative, Lipschitz continuous test
function ψ with compact support in R

m × [0,T ), and evaluate h,Y and Z along the
two solutions U(x,t) and Ū(x,t). As an admissible weak solution, U must satisfy
the inequality (4.5.3), while Ū being a classical solution, will satisfy (4.5.3) as an
equality. We thus deduce

(5.5.24)
∫ T

0

∫

Rm
[∂tψ h(U,Ū)+

m

∑
α=1

∂αψYα(U,Ū)]dxdt +
∫

Rm
ψ(x,0)h(U0(x),Ū0(x))dx

≥ −
∫ T

0

∫

Rm

{

∂tψ θW (W (Ū))[W (U)−W(Ū)]

+
m

∑
α=1

∂αψ{θW (W (Ū))[Xα(U)−Xα(Ū)]

−[θW (W (Ū))Ω(Ū)�−Ξ(Ū)�]×Mα [U −Ū]}
}

dxdt

−
∫

Rm
ψ(x,0)θW (W (Ū0(x)))[W (U0(x))−W (Ū0(x))]dx.

Next we write (5.5.16) for both U and Ū , with test function V T = ψθW (W (Ū)).
This yields

(5.5.25)
∫ T

0

∫

Rm

{

∂t [ψθW (W (Ū))][W (U)−W(Ū)]

+
m

∑
α=1

∂α [ψθW (W (Ū))][Xα(U)−Xα(Ū)]
}

dxdt

+
∫

Rm
ψ(x,0)θW (W (Ū0(x)))[W (U0(x))−W(Ū0(x))]dx = 0.

Furthermore, since both U and Ū satisfy the involution (5.4.1),

(5.5.26)
∫ T

0

∫

Rm

m

∑
α=1

∂α
{
ψ [θW (W (Ū))Ω(Ū)�−Ξ(Ū)�]

}
Mα [U −Ū]dxdt = 0.

By virtue of (5.5.4) and ∑Mα∂αŪ = 0,
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(5.5.27) ∂tθW (W (Ū)) = ∂tW (Ū)�θWW (W (Ū))

=
m

∑
α=1

∂αXα(Ū)�θWW (W (Ū))

= −
m

∑
α=1

∂αŪ�DXα(Ū)�θWW (W (Ū))

= −
m

∑
α=1

∂αŪ�[DW (Ū)DGα(Ū)+Ω(Ū)�Mα ]�θWW (W (Ū))

= −
m

∑
α=1

∂αŪ�DGα(Ū)�DW (Ū)�θWW (W (Ū)).

Similarly,

(5.5.28) ∂αθW (W (Ū)) = ∂αŪ�DW (Ū)�θWW (W (Ū)),

(5.5.29)

∂α [θW (W (Ū))Ω(Ū)�−Ξ(Ū)�] = ∂αŪ�DW (Ū)�θWW (W (Ū))Ω(Ū)�

−∂αŪ�Γ (Ū)�.

Therefore, recalling (5.5.20),

(5.5.30) ∂tθW (W (Ū))[W (U)−W(Ū)]+
m

∑
α=1

∂αθW (W (Ū))[Xα(U)−Xα(Ū)]

−
m

∑
α=1

∂α [θW (W (Ū))Ω(Ū)�−Ξ(Ū)�]Mα [U −Ū ] =
m

∑
α=1

∂αŪ�Zα(U,Ū).

On account of (5.5.23),

(5.5.31)
m

∑
α=1

∂αŪ�DZα(Ū ,Ū) =
[ m

∑
α=1

Mα∂αŪ

]�
Γ (Ū) = 0.

consequently, the right-hand side of (5.5.30) is of quadratic order in U −Ū .
By combining (5.5.24), (5.5.25), (5.5.26) and (5.5.30), we recover (5.3.10). The

remainder of the proof follows along the lines of the proof of Theorem 5.3.1: depart-
ing from (5.3.10) and fixing any t ∈ (0,T ), we derive (5.3.13), for σ ∈ (0,t), and
then (5.3.14), for any σ of L∞ weak∗ continuity of η(U(·,τ)). This in turn yields
(5.3.16), for u defined by (5.3.15), and thereby (5.5.17). The proof is complete.

