
Chapter 2

The Probability Space of
Brownian Motion

2.1 Introduction

According to Einstein’s description, the Brownian motion can be defined by the
following two properties: first, it has continuous trajectories (sample paths) and
second, the increments of the paths in disjoint time intervals are independent zero
mean Gaussian random variables with variance proportional to the duration of the
time interval (it is assumed, for definiteness, that the possible trajectories of a Brow-
nian particle start at the origin). These properties have far-reaching implications
about the analytic properties of the Brownian trajectories. It can be shown, for ex-
ample (see Theorem 2.4.1), that these trajectories are not differentiable at any point
with probability 1 [198]. That is, the velocity process of the Brownian motion can-
not be defined as a real-valued function, although it can be defined as a distribution
(generalized function) [152]. Langevin’s construction does not resolve this diffi-
culty, because it gives rise to a velocity process that is not differentiable so that the
acceleration process, Ξ(t) in eq. (1.24), cannot be defined.

One might guess that in order to overcome this difficulty in Langevin’s equation
all differential equations could be converted into integral equations so that the equa-
tions contain only well defined velocities. This approach, however, fails even in the
simplest differential equations that contain the process Ξ(t) (which in one dimen-
sion is denoted Ξ(t)). For example, if we assume that ∆w(t) ≡

∫ t+∆t

t
Ξ(s) ds ∼

N (0,∆t) and construct the solution of the initial value problem

ẋ = xΞ(t), x(0) =x0 > 0 (2.1)

by the Euler method

x∆t(t+ ∆t)− x∆t(t) = x∆t(t)∆w(t), x∆t(0) = x0 > 0, (2.2)
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the limit x(t) = lim∆t→0 x∆t(t) is not the function

x(t) = x0 exp


t∫

0

Ξ(s) ds

 .

It is shown below that the solution is

x(t) = x0 exp


t∫

0

Ξ(s) ds− 1
2
t

 .

It is evident from this example that differential equations that involve the Brownian
motion do not obey the rules of the differential and integral calculus.

A similar phenomenon manifests itself in other numerical schemes. Consider,
for example, three different numerical schemes for integrating eq. (2.1) (or rather
(2.2)), an explicit Euler, semi implicit, and implicit schemes. More specifically, con-
sider the one-dimensional version of eq. (2.2) with ∆w(t) ∼ N (0,∆t). Discretiz-
ing time by setting tj = j∆t for j = 0, 1, 2, . . . , the random increments ∆w(tj) =
w(tj+1) − w(tj) are simulated by ∆w(tj) = nj

√
∆t, where nj ∼ N (0, 1) are

independent (zero mean standard Gaussian random numbers taken from the ran-
dom number generator). The explicit Euler scheme (2.2) is written as xex(tj+1) =
xex(tj) + xex(tj)nj

√
∆t, with xex(0) = x0 > 0, the semi implicit scheme is

xsi(tj+1) = xsi(tj) + 1
2 [xsi(tj) + xsi(tj+1)]nj

√
∆t, with xsi(0) = x0 > 0, and

the implicit scheme is xim(tj+1) = xim(tj) + xim(tj+1)nj
√

∆t, with xim(0) =
x0 > 0. In the limit ∆t → 0, tj → t the numerical solutions converge (in proba-
bility) to the three different limits

lim
∆t→0, tj→t

xex(tj) =x0exp


t∫

0

Ξ(s) ds− 1
2
t



lim
∆t→0, tj→t

xsi(tj) =x0exp


t∫

0

Ξ(s) ds



lim
∆t→0, tj→t

xim(tj) =x0exp


t∫

0

Ξ(s) ds+
1
2
t

 .

These examples indicate that naïve applications of elementary analysis and prob-
ability theory to the simulation of Brownian motion may lead to conflicting results.
The study of the trajectories of the Brownian motion requires a minimal degree of
mathematical rigor in the definitions and constructions of the probability space and
the probability measure for the Brownian trajectories in order to gain some insight



2. The Probability Space of Brownian Motion 27

into stochastic dynamics. Thus Section 2.2 contains a smattering of basic measure
theory that is necessary for the required mathematical insight.

In this chapter the mathematical Brownian motion is defined axiomatically by
the properties of the physical Brownian motion as described in Chapter 1. Two con-
structions of the mathematical Brownian motion are presented, the Paley–Wiener
Fourier series expansion and Lévy’s method of refinements of piecewise linear ap-
proximations [150]. Some analytical properties of the Brownian trajectories are
derived from the definition.

2.2 The space of Brownian trajectories

A continuous-time random process (or stochastic process) x(t, ω) : R+ × Ω → R
is a function of two variables, a real variable t, usually interpreted as time, and ω in a
probability space (or sample space) Ω, in which events are defined. More generally,
the random process x(t, ω) can take values in a set X , called the state space, such

as the real line R, or the Euclidean space Rd
, or any other set. When t is interpreted

as time, we write x(t, ω) : R+ ×Ω → X . For each ω ∈ Ω the stochastic process is
a function of t, called a trajectory.

We assume henceforth that the state space of a stochastic process x(t, ω) is

X = Rd
and its trajectories are continuous functions; that is, for fixed ω ∈ Ω the

trajectories are continuous curves in Rd
. To assign probability to events connected

to trajectories, it is necessary to describe the probability space Ω. We begin with
the description of the probability space and the Einstein-Langevin requirement that
the trajectories of the Brownian motion be continuous. Thus, we define events in a
probability space for the Brownian motion in terms of continuous functions of time.
We identify all possible paths of the Brownian motion as all continuous functions.
Each continuous function is an elementary event in this space. Physically, this event
can represent the path of a microscopic particle in solution. The path, and thus
the event in the probability space, is the outcome of the experiment of continuous
recording of the path of a particle diffusing according to the Einstein-Langevin de-
scription, namely, without jumps. If jumps were found experimentally, a different
theory might be needed, depending on the properties of the paths, for example, as
is the case for the paths of the Poisson jump process [199, p. 290], [116, p. 22,
Example 2]. In many cases, we consider sets of elementary events, which are often
called “events”, for short.

We hardly ever consider elementary events, because their probability is zero.
This, for example is the case of turning a roulette wheel with a needle pointing to a
single point. The outcome of each spin is a single point or number (an elementary
event). Each point must have probability zero, because in an honest roulette wheel
all points are equally likely and there are an infinite number of them on the wheel.
Of course, for every spin there is an outcome, so that events of probability zero do
occur. The roulette wheel is partitioned into a finite number of intervals of finite
lengths, each containing an infinite number of points (elementary events), because
we want a finite nonzero estimate of the probability. Every time the roulette wheel
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is spun the needle comes to rest in only one interval, which is the outcome of the
game or experiment. This outcome is called “an event”, which is a composite event
consisting of uncountably many elementary events, whose individual probabilities
are zero; however, the probability of the outcome, the composite event, is a finite
nonzero number.

In the same vein, a Brownian elementary event will have to be assigned proba-
bility zero. A typical Brownian event that corresponds to an experiment consists of
(uncountably many) elementary events. It may be, for example, the set of all con-
tinuous functions that satisfy some given criteria. Thus, in an experiment one might
record the ensemble of all Brownian paths that are found in a given region (under a
microscope) at a given time. We formally define Brownian elementary events and
events as follows. Denote by R and R+ the real numbers and the nonnegative real
numbers, respectively, then

Definition 2.2.1 (The space of elementary events). The space of elementary events
for the Brownian motion is the set of all continuous real functions,

Ω = {ω(t) : R+ 7→ R}.

Thus each continuous function is an elementary event. To define Brownian
events that are more complicated than elementary events; that is, events that consist
of uncountably many Brownian trajectories (each of which is an elementary event),
we define first events called “cylinders”.

Definition 2.2.2 (Cylinder sets). A cylinder set of Brownian trajectories is defined
by times 0 ≤ t1 < t2 < · · · < tn and real intervals Ik = (ak, bk), (k = 1, 2, . . . , n)
as

C(t1, . . . , tn; I1, . . . , In) = {ω(t) ∈ Ω |ω(tk) ∈ Ik, for all 1 ≤ k ≤ n}. (2.3)

Obviously, for any 0 ≤ t1 < t and any interval I1,

C(t;R) = Ω, C(t1, t; I1,R) = C(t1; I1). (2.4)

Thus, for the the cylinderC(t1, t2, . . . , tn; I1, I2, . . . , In) not to contain a trajectory
ω(t) it suffices that for at least one of the times tk the value of ω(tk) is not in the
interval Ik, for example, the dotted trajectory in Figure 2.1 belongs to the cylinder
C(126, [−0.1, 0.5]), but neither toC(132, [−0.4, 0.1]) nor toC(136, [−0.2,−0.10]).
Thus it does not belong to the cylinder C(126, 132, [−0.1, 0.5], [−0.4, 0.1]), which
is their intersection.

For each real x, we set Ix = (−∞, x]. Then the cylinder C(t; Ix) is the set
of all continuous functions ω(·) such that ω(t) ≤ x. It is the set of all Brownian
trajectories that would be observed at time t to be below the level x. It is important
to note that C(t; Ix) consists of entire trajectories, not merely of their segments
observed below the level x at time t.

The cylinder C(t1, t2; I1, I2) consists of all continuous functions ω(·) such that
a1 < ω(t1) < b1 and a2 < ω(t2) < b2. That is, C(t1, t2; I1, I2) consists of all
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Figure 2.1. Four Brownian trajectories sampled at discrete times. Three cylinders
are marked by vertical bars. The trajectories were sampled according to the scheme
(2.21).

Brownian paths that are observed at time t1 to be between the levels a1 and b1 and
at time t2 to be between the levels a2 and b2 (see Figure 2.1).

Definition 2.2.3 (Brownian events). Brownian events are all sets of Brownian tra-
jectories that can be obtained from cylinders by the operations of countable unions,
intersections, and the operation of complement.

These sets form the space of Brownian events, denoted F . The space F is
characterized by the property that ifAi are subsets of F (i = 1, 2, . . . ); that is, ifAi
are Brownian events, then their (countable) union,

⋃∞
i=1Ai, is also an event and so

are the complements Aci = Ω − Ai. This space of Brownian events is an example
of a σ-algebra.

Definition 2.2.4 (σ-algebra). A σ-algebra in Ω is a nonempty collection F of sub-
sets of Ω such that

1. Ω ∈ F .

2. If A ∈ F then Ac = Ω−A ∈ F .

3. If Ai ∈ F , (i = 1, 2, . . .), then
⋃∞
i=1Ai ∈ F .

In this notation the designation σ stands for the word “countable”. If only a
finite number of unions, intersections, and complement of events are considered, we
refer to the resulting set of events as an “algebra”. The elements (events) of F are
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called measurable sets. Examples exist of nonmeasurable sets [183], [58]. Sigma-
algebras are introduced so we can easily keep track of past, present, and future in
our study of Brownian events. Causality must be included in our description of the
evolution of Brownian trajectories; that is, events occurring after time t do not affect
events up to time t. There are noncausal problems in probability theory, such as the
problem of estimating a given random signal in a given time interval, given its noisy
measurements in the past and in the future (e.g., the entire signal is recorded on a
CD). This is the smoothing problem (see [215] for some discussion).

The pair (Ω,F) is called probability space. The probability measure is defined
on events. In the process of constructing a probability model of the Brownian mo-
tion (or any other process) both the space of elementary events and the relevant
σ-algebra of events have to be specified. There is more than one way to specify
structures of events (algebras or σ-algebras) in the same space of elementary events
and different pairs of spaces and σ-algebras of events are considered different prob-
ability spaces, as described below. For example, if the roulette wheel is partitioned
into arcs in two different ways so that one partition cannot be obtained from the
other by the operations of union, intersection, and complement, then the different
partitions form different algebras in the space of elementary events for the exper-
iment of rotating the roulette wheel. Thus, partitioning the wheel into two equal
arcs or into three equal arcs results in two different algebras of events. In general,
each σ-algebra in Ω specifies a different way of selecting the elementary events to
form composite events that correspond to different ways of handling the same raw
experimental data, when the data are the elementary events.

Definition 2.2.5 (Brownian filtration). The σ-algebra Ft is defined by cylinder
sets confined to times 0 ≤ ti < t, for some fixed t. Obviously, Fs ⊂ Ft ⊂ F if
0 ≤ s < t < ∞. The family of σ−algebras Ft for t ≥ 0 is called the Brownian
filtration and is said to be generated by the Brownian events up to time t.

Note that the elementary events of the Brownian filtration Ft are continuous
functions in the entire time range, not just the initial segments in the time interval
[0, t]. However, only the initial segments of the Brownian paths in Ft that occur by
time t are observed and so can be used to define the filtration. The pairs (Ω,Ft) are
different probability spaces for different values of t.

Up to now, we have considered only elementary events and sets of elementary
events that were referred to as “events”. The events we have defined mathematically
have to be assigned probabilities, to represent some measure of our uncertainty
about the outcome of a given experiment [53]. The assigned probabilities form a
mathematical model for the statistical processing of collected data. This was the
case for the recordings of paths of Brownian particles before mathematical models
were constructed by Einstein, Smoluchowski, and Langevin.

Definition 2.2.6 (Random variables in (Ω,F)). A random variableX(ω) in (Ω,F)
is a real function X(·) : Ω → R such that {ω ∈ Ω |X(ω) ≤ x} ∈ F for all x ∈ R.

That is, {ω ∈ Ω |X(ω) ≤ x} is a Brownian event that can be expressed by
countable operations of union, intersection, and complement of cylinders. In math-
ematical terminology a random variable in Ω is a real F-measurable function.
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Example 2.1 (Random functions). For each t ≥ 0 consider the random variable
Xt(ω) = ω(t) in Ω. This random variable is the outcome of the experiment of
sampling the position of a Brownian particle (trajectory) at a fixed time t. Thus
Xt(ω) takes different values on different trajectories. Obviously, {ω ∈ Ω |Xt(ω) ≤
x} = {ω ∈ Ω |ω(t) ≤ x} = C(t; Ix) ∈ F , so that Xt(ω) is a random variable in
(Ω,F). 2

Example 2.2 (Average velocity). Although, as mentioned in Section 2.1, the deriva-
tive of the Brownian path does not exist as a real-valued function, the average ve-
locity process of a Brownian trajectory ω in the time interval [t, t + ∆t] can be
defined as V̄t(ω) = [ω(t + ∆t) − ω(t)]/∆t. The time averaging here is not ex-
pectation, because it is defined separately on each trajectory, therefore V̄t(ω) is a
random variable, which takes different values on different trajectories. To see that
V̄t(ω) is a random variable in (Ω,F), we have to show that for every real number v
the event {ω ∈ Ω | V̄t(ω) ≤ v} can be expressed by countable operations of union,
intersection, and complement of cylinders. To do so, we assume that ∆t > 0 and
write

{ω ∈ Ω | V̄t(ω) ≤ v} = {ω ∈ Ω |ω(t+ ∆t)− ω(t) ≤ v∆t} ≡ A.

We denote the set of rational numbers by Q and the set of positive rational numbers
by Q+

and define in F the set of paths

B ≡
⋂

ε∈Q+

⋃
y∈Q

C(t, t+ ∆t; [y − ε, y + ε], (−∞, v∆t+ y + ε]).

The set B is simply the set of paths in F such that for every rational ε > 0, there
exists a rational y such that |w(t) − y| ≤ ε and w(t + ∆t) ≤ y + v∆t + ε.
Showing that A = B proves that V̄t(ω) is a random variable in Ω (i.e., V̄t(ω) is
F-measurable).

To show that A = B, we show that A ⊂ B and B ⊂ A. If ω ∈ A then

ω(t+ ∆t)− ω(t) ≤ v∆t (2.5)

and as is well-known from the differential calculus, for every number ω(t) and every
ε ∈ Q+

there exists y ∈ Q such that

y − ε ≤ ω(t) ≤ y + ε. (2.6)

It follows from eqs. (2.5) and (2.6) that both inequalities

y − ε ≤ ω(t) ≤ y + ε, ω(t+ ∆t) ≤ v∆t+ y + ε (2.7)

hold. They mean that for every ε ∈ Q+
there exists y ∈ Q such that

ω ∈ C(t, t+ ∆t; [y − ε, y + ε], (−∞, v∆t+ y + ε]).

This in turn means that ω ∈ B. Hence A ⊂ B.
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Conversely, if ω ∈ B, then for every ε ∈ Q+
there exists y ∈ Q such that

ω ∈ C(t, t + ∆t; [y − ε, y + ε], (−∞, v∆t + y + ε]), which implies that the
inequalities (2.7) hold and consequently ω(t + ∆t) − ω(t) ≤ v∆t + 2ε for every
ε ∈ Q+

. It follows that ω(t + ∆t) − ω(t) ≤ v∆t, so that ω ∈ A, which implies
that B ⊂ A, as claimed above. 2

Example 2.3 (Integrals of random functions). A similar argument can be used to
show, for example, that X(ω) =

∫ T
0
ω(t) dt is a random variable in Ω, measurable

with respect to FT . 2

Definition 2.2.7 (Markov times). A nonnegative random variable τ(ω), defined on
Ω, is called a stopping time or a Markov time relative to the filtration Ft for t ≥ 0
if

{ω ∈ Ω | τ(ω) ≤ t} ∈ Ft for all t ≥ 0.

Example 2.4 (First passage times). The first passage time (FPT) of a Brownian
trajectory through a given point is a random variable in Ω and a stopping time.
Indeed, assume that ω(0) < y and set τy(ω) = inf{t ≥ 0 |ω(t) > y}; that is,
τy(ω) is the first passage time of ω(t) through the value y. To show that τy is Ft-
measurable for every t > 0, we proceed in an analogous manner to that above. We
denote by Qt the set of all positive rational numbers that do not exceed t. Obviously,
Qt is a countable set. The event {ω ∈ Ω | τy(ω) ≤ t} consists of all Brownian
trajectories ω that go above the level y at some time prior to t. Thus, due to the
continuity of the Brownian paths,

{ω ∈ Ω | τy(ω) ≤ t} =
⋃

r∈Qt

{ω ∈ Ω |ω(r) ≥ y},

which is a countable union of the cylinders C(r, [y,∞)) for r ≤ t and is thus in Ft.
2

Example 2.5 (Last passage time). On the other hand, the last passage time (LPT)
of x(t, ω) to a given point y before time T , denoted LPT (y, T, ω), is not a stopping
time, because at time t it is not a Brownian event that depends on the Brownian
trajectories up to time t. Rather, it depends on events after time t, because the last
passage may occur after that; that is,

{ω ∈ Ω |LPT (y, T, ω) ≤ t} 6∈ Ft for all 0 ≤ t < T.

Although LPT (y, T, ω) is a random variable in (Ω,F), it is not a random variable
in (Ω,Ft) for t < T . Last passage times occur in practical problems. For example,
if a Brownian particle is trapped in a finite potential well and escapes at a random
time, the time between the last visit to the bottom of the well and the first passage
time through the top of the well is a LPT. 2

Example 2.6 (Indicators). For any setA ∈ Ω the indicator function ofA is defined
by

1A(ω) =
{

1 if ω ∈ A
0 otherwise.

(2.8)
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For all A ∈ F the function 1A(ω) is a random variable in (Ω,F). Indeed, if x < 1,
then {ω ∈ Ω |1A(ω) ≤ x} = Ω − A = Ac and if x ≥ 1, then {ω ∈ Ω |1A(ω) ≤
x} = Ω so that in either case the set {ω ∈ Ω |1A(ω) ≤ x} is in F . Thus, if A is not
a measurable set, its indicator function 1A(ω) is a nonmeasurable function so that
1A(ω) is not a random variable. 2

Exercise 2.1 (Positive random variables). For a random variable X(ω) define the
functions X+(ω) = max{X(ω), 0} and X−(ω) = min{X(ω), 0}. Show that
X+(ω) and X−(ω) are random variables (i.e., they are measurable functions). 2

Measurements recorded sequentially in time are often represented graphically
as points in the d-dimensional real Euclidean space Rd

(d = 1, 2, . . . ,). When the
points are sampled from a curve in Rd

, they form a path. For example, recordings
of trajectories of Brownian particles in R3

reveal that they have continuous paths,
however, repeated recordings yield different paths that look completely erratic and
random. When tracking charged Brownian particles (e.g., ions in solution) in the
presence of an external electrostatic field, the paths remain continuous, erratic, and
random; however, they tend to look different from those of uncharged Brownian
particles.

Definition 2.2.8 (Stochastic processes in (Ω,F)). A function x(t, ω) : R+×Ω 7→
R is called a stochastic process in (Ω,F) with continuous trajectories if

(i) x(t, ω) is a continuous function of t for every ω ∈ Ω,

(ii) for every fixed t ≥ 0 the function x(t, ω) : Ω 7→ R is a random variable in Ω.

The variable ω in the notation for a stochastic process x(t, ω) denotes the de-
pendence of the value the process takes at any given time t on the elementary event
ω; that is, on the particular realization of the Brownian path ω. Point (ii) of the
definition means that the sets {ω ∈ Ω |x(t, ω) ≤ y} are Brownian events for each
t ≥ 0 and y ∈ R; that is, they belong to F . When they do, we say that the process
x(t, ω) is measurable with respect to F or simply F-measurable.

Definition 2.2.9 (Adapted processes). The process x(t, ω) is said to be adapted
to the Brownian filtration Ft if {ω ∈ Ω |x(t, ω) ≤ y} ∈ Ft for every t ≥ 0 and
y ∈ R. In that case we also say that x(t, ω) is Ft-measurable.