In particular, Theorems 5.5.3 and 5.5.5 apply to the class of systems of con-
servation laws that are endowed with an involution and are equipped with a convex
contingent entropy η(U) (just take W (U)≡U). One may attempt to reduce the more
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general class of systems endowed with an involution and equipped with a polycon-
vex contingent entropy to the above special class by means of the following proce-
dure. Assume that the system (5.1.1) is endowed with the involution (5.4.1) and is
equipped with a principal contingent entropy-entropy flux pair (η(U),Q(U)) which
is polyconvex (5.5.5), relative to the contingent entropies W . We seek functions S(Ψ)
and Π(Ψ), defined on R

N and taking values in M
N×m and M

1×m, respectively, such
that

(5.5.32) S(W (U)) = W (U), Π(W (U)) = Q(U)

and, in addition, (θ (Ψ), Π(Ψ )) is a (generally contingent) entropy-entropy flux pair
for the extended system

(5.5.33) ∂tΨ(x,t)+ divS(Ψ(x,t)) = 0.

When functions satisfying the above specifications can be found, one may construct
solutions to the Cauchy problem (5.1.1), (5.1.2) by first solving (5.5.33) with initial
conditions

(5.5.34) Ψ (x,0) = W (U0(x)),

and then getting U from the equation W (U) =Ψ . The merit of this approach lies in
that (5.5.33) is now equipped with a convex (possibly contingent) entropy θ .

The above program has been implemented successfully for the systems of elas-
todynamics and electrodynamics.

In elastodynamics, U = (F,v)�,Ψ = (F,v,Θ ,ω)� , σ = σ(F,Θ ,ω), the ex-
tended system reads

(5.5.35)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tFiα − ∂αvi = 0, α = 1,2,3; i = 1,2,3

∂tvi − ∂α
(
∂σ
∂Fiα

+
∂σ
∂Θβ j

∂F∗
β j

∂Fıα
+
∂σ
∂ω

∂ detF
∂Fiα

)

= 0, i = 1,2,3

∂tΘβ i − ∂α
( ∂F∗

β i

∂Fjα
v j

)

= 0, β = 1,2,3; i = 1,2,3

∂tω− ∂α
(
∂ detF
∂Fjα

v j

)

= 0,

and the entropy-entropy flux pair is

(5.5.36) θ = 1
2 |v|2 +σ(F,Θ ,ω),

(5.5.37) Πα = −
(
∂σ
∂Fiα

+
∂σ
∂Θβ j

∂F∗
β j

∂Fiα
+
∂σ
∂ω

∂ detF
∂Fiα

)

vi .
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On the “manifold”Ψ = W (U) = (F,v,F∗,detF)�, (5.5.35) reduces to the system
(3.3.19) (with b = 0) together with the kinematic conservation laws (3.3.11), (3.3.12),
while (θ ,Π) reduces to the classical entropy-entropy flux pair recorded in Section
3.3.3.

In electrodynamics, for the Born-Infeld constitutive relations, where U = (B,D)�,
Ψ = (B,D,P)�, the extended system reads

(5.5.38)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tB + curl
[
θ−1(D+ B∧P)

]
= 0

∂tD− curl
[
θ−1(B−D∧P)

]
= 0

∂tP−div
[
θ−1(I + BB�+ DD�−PP�)

]
= 0,

and the entropy-entropy flux pair is

(5.5.39) θ = (1 + |B|2 + |D|2 + |P|2) 1
2 ,

(5.5.40) Π= P−θ−2[P−DλB− (D ·P)D− (B ·P)B].

Again, on the “manifold”Ψ =W (U) = (B,D,D∧B)� (5.5.38) reduces to Maxwell’s
equations (3.3.66) (with J = 0), (3.3.73), together with the supplementary conser-
vation law (3.3.74), while (θ ,Π) reduces to the entropy-entropy flux pair (η ,Q)
recorded in (3.3.73).

5.6 Initial-Boundary Value Problems

The issue of properly formulating the initial-boundary value problem for systems of
hyperbolic conservation laws and establishing local existence of classical solutions
has been the object of intensive study in recent years. A fairly definitive, albeit highly
technical and complicated, theory has emerged, which lies beyond the scope of this
book. Fortunately, detailed expositions are now available, in books and survey arti-
cles, referenced in Section 5.7. In order to convey to the reader a taste of the current
state of this theory, a representative result will be recorded here, along the lines of
the formulation of initial-boundary value problems presented in Section 4.7.