This means that the events {ω ∈ Ω |x(t, ω) ≤ y} can be expressed in terms of
Brownian events up to time t. Thus an adapted process at time t does not depend on
the future behavior of the Brownian trajectories from time t on: an adapted process
is nonanticipatory. For example, for any deterministic integrable function f(t) the
process x(t, ω), whose trajectories are x(t, ω) =

∫ t
0
f(s)ω(s) ds, is adapted to the

Brownian filtration. An adapted process, such as x(t, ω) above, can be viewed as
the output of a causal filter operating on Brownian trajectories (which may represent
a random signal).

Example 2.7 (First passage times). The first passage time (FPT) τy(ω) of an
adapted continuous process x(t, ω) to a given point y is a Markov time relative to
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the Brownian filtration because it depends on the Brownian trajectories ω(t) up to
time t. The relation of Markov times to Markov processes is discussed later. Thus,
for y > 0 the random time τy(ω) = inf{t ≥ 0 |x(t, ω) > y} is the first passage
time of x(t, ω) through the value y. To see that τy is a Markov time, we proceed
in a manner similar to that of Example 2.4 above. The event {ω ∈ Ω | τy(ω) > t}
consists of all Brownian trajectories ω for which x(t, ω) stays below the level y for
all times prior to t. Thus, due to the continuity of the paths of x(t, ω),

{ω ∈ Ω | τy(ω) ≤ t} =
⋃

r∈Q
t

{ω ∈ Ω |x(r, ω) ≥ y},

which is in Ft because x(t, ω) is an adapted process. 2

Example 2.8 (Last passage time). The last passage time of x(t, ω) to a given
point y before time T , denoted LPT (y, T, ω), is not a Markov time relative to
the Brownian filtration, because at time t it is not a Brownian event that depends
on the Brownian trajectories up to time t. As mentioned in Example 2.5, it de-
pends on events after time t, because the last passage may occur after that; that is,
{ω ∈ Ω |LPT (y, T, ω) ≤ t} 6∈ Ft for all 0 ≤ t < T . 2

Example 2.9 (First exit time). The first exit time from an interval is a Markov time
for the Brownian motion. It is defined for a < 0 < b by

τ[a,b] = inf {t ≥ 0 |w(t) < a or w(t) > b} .

2

Exercise 2.2 (First exit time: continuation). Prove the claim of Example 2.9:
show that τ[a,b] is a Markov time for the Brownian motion. 2

There are two slightly different concepts of a signed measure, depending on
whether one allows it to take infinite values (see, e.g., Wikipedia).

Definition 2.2.10 (Signed measure). A signed real-valued measure in the space
(Ω,F) is a function

µ : F → R (2.9)

such that for any sequence of disjoint set {An}∞n=1 in F ,

µ

{ ∞⋃
n=1

An

}
=

∞∑
n=1

µ{An}.

Definition 2.2.11 (Real measure). If µ(A) ≥ 0 for all A ∈ F , we say that it is a
measure. The triple (Ω,F , µ) is called a measure space.

Definition 2.2.12 (Null sets). A measurable set A such that µ(A) = 0 is a µ-null
set. Any property that holds for all ω ∈ Ω, except on a µ-null set is said to hold
µ-almost everywhere (µ-a.e.) or for µ-almost all ω ∈ Ω.
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We assume that all subsets of null sets are measurable (in measure theory this
means that the measure space is complete). A measure is a monotone set function in
the sense that if A and B are measurable sets such that A ⊂ B, then µ(A) ≤ µ(B).
If µ(Ω) <∞, we say that µ(A) is a finite measure. If Ω is a countable union of sets
of finite measure, we say that Ω is a σ-finite measure.

Definition 2.2.13 (Integration with respect to a measure). A measure µ(A) de-
fines an integral of a nonnegative measurable function f(ω) by∫

Ω

f(ω) dµ(ω) = lim
h→0

lim
N→∞

N∑
n=0

nhµ{ω : nh ≤ f(ω) ≤ (n+ 1)h}, (2.10)

whenever the limit exists. In this case, we say that f(ω) is an integrable function.

For every measurable function f(ω) the nonnegative functions f+(ω) and f−(ω)
are nonnegative measurable functions and f(ω) = f+(ω) − f−(ω). We say that
f(ω) is an integrable function if both f+(ω) and f−(ω) are integrable and∫

Ω

f(ω) dµ(ω) =
∫
Ω

f+(ω) dµ(ω)−
∫
Ω

f−(ω) dµ(ω).

The function f(ω) is integrable if and only if |f(ω)| is integrable, because |f(ω)| =
f+(ω)+f−(ω). For any setA ∈ F the indicator function 1A(ω) (see Example 2.4)
is integrable and

∫
1A(ω) dµ(ω) = µ(A). We define an integral over a measurable

set A by
∫
A
f(ω) dµ(ω) =

∫
Ω

1A(ω)f(ω) dµ(ω). If
∫
A
f(ω) dµ(ω) exists, we say

that f(ω) is integrable in A. In that case f(ω) is integrable in every measurable
subset ofA. If µ(A) = 0 then

∫
A
f(ω) dµ(ω) = 0. If f(ω) is an integrable function

with respect to a measure µ(A), then the integral

ν(A) =
∫
A

f(ω) dµ(ω) (2.11)

defines ν(A) as a signed measure in F . Obviously, if µ(A) = 0 then ν(A) = 0.

Definition 2.2.14 (Differentiation of measures). If the measures ν and µ satisfy
eq. (2.11), the function f(ω) is the Radon–Nikodym derivative of the measure ν
with respect to the measure µ at the point ω and is denoted

f(ω) =
dν(ω)
dµ(ω)

. (2.12)

Definition 2.2.15 (Absolute continuity). A signed measure ν is absolutely contin-
uous with respect to the measure µ if µ-null sets are ν-null sets.

Thus the measure ν in (2.11) is absolutely continuous with respect to µ. If two
measures are absolutely continuous with respect to each other, they are said to be
equivalent.
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Theorem 2.2.1 (Radon–Nikodym [58]). If ν is a finite signed measure, absolutely
continuous with respect to a σ-finite measure µ, then there exists a µ integrable
function f(ω), uniquely defined up to µ-null sets, such that (2.11) holds for all
A ∈ F . For a constant c the inequality ν(A) ≥ cµ(A) for all A ∈ F implies
f(ω) ≥ c for µ-almost all ω ∈ Ω.

The function f(ω) in the theorem is called the Radon–Nikodym derivative and
is denoted as in (2.12).

Definition 2.2.16 (Probability measure). A positive measure Pr such that Pr{Ω} =
1 is called a probability measure and the probability of an event A ∈ F is denoted
Pr{A}.

Thus the probability of an event (a measurable set) is a number between 0 and 1.
An event whose probability is 1 is called a sure event. The event Ω is a sure event.
There are many ways for assigning probabilities to events, depending on the degree
of uncertainty we have about a given event; different persons may assign different
probabilities to the same events. We may think of the probability of an event as a
measure of our uncertainty about it [53]. Recall that a measurable function on a
probability space (Ω,F ,Pr) is called a random variable, denoted X(ω).

Definition 2.2.17 (Expectations). Integrals of random variables with respect to the
probability measure Pr{A} are called expectations and are denoted

EX(ω) =
∫
Ω

X(ω) dPr{ω}. (2.13)

For any set A in F , we define

E{X,A} =
∫
A

X(ω) dPr(ω)

=

∞∫
−∞

xPr{ω ∈ A : x ≤ X(ω) ≤ x+ dx}. (2.14)

Applications of integration with respect to Pr are given in the next section.

Definition 2.2.18 (PDF and pdf). For an integrable random variable X(ω) the
function

FX(x) = Pr{ω : X(ω) ≤ x}
is called the probability distribution function (PDF) of X(ω). The function (or gen-
eralized function [152])

fX(x) =
d

dx
FX(x)

is called the probability density function (pdf) of X(ω). The expectation EX(ω)
can be written as

EX(ω) =
∫
x dFX(x) =

∫
xfX(x) dx. (2.15)
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Note that the PDF FX(x) need not be differentiable, so the pdf fX(x) need not
be a function, but rather a generalized function (a distribution).

Exercise 2.3 (Coin tossing). Construct a probability space on R, a random variable,
PDF, and pdf for the experiment of tossing a fair coin. 2

Definition 2.2.19 (Conditional expectations). For a sub σ-fieldF1 ofF and a ran-
dom variableX(ω) with finite variance onF , the conditional expectation E(X | F1)
is a random variable measurable with respect toF1 such that for every random vari-
able Y (ω) measurable with respect to F1, whose variance is finite

EX(ω)Y (ω) = E[E(X | F1)Y (ω)]. (2.16)

If we confine the functions Y (ω) to indicators of events A ∈ F1, then (2.16)
implies that E(X | F1) is a random variable that satisfies∫

A

X(ω) dPr(ω) =
∫
A

E(X | F1) dPr(ω) (2.17)

for allA ∈ F1. To determine the existence of the conditional expectation, we denote
the left-hand side of eq. (2.17) ν(A) and recall that ν(A) is a signed measure on F1.
It follows from the Radon–Nikodym theorem that the desired function is simply

E(X | F1) =
dν(ω)
dµ(ω)

. (2.18)

Definition 2.2.20 (Conditional probabilities, distributions, and densities). For
any event M ∈ F the conditional probability of M , given F1, is defined as

Pr{M | F1} = E[1M | F1].

The conditional probability distribution function (CPDF) of the random variable
X(ω), given F1, is defined as

FX|F1(x, ω) = Pr{ω : X(ω) ≤ x | F1}.

Note that for every ω the CPDF FX|F1(x, ω) is a probability distribution func-
tion. Its density,

fX|F1(x, ω) =
d

dx
FX|F1(x, ω),

is also a random function.

2.2.1 The Wiener measure of Brownian trajectories

Having constructed the set F of events for the Brownian trajectories, we proceed to
construct a probability measure of these events. The probability measure is used to
construct a mathematical theory of the Brownian motion that can describe experi-
ments.
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A probability measure Pr can be defined on Ω (i.e., on the eventsF in Ω) to con-
form with the Einstein–Langevin description of the Brownian motion. It is enough
to define the probability measure Pr{·} on cylinder sets and then to extend it to all
events in F by the elementary properties of a probability measure (see [106] for a
more detailed exposition of this topic). The following probability measure in F is
called the Wiener measure [248]. Consider the cylinder C(t; I), where t ≥ 0 and
I = (a, b) and set

Pr{C(t; I)} =
1√
2πt

b∫
a

e−x
2/2t dx. (2.19)

If 0 = t0 < t1 < t2 < · · · < tn and Ik (k = 1, 2, . . . , n) are real intervals, set

Pr{C(t1, t2, . . . , tn; I1, I2, . . . , In

=
∫
I1

∫
I2

· · ·
∫
In

n∏
k=1

dxk√
2π(tk − tk−1)

exp
{
− (xk − xk−1)2

2(tk − tk−1)

}
, (2.20)

where x0 = 0 (the extension of the Wiener measure from cylinders toF is described
in [106, 208]). The integral (2.20) is called Wiener’s discrete path integral. The
obvious features of the Wiener measure that follow from eqs. (2.4) and (2.20) are

Pr{Ω} =
1√
2πt

∞∫
−∞

e−x
2/2t dx = 1

and for t1 < t,

Pr{C(t1, t; I1,R)

=
1

2π
√

(t− t1)t1

∫
I1

∞∫
−∞

exp
{
− (x− x1)2

2(t− t1)

}
exp
{
− x2

1

2t1

}
dx dx1

=
1√
2πt1

∫
I1

exp
{
− x2

1

2t1

}
dx1 = Pr{C(t1; I1)}.

The Wiener measure (2.20) of a cylinder is the probability of sampling points of
a trajectory in the cylinder by the simulation

x(tk) = x(tk−1) + ∆w(tk), k = 1, . . . , n, (2.21)

where tk are ordered as above, and ∆w(tk) ∼ N (0, tk−tk−1) are independent nor-
mal variables. The vertices of the trajectories in Figures 2.1 and 2.2 were sampled
according to (2.21) and interpolated linearly.

The axiomatic definition of the Brownian motion, consistent with the Einstein–
Langevin theory is as follows

)}
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Definition 2.2.21 (The MBM). A real-valued stochastic process w(t, ω) defined on
R+×Ω is a mathematical Brownian motion if
(1) w(0, ω) = 0 w.p. 1
(2) w(t, ω) is almost surely a continuous function of t
(3) For every t, s ≥ 0 the increment ∆w(s, ω) = w(t+ s, ω)− w(t, ω) is indepen-
dent of Ft, and is a zero mean Gaussian random variable with variance

E |∆w(s)|2 = s. (2.22)

The mathematical Brownian motion, defined by axioms (1)–(3), and its velocity
process are mathematical idealizations of physical processes. This idealization may
lead to unexpected and counterintuitive consequences.

There are other equivalent definitions of the MBM (see Wikipedia). According
to Definition 2.2.21, the cylinders (2.3) are identical to the cylinders

C(t1, . . . , tn; I1, . . . , In) = {ω ∈ Ω |w(tk, ω) ∈ Ik, for all 1 ≤ k ≤ n}. (2.23)

To understand the conceptual difference between the definitions (2.3) and (2.23),
we note that in (2.3) the cylinder is defined directly in terms of elementary events
whereas in (2.23) the cylinder is defined in terms of a stochastic process. It is co-
incidental that such two different definitions produce the same cylinder. In Section
5.6 below cylinders are defined in terms of other stochastic processes, as in (2.23).
It should be borne in mind, however, that the extension of the Wiener measure from
cylinders to F is not straightforward [106].

The expectation (2.22) is meant in the sense of the definition (2.13). Properties
(1)–(3) are axioms that define the Brownian motion as a mathematical entity. It has
to be shown that a stochastic process satisfying these axioms actually exists. Before
showing constructions of the MBM (see Section 2.3), we can derive some of its
properties in a straightforward manner.

First, we note that by eq. (2.19) the PDF of the MBM is

Fw(x, t) = Pr{ω ∈ Ω |w(t, ω) ≤ x} = Pr{C(t, Ix)}

=
1√
2πt

x∫
−∞

e−y
2/2t dy (2.24)

and the pdf is

fw(x, t) =
∂

∂x
Fw(x, t) =

1√
2πt

e−x
2/2t. (2.25)

It is well-known (and easily verified) that fw(x, t) is the solution of the initial value
problem for the diffusion equation

∂fw(x, t)
∂t

=
1
2
∂2fw(x, t)

∂x2
, lim

t↓0
fw(x, t) = δ(x). (2.26)
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Second, we note that (1) and (2) are not contradictory, despite the fact that not all
continuous functions vanish at time t = 0. Property (1) asserts that all trajectories
of the Brownian motion that do not start at the origin are assigned probability 0.
More specifically,

Theorem 2.2.2. The Wiener measure has property (1).

Proof. The set {ω ∈ Ω |w(0, ω) = 0} is in F , because it can be represented as a
countable intersection of cylinders. Indeed, consider two sequences tk and εn that
decrease to zero and define the cylinders

C(tk; [−εn, εn]) = {ω ∈ Ω
∣∣∣ |w(tk, ω)| < εn}.

Then

{ω ∈ Ω |w(0, ω) = 0} =
∞⋂
n=1

∞⋃
m=1

∞⋂
k=m

C(tk; [−εn, εn]). (2.27)

It follows from probability theory that

Pr{ω ∈ Ω |w(0, ω) = 0

}
= Pr

{ ∞⋂
n=1

∞⋃
m=1

∞⋂
k=m

C(tk; [−εn, εn])

}

= lim
n→∞

Pr

{ ∞⋃
m=1

∞⋂
k=m

C(tk; [−εn, εn])

}

≥ lim
n→∞

lim
m→∞

Pr

{ ∞⋂
k=m

C(tk; [−εn, εn])

}
= lim

n→∞
lim
k→∞

Pr{C(tk; [−εn, εn])}. (2.28)

Now, the Wiener measure (2.20) of a cylinder C(t; [−ε, ε]) is

Pr{C(t; [−ε, ε])} =

ε∫
−ε

1√
2πt

e−x
2/2t dx =

2√
2π

ε/
√
t∫

0

e−x
2/2 dx, (2.29)

so that eqs.(2.28) and (2.29) give

Pr{ω ∈ Ω |w(0, ω) = 0} = lim
n→∞

lim
k→∞

2√
2π

εn/
√
tk∫

0

e−x
2/2 dx = 1. (2.30)

This completes the proof of the assertion (see Figure 2.2).
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Figure 2.2. Three Brownian trajectories sampled at discrete times according to the
Wiener measure Pr0{·} by the scheme (2.21).

The initial point

In view of the above, x0 = 0 in the definition (2.20) of the Wiener measure of
a cylinder means that the Brownian paths are those continuous functions that take
the value 0 at time 0. That is, the Brownian paths are conditioned on starting at
time t = 0 at the point x0 = w(0, ω) = 0. To emphasize this point, we modify the
notation of the Wiener measure to Pr0{·}. If, in eq. (2.20), this condition is replaced
with x0 = x, the above proof of Theorem 2.2.2 shows that Prx{w(0, ω) = x} = 1
under the modified Wiener measure, now denoted Prx{·},

Thus conditioning reassigns probabilities to the Brownian paths; the set of tra-
jectories {w(0, ω) = x}, which was assigned the probability 0 under the measure
Pr0{·}, is now assigned the probability 1 under the measure Prx{·}.

Similarly, replacing the condition t0 = 0 with t0 = s and setting x0 = x in eq.
(2.20) shifts the Wiener measure, now denoted Prx,s, so that

Prx,s{C(t; [a, b])} = Pr0{C(t− s; [a− x, b− x])}. (2.31)

∆w(s, ω) are independent of t. This property is stated in the form
as a  function of s, is a MBM so that the probabilities of any Brownian event of
This means that for all positive t the increment ∆w(s, ω) = w(t+ s, ω)−w(t, ω),
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(4) The increments of the MBM are stationary.
The above argument shows that equation (2.22) in property (3) of the MBM

follows from the definition of the Wiener measure.

Theorem 2.2.3. The Wiener measure has property (3) of Definition 2.2.21 (i.e., the
increment ∆w(s, ω) = w(t+s, ω)−w(t, ω) is independent of the Brownian events
Ft) and is a zero mean Gaussian variable with variance given by (2.22).

Proof. We have to show that the joint PDF of ∆w(s, ω) = w(t + s, ω) − w(t, ω)
and any event A ∈ Ft is a product of the PDF of ∆w(s, ω) and Pr{A}. The same
is true for any eventA ∈ Ft, because any cylinder C ∈ Ft is generated by cylinders
of the form C(s, Ix) = {ω ∈ Ω |w(s, ω) ≤ x} with 0 ≤ s ≤ t. It suffices therefore
to show the independence of the increment ∆w(s, ω) and w(u, ω) for all s ≥ 0 and
u ≤ t.

To show this, recall that by definition the joint PDF of w(t1, ω), w(t2, ω), and
w(t3, ω) for 0 < t1 < t2 < t3 is the Wiener measure of the cylinder C =
C(t1, t2, t3; Ix, Iy, Iz). According to the definition (2.20) of the Wiener measure,

Fw(t1),w(t2),w(t3)(x, y, z) = Pr0(C(t1, t2, t3; Ix, Iy, Iz)) (2.32)

=

x∫
−∞

dξ

y∫
−∞

dη

z∫
−∞

dζ
1√

(2π)3t1(t2 − t1)(t3 − t2)

× exp
{
− ξ2

2t1
− (η − ξ)2

2(t2 − t1)
− (ζ − η)2

2(t3 − t2)

}
.

It follows that the joint pdf of w(t1, ω), w(t2, ω), and w(t3, ω) is given by

fw(t1),w(t2),w(t3)(ξ, η, ζ) =
∂3

∂ξ∂η∂ζ
Fw(t1),w(t2),w(t3)(ξ, η, ζ)

=
1√

(2π)3t1(t2 − t1)(t3 − t2)

× exp
{
− ξ2

2t1
− (η − ξ)2

2(t2 − t1)
− (ζ − η)2

2(t3 − t2)

}
.

Now, for any x and y

Pr{ω ∈ Ω |w(t3, ω)− w(t2, ω) < x, w(t1, ω) < y} (2.33)

=

y∫
−∞

dξ

∞∫
−∞

dη

x+η∫
−∞

dζ fw(t1),w(t2),w(t3)(ξ, η, ζ)

=

y∫
−∞

dξ

∞∫
ζ−x

dη

∞∫
−∞

dζ
1√

(2π)3t1(t2 − t1)(t3 − t2)

× exp
{
− ξ2

2t1
− (η − ξ)2

2(t2 − t1)
− (ζ − η)2

2(t3 − t2)

}
.
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Substituting η = ζ − z and noting that

∞∫
−∞

1√
2π(t2 − t1)

exp
{
− (ζ − z − ξ)2

2(t2 − t1)

}
dζ = 1, (2.34)

we obtain from eq. (2.33) that

Pr{ω ∈ Ω |w(t3, ω)− w(t2, ω) < x, w(t1, ω) < y} (2.35)

=
1√
2πt1

y∫
−∞

exp
{
− ξ2

2t1

}
dξ

1√
2π(t3 − t2)

x∫
−∞

exp
{
− z2

2(t3 − t2)

}
dz

=Pr{ω ∈ Ω |w(t1, ω) < y}Pr{ω ∈ Ω |w(t3, ω)− w(t2, ω) < x}.

Equation (2.35) means that w(t3, ω) − w(t2, ω) and w(t1, ω) are independent, as
stated in property (3) of the MBM.

Next, we calculate the moments of the MBM according to the definition (2.13).
Using (2.14), we find from (2.25) that

Ew(t, ω) =

∞∫
−∞

xPr{ω ∈ Ω |x ≤ w(t, ω) ≤ x+ dx}

=

∞∫
−∞

x√
2πt

e−x
2/2t dx = 0.