We begin by fixing as domain the half-space

(5.6.1) D = {x ∈ R
m : ν · x < 0} ,

with outward unit normal ν ∈ Sm−1. We seek solutions to the system

(5.6.2) ∂tU(x,t)+
m

∑
α=1

∂αGα(U(x,t)) = 0, x ∈ D , t ∈ (0,T ) ,

satisfying initial conditions
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(5.6.3) U(x,0) = U0(x) , x ∈ D ,

and boundary conditions in the special form (4.7.1), (4.7.8), namely,

(5.6.4) BG(U(x,t))ν = 0, x ∈ ∂D , t ∈ (0,T ) ,

where B is a constant n× n matrix.
We make the following assumptions on the system (5.6.2). The flux G(U)

is a smooth n × m matrix-valued function defined on a convex domain O ⊂ R
n.

For normalization, 0 ∈ O and G(0) = 0. Furthermore, (5.6.2) is endowed with a
smooth entropy η(U) such that D2η(U) is positive definite on O . This implies,
in particular, that (5.6.2) is hyperbolic, so that for any U ∈ O and ξ ∈ Sm−1,
the matrix Λ(ξ ;U), defined by (4.1.2), possesses real eigenvalues (characteristic
speeds) λ1(ξ ;U) ≤ ·· · ≤ λn(ξ ;U) and associated linearly independent eigenvectors
R1(ξ ;U), · · · ,Rn(ξ ;U). We require that each eigenvalue has constant multiplicity on
Sm−1 ×O .

Turning to the boundary conditions (5.6.4), we introduce the “manifold” of
boundary data

(5.6.5) M = {U ∈ O : BG(U)ν = 0}

and assume that the boundary is noncharacteristic, in the sense that, for a certain
k = 0, · · · ,n and all U ∈ M ,

(5.6.6) λk(ν;U) < 0 < λk+1(ν;U),

where λ0(ν;U) =−∞ and λn+1(ν;U) =∞. Thus k characteristic fields are incoming
to D and n− k characteristic fields are outgoing from D , through ∂D .

We assume, further, that, for any U ∈ M , the rank of BΛ(ν;U) is k and

(5.6.7) E
k(ν;U)⊕ker[BΛ(ν;U)] = R

n,

where E
k(ν;U) denotes the subspace of R

n spanned by R1(ν;U), · · · ,Rk(ν;U). To
motivate this condition, we linearize the system (5.6.2) and the boundary condition
(5.6.4) about any constant state U ∈ M :

(5.6.8) ∂tV (x,t)+
m

∑
α=1

DGα(U)∂αV (x,t) = 0, x ∈ D , t ∈ (0,T ),

(5.6.9) BΛ(ν;U)V (x,t) = 0, x ∈ ∂D , t ∈ (0,T ).

Thus, roughly speaking, the role of (5.6.7) is to ensure that the trace of V on ∂D is
determined by combining the boundary conditions with the information carried to
the boundary by the n− k outgoing characteristic fields.

The final assumption on the boundary conditions is the uniform Kreiss-Lopatinski
condition, which is formulated as follows. For each state U ∈ M , vector ξ ∈ Sm−1
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tangent to the boundary, i.e., ξ · ν = 0, and complex number z with Rez > 0, we
define the matrix

(5.6.10) M(z,ξ ;U) =Λ(ν;U)−1[zI + iΛ(ξ ;U)].

We denote by E(z,ξ ;U) the subspace of R
n spanned by the eigenvectors associated

with the eigenvalues of M(z,ξ ;U) with negative real part and require that

(5.6.11) |W | ≤ c|BΛ(ν;U)W |, for all W ∈ E(z,ξ ;U),

where c is a positive constant, independent of U,ξ and z. To interpret this assumption,
notice that the linear system (5.6.8) admits solutions of the form

(5.6.12) V (x,t) = exp(iξ · x + zt)W(ν · x),
where the function W (τ) satisfies the ordinary differential equation

(5.6.13) Ẇ + M(z,ξ ;U)W = 0.

The role of (5.6.11) is to rule out solutions (5.6.12) that satisfy the boundary con-
dition (5.6.9) and exhibit “tame” growth in the spatial directions but grow exponen-
tially with time.