Similarly, Ew2(t, ω) = (2πt)−1/2
∫∞
−∞ x2e−x

2/2t dx = t. Now, property eq.
(2.22) follows from the independence of the increments of the MBM.

We recall that the autocorrelation function of a stochastic process x(t, ω) is de-
fined as the expectation Rx(t, s) = Ex(t, ω)x(s, ω). Using the notation t ∧ s =
min{t, s}, we have the following

Theorem 2.2.4 (Property (5)). The autocorrelation function of w(t, ω) is

Ew(t, ω)w(s, ω) = t ∧ s. (2.36)

Proof. Assuming that t ≥ s ≥ 0 and using property (3), we find that

Ew(t, ω)w(s, ω) =E [w(t, ω)− w(s, ω)] [w(s, ω)− w(0, ω)] + Ew(s, ω)w(s, ω)
=s = t ∧ s.
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2.2.2 The MBM in Rd

If w1(t), w2, (t), . . . , wd(t) are independent Brownian motions, the vector process

w(t) = (w1(t), w2(t), . . . , wd(t))T

is defined as the d-dimensional Brownian motion. The probability space Ω for the
d-dimensional Brownian motion consists of all Rd

-valued continuous functions of
t. Thus

ω(t) = (ω1(t), ω2(t), . . . , ωd(t))
T
,

where ωj(t) ∈ Ω. Cylinder sets are defined by the following

Definition 2.2.22 (Cylinder sets in Rd
). A cylinder set of d-dimensional Brownian

trajectories is defined by times 0 ≤ t1 < t2 < · · · < tk and open sets Ik, (k =
1, 2, . . . , k) as

C(t1, . . . , tk; I1, . . . , Ik) = {ω ∈ Ω |ω(tj) ∈ Ij for j = 1, . . . , k}. (2.37)

The open sets Ij can be, for example, open boxes or balls in Rd
. In particular,

we write Ix = {ω ≤ x} = {ω1 ≤ x1, . . . , ωd ≤ xd}. The appropriate σ-algebra
F and the filtration F t are constructed as in Section 2.2.

Definition 2.2.23 (The Wiener measure for the d-dimensional MBM). The d-
dimensional Wiener measure of a cylinder is defined as

Pr{C(t1, t2, . . . , tk; I1, I2, . . . , Ik)}

=
∫
I1

∫
I2

· · ·
∫
Ik

k∏
j=1

dxj
[2π(tj − tj−1)]n/2

exp
{
−|xj − xj−1|2

2(tj − tj−1)

}
. (2.38)

The PDF of the d-dimensional MBM is

Fw(x, t) =Pr{ω ∈ Ω |w(t,ω) ≤ x}

=
1

(2πt)n/2

x1∫
−∞

· · ·
xd∫

−∞

e−|y|
2/2t dy1 · · · dyd (2.39)

and the pdf is

fw(x, t) =
∂dFw(x, t)

∂x1∂x2 · · · ∂xd
=

1
(2πt)n/2

e−|x|
2/2t. (2.40)
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Equations (2.26) imply that fw(x, t) satisfies the d-dimensional diffusion equa-
tion and the initial condition

∂fw(x, t)
∂t

=
1
2
∆fw(x, t), lim

t↓0
fw(x, t) = δ(x). (2.41)

It can be seen from eq. (2.38) that any rotation of the d-dimensional Brownian
motion is d-dimensional Brownian motion.

Higher-dimensional stochastic processes are defined by the following

Definition 2.2.24 (Vector valued processes). A vector-valued function x(t,ω) :
R+×Ω 7→ Rd

is called a stochastic process in (Ω,F) with continuous trajectories
if

(i) x(t,ω) is a continuous function of t for every ω ∈ Ω,

(ii) for every t ≥ 0 and x ∈ Rd
the sets {ω ∈ Ω |x(t,ω) ≤ x} are Brownian

events; that is, if {ω ∈ Ω |x(t,ω) ≤ x} ∈ F .

Note that the dimension of the elementary events ω(·) : R+ 7→ Rn
and the

dimension of the space in which the trajectories x(t,ω) move, d, are not necessarily
the same. As above, when {ω ∈ Ω |x(t,ω) ≤ x} ∈ F , we say that the process
x(t,ω) is F -measurable. The PDF of x(t,ω) is defined as

Fx(y, t) = Pr{ω ∈ Ω |x(t,ω) ≤ y} (2.42)

and the pdf is defined as

fx(y, t) =
∂dFx(y, t)

∂y1∂y2 · · · ∂yd
. (2.43)

The expectation of a matrix-valued function g(x) of a vector-valued process x(t,ω)
is the matrix

Eg(x(t,ω)) =
∫
g(y)fx(y, t) dy. (2.44)

Definition 2.2.25 (Autocorrelation and autocovariance). The autocorrelation ma-
trix of x(t,ω) is defined as the n× n matrix

Rx(t, s) = Ex(t)xT (s) (2.45)

and the autocovariance matrix is defined as

Covx(t, s) = E
[
x(t)−Ex(t)

] [
x−Ex(s)

]T
. (2.46)

The autocovariance matrix of the d-dimensional Brownian motion is found from
(2.36) as

Covw(t, s) = I(t ∧ s), (2.47)

where I is the identity matrix.
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Exercise 2.4 (Transformations preserving the MBM). Show, by verifying prop-
erties (1)–(3), that the following processes are Brownian motions:
(i) w1(t) = w(t+ s)− w(s)
(ii) w2(t) = cw(t/c2), where c is any positive constant

(iii) w3(t) = tw(1/t),
(iv) w4(t) = w(T )− w(T − t) for 0 ≤ t ≤ T ,

(v) w5(t) = −w(t). 2

Exercise 2.5 (Changing scale). Give necessary and sufficient conditions on the
functions f(t) and g(t) such that the process w4(t) = f(t)w(g(t)) is MBM. 2

Exercise 2.6 (The joint pdf of the increments). Define

∆w = (∆w(t1),∆w(t2), . . . ,∆w(tn))T .

Find the joint pdf of ∆w. 2

Exercise 2.7 (The radial MBM). Define the radial MBM by y(t) = |w(t)|, where
w(t) is the d-dimensional MBM. Find the pdf of y(t), the partial differential equa-
tion, and the initial condition it satisfies. 2

2.3 Constructions of the MBM

Two mathematical problems arise with the axiomatic definition of the Brownian
motion. One is the question of existence, or construction of such a process and the
other is of computer simulations of Brownian trajectories with different refinements
of time discretization. The first proof of existence and a mathematical construction
of the Brownian motion is due to Paley and Wiener [197] and is presented in Section
2.3.1. The second construction, due to P. Lévy [150], and the method of refinement
of computer simulations of the Brownian paths are presented in Section 2.3.2.

2.3.1 The Paley–Wiener construction of the Brownian motion

Assume that Xk, Yk (k = 0,±1,±2, . . . ) are zero mean and unit variance Gaussian
i.i.d. random variables defined in a probability space Ω̃. The probability space Ω̃ can
be chosen, for example, as the interval [0, 1] or R (see [106]). The variable Zk =
(Xk + iYk)/

√
2 is called a complex Gaussian variable. The simplest properties of

Zk are EZkZl = 0 and EZkZ̄l = δkl. The series

Z̃1(t) = tZ0 +
∑
n6=0

Zn
(
eint − 1

)
in

(2.48)

converges in L2([0, 2π]× Ω), because the coefficients are O(n−1). Each trajectory
of Z̃1(t) is obtained from an infinite sequence of the numbers Zk that are drawn in-
dependently from a standard Gaussian distribution. That is, every trajectory of Z̃1(t)
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is obtained from a realization of the infinite sequence of the random variables Zk.
Every continuous function has a unique Fourier series representation in L2[0, 2π],
however not all Fourier series that converge in the L2[0, 2π] sense are continuous
functions. Thus the space Ω of continuous functions is a subset of all the possible
realizations of Z̃1(t) obtained from realizations of infinite sequences of the inde-
pendent Gaussian random variables Zk. It follows that Z̃1(t) may be a stochastic
process on L2[0, 2π] rather than on Ω. Note that (2.48) embeds infinite-dimensional
Gaussian vectors {Zk}∞k=1 in L2[0, 2π].

We setZ(t) = Z̃1(t)/
√

2π and note thatZ(t) satisfies the properties (1), (3)–(5)
of the Brownian motion. Indeed, Z(t) is obviously a zero mean Gaussian process
with independent increments on the probability space Ω̃. The autocorrelation func-
tion is calculated from

EZ̃1(t)Z̃1(s) = ts+
∑
n6=0

(
eint − 1

) (
e−ins − 1

)
n2

.

It is well-known from Fourier series theory that

∑
n6=0

(
eint − 1

) (
e−ins − 1

)
n2

=
{
s(2π − t) for 0 ≤ s ≤ t ≤ 2π
t(2π − s) for 0 ≤ t ≤ s ≤ 2π. (2.49)

Exercise 2.8 (Proof of (2.49)). Prove eq. (2.49). 2

It follows that

EZ̃1(t)
¯̃Z1(s) =

{
st+ s(2π − t) = 2πs for 0 ≤ s ≤ t ≤ 2π
ts+ t(2π − s) = 2πt for 0 ≤ t ≤ s ≤ 2π = 2π(t ∧ s).

Separating the complex process into its real and imaginary parts, we get two inde-
pendent Brownian motions.

Now that Z(t) has been shown to satisfy all the requirements of the definition of
a Brownian motion, but the continuity property, it remains to show that almost all its
paths are continuous. To show that the paths of Z(t) are continuous, the almost sure
(in Ω̃) uniform convergence of the series (2.48) has to be demonstrated. Once this
is done, the space of realizations of the infinite sequence Zk can be identified with
the space Ω of continuous functions through the one-to-one correspondence (2.48).
Thus, we write Z(t, ω) to denote any realization of the path. For any ω denote

Zm,n(t, ω) =
n∑

k=m+1

Zke
ikt

ik
for n > m. (2.50)

Theorem 2.3.1 (Paley–Wiener). The sum
∑
n6=0 Z2n,2n+1(t) converges uniformly

for t ∈ R to a Brownian motion, except possibly on a set of probability 0 in Ω̃.



48 2. The Probability Space of Brownian Motion

Proof. According to eq. (2.50),

|Zm,n(t, ω)|2 =
n∑

k=m+1

|Zk(ω)|2

k2
+ 2Re


n−m−1∑
j=1

eijt
n∑

k=m+1+j

ZkZ̄k−j
k(k − j)


≤

n∑
k=m+1

|Zk(ω)|2

k2
+ 2

n−m−1∑
j=1

∣∣∣∣∣∣
n∑

k=m+1+j

ZkZ̄k−j
k(k − j)

∣∣∣∣∣∣ .
Setting Tm,n(ω) = max

0≤t≤2π
|Zm,n(t, ω)| , we get

≤
n∑

k=m+1

1
k2

+ 2
n−m−1∑
j=1

E

∣∣∣∣∣∣
n∑

k=m+1+j

ZkZ̄k−j
k(k − j)

∣∣∣∣∣∣ .
Using the Cauchy-Schwarz inequality E |

∑
| ≤

(
E |
∑
|2
)1/2

, we obtain the in-

equality

n−m−1∑
j=1

E

∣∣∣∣∣∣
n∑

k=m+1+j

ZkZ̄k−j
k(k − j)

∣∣∣∣∣∣
2

≤E
n∑

k=m+1+j

|Zk|2|Zk−j |2

k2(k − j)2
+ 2Re

∑
m+1+j<l<k≤n

E ZkZ̄k−jZlZ̄l−j
k(k − j)l(l − j)

=
n∑

k=m+1+j

1
k2(k − j)2

.

It follows that

ET 2
m,n ≤

n∑
k=m+1

1
k2

+ 2
n−m−1∑
j=1


n∑

k=m+1+j

1
k2(k − j)2


1/2

≤ n−m

m2
+ 2(n−m)

(
n−m

m4

)1/2

.

Now, we choose n = 2m and apply the Cauchy–Schwarz inequality again to get

E
(
max
t
|Zm,2m(t, ω)|

)
≤
(
ET 2

m,2m

)1/2 ≤√ 1
m

+
2√
m
≤ 2m−1/4.

It follows that

∞∑
n=1

E
(
max
t

∣∣Z2n,2n+1(t, ω)
∣∣) ≤ 2

∞∑
n=1

2−n/4 <∞.

ET 2
m,n
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Lebesgue’s monotone convergence theorem [183] asserts that if the nonnegative
functions fn are integrable such that

∫ ∑m
n=1 fn(x) dx → limit as m → ∞, then∑m

n=1 fn(x) → limit a.e. It follows that the sum
∑
n6=0 Z2n,2n+1(t) converges

uniformly in t for almost all ω.

2.3.2 P. Lévy’s method and refinements

P. Lévy [150] proposed a construction of the Brownian motion that is particularly
useful in computer simulations of Brownian trajectories. The Brownian paths are
constructed by a process that mimics the sampling of the Brownian path on different
time scales, beginning with a coarse scale through consecutive refinements.

Consider a sequence of standard Gaussian i.i.d. random variables {Yk}, for
k = 0, 1, . . . defined in Ω̃. We denote by ω any realization of the infinite sequence
{Yk} and construct a continuous path corresponding to this realization. We consider
a sequence of binary partitions of the unit interval,

T1 = {0, 1}, T2 =
{

0,
1
2
, 1
}
, T3 =

{
0,

1
4
,
1
2
,
3
4
, 1
}
. . . ,

Tn+1 =
{
k

2n
, k = 0, 1, . . . , 2n

}
.

The set T0 =
⋃∞
n=1 Tn contains all the binary numbers in the unit interval. The

binary numbers are dense in the unit interval in the sense that for every 0 ≤ x ≤ 1
there is a sequence of binary numbers xj = kj2nj with 0 ≤ kj ≤ 2nj such that
xj → x as j →∞.

Define X1(ω) = tY1(ω) for 0 ≤ t ≤ 1. Keeping in mind that T2 =
{
0, 1

2 , 1
}

and T1 \ T1 =
{

1
2

}
, we refine by keeping the “old” points; that is, by setting

X2(t, ω) = X1(t, ω) for t ∈ T1 and in the “new” point, T2 \ T1 =
{

1
2

}
, we set

X2

(
1
2 , ω

)
= 1

2 [X1(0, ω) + X1(1, ω)] + 1
2Y2(ω). The process X2(t, ω) is defined

in the interval by linear interpolation between the points of T2. We proceed by
induction,

Xn+1(t, ω)

=


Xn(t, ω) for t ∈ Tn (old points)
1
2

{
Xn

(
t+

1
2n
, ω

)
+Xn

(
t− 1

2n
, ω

)}
+

1
2(n+1)/2

Yk(ω)

for t ∈ Tn+1 \ Tn, k = 2n−1 + 1
2 (2nt− 1) (new points)

connect linearly between consecutive points

(see Figure 2.3). A Brownian trajectory sampled at 1024 points is shown in Figure
2.4.

Thus Xn+1(t) is a refinement of Xn(t). Old points stay put! So far, for ev-
ery realization ω, we constructed an infinite sequence of continuous functions. We
show below that for almost all (in the sense of Ω̃) realizations ω the sequence Xn(t)
converges uniformly to a continuous function, thus establishing a correspondence
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Figure 2.3. The graphs of X1(t) (dots), its first refinement X2(t) (dot-dash), and
second refinement X3(t) (dash).

Figure 2.4. A Brownian trajectory sampled at 1024 points.
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between ω and a continuous function. Obviously, the correspondence can be re-
versed in this construction.

Exercise 2.9 (MBM at binary points). Show that at binary points, tk,n = k2−n, 0 ≤
k ≤ 2n, the process Xn(t, ω) has the properties of the Brownian motion w(t). 2

Exercise 2.10 (Refinements). If a Brownian trajectory is sampled at points 0 =
t0 < t1 < · · · < tn = T according to the scheme (2.21) or otherwise, how should
the sampling be refined by introducing an additional sampling point t̃i such that
ti < t̃i < ti+1? 2

Exercise 2.11 (L2 convergence∗). Show that Xn(t, ω) L
2

→ X(t, ω), where X(t, ω)
has continuous paths [101]. 2

Exercise 2.12 (An i.o.). Consider an infinite sequence of events (sets) {An}. The
set An i.o. (infinitely often) is the set of all elementary events (points) that occur in

n n n

i.o. if and only if there is an infinite sequence of indices nk, (k = 1, 2, . . . ), such
that x ∈ Ank

for all k = 1, 2, . . . . Show that An i.o. =
⋂∞
m=1

⋃∞
n=mAn. 2

We need the following

Lemma 2.3.1 (Borel–Cantelli). If
∑∞
n=1 Pr{An} <∞, then Pr{An i.o.} = 0.

Proof. From Exercise 2.12 it follows that An i.o. ⊂
⋃∞
n=mAn for all m > 0. The

convergence of the series
∑∞
n=1 Pr{An} implies the inequalities Pr{An i.o.} ≤

Pr {
⋃∞
n=mAn} ≤

∑∞
n=m Pr{An} → 0 as m→∞.

The lemma means that if the sum of the probabilities converges, then, with prob-
ability one, only a finite number of the events occur.

Theorem 2.3.2 (P. Lévy). Xn(t, ω) → X(t, ω) almost surely in Ω̃, where X(t, ω)
is continuous for 0 ≤ t ≤ 1.

Proof. Set Zn = Xn+1 −Xn; then Zn(t) = 0 for t ∈ Tn and

max
0≤t≤1

|Zn(t, ω)| = max
2n−1≤k≤2n

2−n+1|Yk|.

It follows that for every λn > 0,

Pn =Pr
{

max
0≤t≤1

|Zn(t, ω)| > λn

}
≤ 2n−1Pr

{
|Yk| ≥ 2

n+1
2 λn

}
≤ 2n−1 2√

2π

∞∫
2(n+1)/2λn

e−x
2/2 dx ≤ 2n−1

√
2nπ

1
λn

exp
{
−1

2

(
2(n+1)/2λn

)2
}

). Thus x∈Ainfinitely many of the eventsA (that belong to infinitely many setsA
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because (show!) (2π)−1/2
∫∞
a
e−x

2/2 dx < (2π)−1/2a−1e−a
2/2. Choosing λn =

2−(n+1)/2
√

2cn log 2, (c > 1), we get

∑
n

Pn <
1√
2π

∑
n

2(n−1)/22(n+1)/2

√
2cn log 2

exp

{
−
(

2(n+1)/2

√
2cn log 2
2(n+1)/2

)2
}

=
∑
n

2n2−(cn+1/2)

2
√
πcn log 2

= C1

∑
n

2(1−c)n−1/2 <∞,

where C1 is a constant. It follows from the Borel–Cantelli lemma that with prob-
ability one, only a finite number of the events {max0≤t≤1 |Zn(t, ω)| > λn} occur.

max
0≤t≤1

|Zn(t, ω)| ≤ λn2−(n+1)/2
√

2cn log 2 w.p. 1.

It follows from the Weierstrass M-test that for almost all trajectories ω the series∑∞
n=1 Zn(t, ω) converges uniformly for all t ∈ [0, 2π]. Cauchy’s theorem asserts

that the sum of a uniformly convergent series of continuous functions is continuous.
The trajectories of the processX(t, ω) =

∑∞
n=1 Zn(t, ω) are continuous with prob-

ability one, because, with probability one, each function Zn(t, ω) is continuous.

Exercise 2.13 (Lévy’s construction gives a MBM). Show that if X1(t) and X2(t)
are independent Brownian motions on the interval [0, 1], then the process

X(t) =

 X1(t) for 0 ≤ t ≤ 1

X1(1) + tX2

(
1
t

)
−X2(1) for t > 1

is a Brownian motion on R+. 2

2.4 Analytical and statistical properties of Brownian
paths

The Wiener measure assigns probability 0 to several important classes of Brownian
paths. These classes include all differentiable paths, all paths that satisfy the Lip-
schitz condition at any point, all continuous paths with bounded variation on any
interval, and so on. The Brownian paths have many interesting properties, whose
investigation exceeds the scope of this book. For a more detailed description of the
Brownian paths see, for example, [106], [101], [208]. Here we list only a few of the
most prominent features of the Brownian paths. As shown below, although contin-
uous, the Brownian paths are nondifferentiable at any point with probability 1. This
means that the Wiener measure assigns probability 0 to all differentiable paths. This
fact implies that the white noise process ẇ(t) does not exist, so that strictly speak-
ing, none of the calculations carried out under the assumption that ẇ(t) exists are

Thus, for n sufficiently large,
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valid. This means that the velocity process of the MBM (white noise) should be in-
terpreted as the overdamped limit [214] of the Brownian velocity process described
in Chapter 1. In 1933 Paley, Wiener, and Zygmund [198] proved the following

Theorem 2.4.1 (Paley, Wiener, Zygmund). The Brownian paths are nondifferen-
tiable at any point with probability 1.

Proof. (Dvoretzky, Erdös, Kakutani [60]) We construct a set B of trajectories
that contains all the trajectories such that the derivative ẇ(t, ω) exists for some
t ∈ [0, 1] and show that Pr{B} = 0. The set B is constructed in the form B =⋃∞
l=1

⋃∞
m=1Bl,m, such that Pr{Bl,m} = 0 for all l,m. Consider a trajectory ω

such that ẇ(t, ω) exists for some t ∈ [0, 1]. This means that lims→t[w(t, ω) −
w(s, ω)]/(t − s) = ẇ(t, ω) 6= ±∞, or, equivalently, for every ε > 0 there exists
δ > 0 such that |[w(t, ω)− w(s, ω)]/(t− s)− ẇ(t, ω)| < ε if |t − s| < δ. It
follows that |[w(t, ω)− w(s, ω)]/(t− s)| ≤ |ẇ(t, ω)| + ε < l, for some l ≥ 1.
Define i = [nt] + 1, then ∣∣∣∣t− i

n

∣∣∣∣ < 1
n
→ 0 as n→∞. (2.51)

Now choose si,j = (i+ j)/n for j = 0, 1, 2, 3, then

|w(si,0, ω)− w(si,1, ω)| (2.52)

≤ |w(si,0, ω)− w(t, ω)|+ |w(t, ω)− w(si,1, ω)| < 3l
n
.