Finally, we turn to the initial condition (5.6.3). For j = 0,1, · · · , we let H j de-
note the Sobolev space W j,2(D ;Rn), and assume U0 ∈ H�+1, for � > m

2 . One may
then calculate formally, from (5.6.2), the initial values U1(x), · · · ,U�(x) of the time
derivatives ∂tU(x,0), · · · ,∂ �

t U(x,0) of solutions. Thus

(5.6.14) U1 = −
m

∑
α=1

DGα(U0)∂αU0,

(5.6.15) U2 = −
m

∑
α=1

DGα(U0)∂αU1 −
m

∑
α=1

D2Gα(U0)[U1,∂αU0],

and so on. Moreover, Uj ∈ H�+1− j, j = 0, · · · , �. In particular, the trace of Uj on the
hyperplane ∂D is well-defined, for j = 0, · · · , �. We then require that the initial data
be compatible with the boundary condition, in the sense

(5.6.16) B∂ j
t G(U(x,t))ν = 0, t = 0, x ∈ ∂D , j = 0, · · · , �,

namely,

(5.6.17) BG(U0(x))ν = 0, x ∈ ∂D ,

(5.6.18) BΛ(ν;U0(x))U1(x) = 0, x ∈ ∂D ,

and so on.
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We have now laid the preparation for stating the existence theorem:

5.6.1 Theorem. Under the above assumptions on the system, the boundary condi-
tions and the initial data, there exists a unique classical solution U ∈C1(D× [0,T∞))
of the initial-boundary value problem (5.6.2), (5.6.3), (5.6.4), for some 0 < T∞ ≤ ∞.
Furthermore,

(5.6.19) U(·,t) ∈
�+1⋂

j=0

C j([0,T∞);H�+1− j).

The interval [0,T∞) is maximal in that if T∞ < ∞ then

(5.6.20) limsup
t↑T∞

‖∇U(·,t)‖L∞ = ∞

and/or the range of U(·,t) escapes from every compact subset of O , as t ↑ T∞.

The (lengthy and technical) proof proceeds from linear systems with constant
coefficients to linear systems with variable coefficients, and then passes to quasilinear
systems via linearization (5.6.8), (5.6.9) and a fixed point argument, for the map
U �→V .

It should be noted that the assumptions in the above theorem are too restrictive
for dealing with many natural initial-boundary value problems arising in continuum
physics. In the Euler equations, for isentropic or nonisentropic gas flow, the assump-
tion that the characteristic speeds have constant multiplicity is indeed valid (see Sec-
tions 3.3.5 and 3.3.6); but the assumption that the boundary is noncharacteristic is
often violated, for instance in the case of no-penetration (or slip) boundary condi-
tions v · ν = 0. In the equations of isentropic or nonisentropic elastodynamics, the
condition that the characteristic speeds have constant multiplicity is often violated,
for example in the vicinity of the natural state of an isotropic elastic solid where
the multiplicity of the characteristic speed associated with shear waves undergoes a
transition. Moreover, the boundary is always characteristic, as the system possesses
zero characteristic speeds. Beyond that, one needs to consider more general domains
D and homogeneous or inhomogeneous boundary conditions on ∂D of more gen-
eral form than (5.6.4). These issues are addressed by more sophisticated versions of
Theorem 5.6.1. References are cited in Section 5.7.

5.7 Notes

A comprehensive treatment of classical solutions to the initial and initial-boundary
value problem for hyperbolic systems of conservation laws is found in the recent
monograph by Benzoni-Gavage and Serre [2].

Local existence of classical solutions to the Cauchy problem for symmetrizable
systems of conservation laws has been established by a variety of methods, ultimately
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relying on the hierarchy of “energy” estimates derived by differentiating the system
with respect to the spatial variables.

The earliest, and still most popular, approach, expounded in Benzoni-Gavage
and Serre [2], constructs solutions to (5.1.1) by an iteration process on the linearized
systems (5.1.7). It was originated by Schauder [1], in the context of the quasilinear
second-order wave equation, and has attained its present general form through the
contributions of several authors, in particular Friedrichs [2], Gårding [1] and Majda
[3]. Godunov [3], Makino, Ukai and Kawashima [1], Chemin [1], Lax [1], M.E.
Taylor [1,2] and Métivier [1] have used symmetrizers other than the Hessian of a
convex entropy, or symbolic symmetrizers.

An alternative way of establishing Theorem 5.1.1, by Kato [1], is based on
the theory of abstract evolution equations. The method of vanishing viscosity was
adopted here because it also applies to the cases where the entropy is convex only
in the direction of the involution cone (Theorem 5.4.4) or it is merely polyconvex
(Theorem 5.5.3).