Similarly, |w(si,j , ω) − w(si,j+1, ω)| ≤ 7l/n for j = 1, 2. Thus, if ẇ(t, ω) ex-
ists for some ω and t, then there exists l ∈ {1, 2, . . . , n} such that for all suffi-
ciently large n there exists an i such that inequalities (2.51) and (2.52) hold for
j = 0, 1, 2. It follows that the set of ω such that the derivative exists at some point,
{ω ∈ Ω | ẇ(t, ω) exists for some t ∈ [0, 1]}, is contained in the setω ∈ Ω

∣∣∣∣∣∣
∞⋃
l=1

∞⋃
m=1

∞⋂
n=m

n⋃
i=1

2⋂
j=0

{
|w(si,j , ω)− w(si,j+1, ω)| ≤ 7l

n

} .

We denote Bl,m =
⋂∞
n=m

⋃n
i=1

⋂2
j=0 {|w(si,j , ω)− w(si,j+1, ω)| ≤ 7l/n} and

show Pr {Bl,m} = 0. Indeed, the increments w(si,j) − w(si,j+1) are independent
random zero mean Gaussian variables with variance 1/n. It follows that the prob-
ability that the three events {|w(si,j , ω)− w(si,j+1, ω)| ≤ 7l/n} for j = 0, 1, 2
occur simultaneously is the product of the probabilities of each event occurring sep-
arately; that is,

Pr


2⋂
j=0

{
|w(si,j , ω)− w(si,j+1, ω)| ≤ 7l

n

} =

√ n

2π

7l/n∫
−7l/n

e−nx
2/2 dx


3

.
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The probability of a union of n such events does not exceed the sum of the proba-
bilities; that is,

Pr


n⋃
i=1

2⋂
j=0

{
|w(si,j , ω)− w(si,j+1, ω)| ≤ 7l

n

}
≤n

√ n

2π

7l/n∫
−7l/n

e−nx
2/2 dx


3

.

The probability of the intersection
⋂
n≥m does not exceed the probability of any

of the intersected sets, thus, changing the variable of integration to y =
√
nx, we

obtain that for all n ≥ m,

Pr {Bl,m} ≤
8n√
8π3

 7l/
√
n∫

0

e−y
2/2 dy


3

≤ 8n√
8π3

(
7l√
n

)3

= const.n−1/2 → 0

as n→∞. That is, Pr {Bl,m} = 0.

The proofs of the following theorems are given, for example, in [106], [101],
[208].

Theorem 2.4.2 (The Khinchine–Lévy law of the iterated logarithm).

lim sup
t→∞

w(t)√
2t log log t

= 1, lim inf
t→∞

w(t)√
2t log log t

= −1. (2.53)

Theorem 2.4.3 (Modulus of continuity).

lim sup
h→0

w(t+ h)− w(t)√
2|h| log log |h−1|

= 1, lim inf
h→0

w(t+ h)− w(t)√
2|h| log log |h−1|

= −1. (2.54)

In particular

lim sup
h→0

|∆w|
|h|α

=


∞ if α ≥ 1

2

0 if α <
1
2
.

(2.55)

Theorem 2.4.4 (The level-crossing property). For any level a the times t such that
w(t) = a form a perfect set (i.e., every point of this set is a limit of points in this
set).

Thus, when a Brownian path reaches a given level at time t is recrosses it in-
finitely many times in every interval [t, t+ ∆t].

Exercise 2.14 (Properties of Brownian trajectories). Compare plots of simulated
trajectories w(t) with

√
2t log log t. 2
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2.4.1 The Markov property of the MBM

Definition 2.4.1 (Markov process). A stochastic process ζ(t) on [0, T ] is called a
Markov process if for any sequences 0 ≤ t0 < · · · < tn ≤ T and x0, x1, . . . , xn,
its transition probability distribution function has the property

Pr
{
ζ(tn) < xn | ζ(tn−1) < xn−1, ζ(tn−2) < xn−2, . . . , ζ(t0) < x0}

=Pr
{
ζ(tn) < xn | ζ(tn−1) < xn−1}. (2.56)

The transition probability density function, defined by

p (xn, tn |xn−1, tn−1, . . . , x1, t1)

=
∂

∂xn
Pr
{
ζ(tn) < xn | ζ(tn−1) = xn−1, ζ(tn−2) = xn−2, . . . , ζ(t0) = x0},

then satisfies

p (xn, tn |xn−1, tn−1, . . . , x1, t1) = p (xn, tn |xn−1, tn−1). (2.57)

The Markov property eq. (2.56) means that the process “forgets” the past in the
sense that if the process is observed at times t0, t1, . . . , tn−1 such that 0 ≤ t0 <
· · · < tn−1 ≤ T , its “future” evolution (at times t > tn−1) depends only on the
“latest” observation (at time tn−1).

For any three times t <τ <s and any points x, y, z, we can write the identities

p (y, t, z, τ | x, s) = p (y, t | z, τ, x, s) p (z, τ | x, s)
= p (y, t | z, τ) p (z, τ | x, s), (2.58)

the last equation being a consequence of the Markov property. Now, using the
identities (2.58) and writing p (y, t |x, s) as a marginal density of p (y, t, z, τ | x, s),
we obtain

p (y, t | x, s) =
∫
p (y, t, z, τ | x, s) dz =

∫
p (y, t | z, τ, x, s)p (z, τ | x, s) dz

=
∫
p (y, t | z, τ)p (z, τ | x, s) dz. (2.59)

Equation (2.59) is called the Chapman–Kolmogorov equation (CKE). More general
properties of Markov processes are described in Chapter 9.

Theorem 2.4.5. The MBM is a Markov process.

Proof. To determine the Markov property of the Brownian motion, consider any
sequences 0 = t0 < t1 < · · · < tn and x0 = 0, x1, . . . , xn. The joint pdf of the
vector

w = (w(t1), w(t2), . . . , w(tn))T (2.60)
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is given by (see eq. (2.20))

p (x1, t1;x2, t2; . . . ;xn, tn) = Pr{w(t1) = x1, w(t2) = x2, . . . , w(tn) = xn}

=
n∏
k=1

[
{2π(tk − tk−1)}−1/2 exp

{
− (xk − xk−1)2

2(tk − tk−1)

}]
, (2.61)

so that for 0 = t0 < t1 < · · · < tn < t = tn+1 and 0= x0, x1, . . . , xn, x = xn+1,

Pr{w(t) = x |w(tn) = xn, . . . , w(t1) = x1}

=
Pr{w(tn+1) = xn+1, w(tn) = xn, . . . , w(t1) = x1}

Pr{w(tn) = xn, . . . , w(t1) = x1}

=

n+1∏
k=1

[
{2π(tk − tk−1)}−1/2exp

{
− (xk − xk−1)2

2(tk − tk−1)

}]
∏
k=1

[
{2π(tk − tk−1)}−1/2exp

{
− (xk − xk−1)2

2(tk − tk−1)

}]
=

1√
2π(t− tn)

exp
{
− (xn+1 − xn)2

2(tn+1 − tn)

}
= Pr{w(t) = x |w(tn) = xn};

that is, the Brownian motion is a Markov process.

It follows that it suffices to know the two-point transition pdf of the Brow-
nian motion, p (y, t |x, s) = Pr{w(t) = y |w(s) = x} for t > s, to calcu-
late the joint and conditional probability densities of the vector (2.60); that is,
p (x1, t1;x2, t2; . . . ;xn, tn) =

∏n
k=1 p (xk, tk |xk−1, tk−1).

Theorem 2.4.6 (The strong Markov property of the MBM). If τ is a Markov time
for the Brownian motion, then the process w̃(t) = w(t + τ) − w(τ) is a Brownian
motion.

Exercise 2.15. (Strong Markov property of MBM)

(i) Verify the Chapman–Kolmogorov equation for the MBM.

(ii) Prove Theorem 2.4.6 [106], [101]. 2

Exercise 2.16 (The velocity process). Consider the velocity process y(t) in Defi-
nition 1.4.1, y(t) = w(t)−

∫ t
0
e−(t−s) w(s) ds, and define the displacement process

x(t) =
∫ t
0
y(s) ds.

(i) Prove that y(t) is a Markov process.

(ii) Prove that x(t) is not a Markov process.

(iii) Prove that the two-dimensional process z(t) = (x(t), y(t)) is Markovian. 2

2.4.2 Reflecting and absorbing walls

The variants of the Brownian motion defined below appear in many applications of
diffusion theory. The calculation of the transition probability density functions of

n
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the variants can be done directly from the definition (see, e.g., [199]) and also by
solving boundary value problems for partial differential equations that the transi-
tion probability density functions satisfy. The partial differential equations and the
boundary conditions that these transition probability density functions satisfy are
derived in Section 3.4. With these equations the calculations become straightfor-
ward. In this chapter the calculations based on the definition of the variants of the
Brownian motion are presented as exercises.

Definition 2.4.2 (Reflected MBM). The process w+(t) = |w(t)| is called the re-
flected Brownian motion.

The reflected Brownian motion is obtained from the Brownian motion by ob-
serving its trajectories in the negative x-axis in a mirror placed at the origin. The
reflected Brownian motion is used to describe the motion of freely diffusing parti-
cles in the presence of an impermeable wall.

Exercise 2.17. (The transition pdf of the reflected MBM).

(i) Find the transition probability density function of the reflected Brownian motion.

(ii) Prove that the transition pdf of the reflected Brownian motion, f|w|(x, t), satis-
fies the diffusion equation and the initial condition (2.26) on the positive ray, and
the boundary condition f ′|w|(0, t) = 0 for t > 0.

(iii) Prove that (i) and (ii) imply that if x0 > 0, then
∫∞
0
f|w|(x, t) dx = 1 for all

t ≥ 0. 2

Exercise 2.18 (The reflected MBM is Markovian). Show that the reflected MBM
is a Markov process. 2

Exercise 2.19 (The reflection principle). Prove the following reflection principle.
Let τa be the first passage time to a; then for every Brownian pathw(t, ω1), t ≥ τa,
there is another path, w(t, ω2), t ≥ τa, which is the mirror image of w(t, ω1) about
the line La : w = a [199]. 2

Exercise 2.20 (The joint PDF of the FPT and the maximum of the MBM mo-
tion). Setting M(t) = max0≤s≤t w(s), we find, by definition,

Pr{M(t) ≤ a} = Pr{τa ≥ t}. (2.62)

Thus the PDFs of M(t) and τa are related through eq. (2.62). Prove that if x ≤ a,
then

Pr{w(t) ≤ x, M(t) ≥ a} =
1√
2πt

∞∫
2a−x

e−y
2/2t dy

Pr{w(t) ≤ x, M(t) ≤ a} =
1√
2πt

x∫
−∞

e−y
2/2t dy − 1√

2πt

∞∫
2a−x

e−y
2/2t dy.