The discussion of the effects of damping, culminating in Theorem 5.2.1, has been
adapted from Hanouzet and Natalini [1] and Yong [6]. See also Yang, Zhu and Zhao
[3], and Bianchini, Hanouzet and Natalini [1]. For an application to the system of
gas dynamics with damping induced by energy radiation, see Rohde and Yong [1,2].
For the effect of damping on the long time behavior of solutions, see Ruggeri and
Serre [1].

The setting of the general relaxation framework, in Section 5.2, has been taken
from Chen, Levermore and Liu [1]. The connection between relaxation and diffusion
was first recognized in the kinetic theory of gases, where it is effected by means of
the Chapman-Enskog expansion (e.g. Cercignani [1]). Chapman-Enskog type expan-
sions have also been employed in order to relate classes of hyperbolic balance laws
(5.2.1) with parabolic systems of the form (4.6.1); see Kawashima and Yong [1,2].

There is voluminous literature on various aspects of relaxation theory. Surveys
and extensive bibliography are found in Natalini [3] and Yong [4]. Relevant refer-
ences include Tai-Ping Liu [21], Nishibata and Yu [1], Wang and Xin [1], Donatelli
and Marcati [1], Hsiao and Pan [1], Shen, Tveito and Winther [1], Yong [2,3,5], Yang
and Zhu [1], Yang, Zhu and Zhao [3], Liu and Yong [1], Natalini and Terracina [1],
Xin and Xu [1], DiFrancesco and Lattanzio [1], Fan and Härterich [1], Fan and Luo
[1], Bedjaoui, Klingenberg and LeFloch [1], Berthelin and Bouchut [1], Junca and
Rascle [1], Tadmor and Tang [2], and Lattanzio and Tzavaras [1]. In particular, the
system (5.2.18) with p(u) = a2u, proposed by Jin and Xin [1], has served widely as
a vehicle for understanding and explaining the features of relaxation. We will visit
the theory of this system in Section 16.5, and the reader may find the relevant refer-
ences in Section 16.9. Baudin, Coquel and Tran [1] propose a variant of the above
relaxation scheme, which bears a curious relationship to the one-dimensional Born-
Infeld system; see Serre [11]. We will also come across relaxation in Section 6.6,
with references in Section 6.11.

The intimate relation between relaxation and diffusion also manifests itself in
the large time behavior of solutions to hyperbolic systems with “frictional” damping
and in particular in the simple system governing the isentropic flow of a gas through
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a porous medium; see Hsiao and Liu [1], Tai-Ping Liu [25], Serre and Xiao [1],
Hsiao and Luo [1], Luo and Yang [1], Nishihara and Yang [1], Hsiao and Pan [2,3],
Hsiao, Li and Pan [1], Hsiao and Li [1,2], Nishihara, Wang and Yang [1,2,3], Marcati
and Mei [1], He and Li [1], Liu and Natalini [1], Marcati and Pan [1], Marcati and
Nishihara [1], Pan [1,2], Li and Saxton [1], Huang and Pan [1,2], Lattanzio and
Rubino [1], Huang, Marcati and Pan [1], and Dafermos and Pan [1].

Out of a huge literature on nonhyperbolic systems that nevertheless exhibit be-
havior similar to that of hyperbolic systems with damping, here is a small repre-
sentative sample: For the Euler-Poisson system, see Poupaud, Rascle and Vila [1],
Dehua Wang [1,3], Wang and Chen [1], Guo [1], Engelberg, Liu and Tadmor [1], Li,
Markowich and Mei [1], Feldman, Ha and Slemrod [1], Jang [1], Chae and Tadmor
[1], and Tadmor and Wei [1]. For the semiconductor equations, see the monograph
by Markowich, Ringhofer and Schmeiser [1], which contains a comprehensive list of
references; also Guo and Strauss [1]. The monographs by Lions [2] and Feireisl [1]
treat the system of equations for compressible viscoelastic fluids, in several space
dimensions, and provide an exhaustive bibliography. Of course, the literature on
the incompressible case, which includes the classical Navier-Stokes equations, is
vast. The system of magnetohydrodynamics for viscous fluids is discussed in Chen
and Wang [4,5], and Dehua Wang [4]. For the equations of radiation magnetohy-
drodynamics, see Rohde and Yong [2]. For the system of one-dimensional thermo-
viscoelasticity, see Dafermos and Hsiao [2], and Dafermos [12]. For the equations
of one-dimensional thermoelasticity, see Slemrod [1], Dafermos and Hsiao [3], and
the detailed survey article by Racke [1]. Finally, for the equations of one-dimensional
viscoelasticity, with viscosity induced by fading memory dependence, see MacCamy
[1], Dafermos and Nohel [1], Dafermos [15], and the monograph by Renardy, Hrusa
and Nohel [1].

The effect of dispersion in delaying, or even preventing outright, the break-
down of classical solutions for systems satisfying the null condition is discussed
in Christodoulou [1], Klainerman [1], Klainerman and Sideris [1], Sideris [2,3,4],
Agemi [1], and Chae and Huh [1]. See also the monograph by Ta-tsien Li [1].

The proof of Theorem 5.3.1 combines ideas of DiPerna [7] and Dafermos [9,10].
This approach even applies in certain cases where the solution Ū is weak; see
Gui-Qiang Chen [7], Chen and Frid [7], Gui-Qiang Chen and Yachun Li [1,2], and
Gui-Qiang Chen and Jun Chen [1]. For an application in establishing the stability
of rotating self-gravitating fluid masses, see Luo and Smoller [1,2]. A connection
between relative entropy and relaxation is established by Tzavaras [7].

Hyperbolic systems of conservation laws with involutions were discussed by
Boillat [4] and Dafermos [14]. In particular, Boillat [4] considers sufficient condi-
tions that are more general than (5.4.2) and presents examples arising in general rel-
ativity. The analysis in Section 5.4 is intimately related to the theory of compensated
compactness, as formalized by Murat and Tartar; see Tartar [1,2]. In that connection,
“involution cone” corresponds to “characteristic cone.” Theorem 5.4.4 originally ap-
peared in the first edition of this book; however, typical examples, such as the system
(3.3.19) of balance laws of (isentropic) elastodynamics, had been studied earlier, for
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example by Hughes, Kato and Marsden [1] and by Dafermos and Hrusa [1]. Theorem
5.4.5 is taken from Dafermos [24].

The notion of quasiconvexity, introduced by Definition 5.4.6, is a generalization
of quasiconvexity in the sense of Morrey [1], due to Dacorogna [1]. For a detailed
study and proof of Theorem 5.4.7, see Müller and Fonseca [1].

Section 5.5 follows Dafermos [27], which improves upon the treatment of this
topic in earlier editions of the book. The concept (though not the name) of a contin-
gent entropy is due to Serre [22]. The notion of polyconvexity in elastostatics was
introduced by Ball [1], as a condition rendering the internal energy function weakly
lower semicontinuous. It is shown there that polyconvexity implies quasiconvexity
and, in turn, quasiconvexity implies rank-one convexity of the strain energy function.
The question of whether, conversely, rank-one convexity generally implies quasicon-
vexity was settled, in the negative, by Šverak [1].

It is from P.G. LeFloch that the author originally heard the idea of extending the
system of conservation laws in elastodynamics by appending conservation laws for
the invariants of the stretch tensor. Explicit extensions were first published by Qin
[1] and by Demoulini, Stuart and Tzavaras [2]. See also Lattanzio and Tzavaras [1].
Brenier [2] presents two distinct extensions of the equations of electrodynamics, for
the Born-Infeld constitutive relations, including the one recorded here, and discusses
its asymptotics in various regimes. This investigation continues in Brenier [4] and
Brenier and Yong [1]. See also Neves and Serre [1]. Serre [22] devised the proper
extension in electrodynamics, under general constitutive relations, by exploiting the
contingent entropy-entropy flux pair (3.3.76).

A thorough discussion of initial-boundary value problems, including the details
on the material sketched in Section 5.6, is found in Benzoni-Gavage and Serre [2].
See also the survey article by Higdon [1]. For perspectives on stability issues see
Benzoni-Gavage, Rousset, Serre and Zumbrun [1]. The vanishing viscosity approach
and the related questions on the nature and stability of resulting boundary layers have
been actively investigated in recent years; see Kreiss [1], Benabdallah and Serre [1],
Gisclon and Serre [1], Gisclon [1], Grenier and Guès [1], Kreiss and Kreiss [1], Xin
[6], Serre and Zumbrun [1], Serre [14, 17, 24], Joseph and LeFloch [1,2,3], Rousset
[1,2,3], Métivier and Zumbrun [1,2], and Guès, Métivier, Williams and Zumbrun
[5,6].
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