2
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Exercise 2.21. (The PDF of the FPT).

(i) Prove that Pr{τa ≤ t} = 2(2πt)−1/2
∫∞
a
e−y

2/2t dy. Conclude that the first
passage time to a given point is finite with probability 1 but its mean is infinite. This
is the continuous time version of the Gambler’s Ruin “Paradox”: gambling with
even odds against an infinitely rich adversary leads to sure ruin in a finite number of
games, but on the average, the gambler can play forever (see [72, Ch. XIV.3]).

(ii) Use the above result to conclude that the one-dimensional MBM is recurrent in
the sense that Pr{w(t, ω) = x for some t > T} = 1 for every x and every T . This
means that the MBM returns to every point infinitely many times for arbitrary large
times.

(iii) Consider two independent Brownian motions, w1(t) and w2(t) that start at x1

and x2 on the positive axis and denote by τ1 and τ2 their first passage times to the
origin, respectively. Define τ = τ1 ∧ τ2, the first passage time of the first Brownian
motion to reach the origin. Find the PDF and mean value of τ . 2

Exercise 2.22 (Absorbed MBM). If the Brownian motion is stopped at the moment
it reaches a for the first time, the process y(t) = w(t) for t ≤ τa and y(t) = a for
t ≥ τa is called the absorbed Brownian motion.

(i) Prove

Pr{y(t) ≤ y} =


1√
2πt

y∫
−∞

e−z
2/2t dz − 1√

2πt

∞∫
2a−y

e−z
2/2t dz for y < a

1 for y ≥ a.

Prove that the pdf of y(t), denoted fy(·)(x, t), satisfies for x < a the diffusion
equation and the initial condition (2.26) and the boundary condition fy(·)(x, t) = 0
for x ≥ a.

(ii) Assume that the trajectories of the MBM begin at time t0 at a point x0 < a.
Find the pdf of the absorbed MBM for this case.

(iii) Prove that the pdf of the absorbed MBM in (ii), denoted fy(·)(x, t |x0, t0), is
the solution of the initial and boundary value problem for the diffusion equation

∂fy(·)

∂t
=

1
2
∂2fy(·)

∂x2
for x < a (2.63)

lim
t↓t0

fy(·) = δ(x− x0), fy(·) = 0 for x ≥ a, t > t0.

(iv) Find the partial differential equation and the terminal and boundary conditions
that the function fy(·)(x, t |x0, t0) satisfies with respect to the initial point and time
(x0, t0) .

(v) Verify that eq. (2.62) holds.

(vi) It is known from the theory of parabolic partial differential equations [78] that
the partial differential equations and boundary conditions in (iii) and (iv) have a
unique solutions. Use this information to derive and solve partial differential equa-
tions and boundary conditions for the PDF of the FPT from a point x to a point y.
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(vii) Prove that Pr{τa > t |x0, t0) =
∫ a
−∞ fy(·)(x, t |x0, t0) dx.

(viii) Prove in the presence of an absorbing boundary at a the population of Brown-
ian trajectories in (−∞, a) decays in time; that is,

lim
t→∞

a∫
−∞

fy(·)(x, t |x0, t0) dx = 0,

which is equivalent to the decay of Pr{τa > t |x0, t0} as t → ∞. Reconcile this
with (i).

(ix) Prove that the function u(t |x0, t0) = Pr{τa ≤ t |x0, t0} is the solution of the
terminal and boundary value problem

∂u

∂t0
+

1
2
∂2u

∂x2
0

= − 1 for x0 < a, t0 < t

lim
t0↑t

u =0 for x0 < a, u(t | a, t0) = 1.

(x∗) Consider the d-dimensional MBM that starts at a distance r from the origin and
assume that an absorbing sphere of radius a is centered at the origin. The FPT to
the sphere |w| = a is defined by τa = inf{t | |w| = a}. 2

Exercise 2.23 (Absorbed MBM in Rd
). The d-dimensional Brownian motion with

absorption at the sphere is defined by

y(t) =
{
w(t) for t ≤ τa
w(τa) for t ≥ τa.

Denote y(t) = |y(t)|.
(i) Formulate and prove a reflection principle for the process y(t) (use reflection of
the d-dimensional MBM in a sphere of radius a, as defined in eq. (2.64) below).

(ii) Formulate and solve initial and boundary value problems for the pdf and the FPT
of y(t), analogous to (i)–(ix) above. 2

Exercise 2.24 (The absorbed MBM is Markovian). Show that the absorbed MBM
is a Markov process. 2

Exercise 2.25 (Reflecting wall). If upon hitting the line La : w = a for the first
time, the Brownian path is reflected in La, the resulting process is defined by

x(t) =
{

w(t) for w(t) ≤ a
2a− w(t) for w(t) > a.

Thus x(t) ≤ a for all t.

(i) Prove that for x ≤ a,

Pr{x(t) ≤ x} = 1− 1√
2πt

2a−x∫
x

e−y
2/2t dy

(see [199]).
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(ii) For the d-dimensional MBM w(t), define a reflected d-dimensional MBM in a
sphere of radius a centered at the origin by

w∗(t) =

 w(t) for |w(t)| ≤ a

a2 w(t)
|w(t)|2

for |w(t)| ≥ a.
(2.64)

Obviously, |w∗(t)| ≤ a. Find the pdf ofw∗(t), the partial differential equation, the
initial conditions, and boundary conditions it satisfies on the sphere. 2

Exercise 2.26 (The Brownian bridge). Start the Brownian motion at the point x;
that is, set x(t) = w(t) + x, and consider only the trajectories that pass through the
point y at time t0. That is, condition x(t) on w(t0) + x = y. Thus the paths of the
Brownian bridge x(t) are those paths of the Brownian motion that satisfy the given
condition.

(i) Show that x(t) = w(t)− (t/t0) [w(t0)− y + x] + x for 0 ≤ t ≤ t0.

(ii) Show that x(t) is a Gaussian process.

(iii) Calculate the mean and the autocorrelation function of the Brownian bridge.

(iv) Show that x(t) and x(t0 − t) have the same PDF for 0 ≤ t ≤ t0.

(v) Show that x(t) is a Markov process [117]. 2

Exercise 2.27 (Maximum of the Brownian bridge). Find the distribution of the
maximum of the Brownian bridge in the interval [0, t] for 0 < t < t0 (see also
Exercise 6.11 below). 2

2.4.3 MBM and martingales

Definition 2.4.3 (Martingales). A martingale is a stochastic process x(t) such that
E|x(t)| <∞ for all t and for every t1 < t2 < · · · < tn < t and x1, x2, . . . , xn,

E [x(t) |x(t1) = x1, x(t2) = x2, . . . , x(tn) = xn] = xn (2.65)

(see [208], [115], [178]). In gambling theory x(t) often represents the capital of a
player at time t. The martingale property (2.65) means that the game is fair; that is,
not biased.

Theorem 2.4.7. The MBM is a martingale.

Proof. Indeed,

E|w(t)| = 1√
2πt

∞∫
−∞

|x|e−x
2/2t dx =

√
2t
π
<∞
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and due to the Markov property of the MBM (see Section 2.4.1)

E [w(t) |w(t1) = x1, w(t2) = x2, . . . , w(tn) = xn]

=

∞∫
−∞

xp (x, t |x1, t1, x2, t2, . . . , xn, tn) dx

=

∞∫
−∞

xp (x, t |xn, tn) dx =
1√

2π (t− tn)

∞∫
−∞

xe−(x−xn)2/2(t−tn) dx = xn.

Theorem 2.4.8. For every α, the process x(t) = exp
{
αw(t)− α2t/2

}
is a mar-

tingale.

Proof. The property E|x(t)| <∞ is obtained from

E|x(t)| = Ex(t) =
1√
2πt

∞∫
−∞

exp
{
αx− α2

2
t

}
exp
{
−x

2

2t

}
dx

=
1√
2πt

∞∫
−∞

exp
{
− (x− αt)2

2t

}
dx = 1. (2.66)

To verify the martingale property (2.65), we use the identity

x(t) = exp
{
α [w(t)− w(s)]− α2

2
(t− s)

}
x(s). (2.67)

Setting w̃(t − s) = w(t) − w(s), we rewrite (2.67) as x(t) = x̃(t − s)x(s) and
recall that the increment w̃(t− s) is a MBM independent of x(s). It follows that the
process

x̃(t− s) = exp
{
αw̃(t− s)− α2

2
(t− s)

}
has the same probability law as x(t − s), but is independent of x(τ) for all τ ≤ s.
Hence, using (2.66), we obtain

E [x(t) |x(t1) = x1, x(t2) = x2, . . . , x(tn) = xn]
=E [x̃(t− tn)x(tn) |x(t1) = x1, x(t2) = x2, . . . , x(tn) = xn]
=xnEx̃(t− tn) = xn. (2.68)

Definition 2.4.4 (Submartingales). If instead of (2.65) x(t) satisfies the inequality

E [x(t) |x(t1) = x1, x(t2) = x2, . . . , x(tn) = xn] ≥ xn (2.69)

(in addition to E|x(t)| <∞), then x(t) is said to be a submartingale.
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For example, if x(t) is a martingale, then y(t) = |x(t)| is a submartingale,
because y(t) ≥ ±x(t) and

E [y(t) | y(t1) = y1, y(t2) = y2, . . . , y(tn) = yn]
≥E [±x(t) |x(t1) = ±y1, x(t2) = ±y2, . . . , x(tn) = ±yn] = ±y1 (2.70)

for all possible combinations of + and –, which is the submartingale condition
(2.69). Thus the reflected Brownian motion |w(t)| is a submartingale.

Exercise 2.28 (Martingales). Show that the following are martingales.

(i) w2(t)− t

(ii) exp
{
−α2t cosh

[√
2αw(t)

]}
. 2

Exercise 2.29 (Martingales: continued). Assume that α in Theorem 2.4.8 is a ran-
dom variable in Ω such that α(ω) is Ft-measurable for a ≤ t ≤ b (it is independent
of the Brownian increments w(s+ ∆s, ω)− w(s, ω) for all s ≥ b and ∆s > 0).

(i) Show that if α(ω) is bounded, then x(t, ω) in Theorem 2.4.8 is a martingale in
the interval [a, b].
(ii) Can the boundedness condition be relaxed? How?

(iii) Consider the following generalization: Let C1(ω) and C2(ω) be random vari-
ables in Ω and let 0 < t1 < T . Assume that C1(ω) is independent of w(t, ω) for all
t and C2(ω) is Ft1-measurable (independent of w(t, ω) − w(t1, ω) for all t > t1).
Consider the following process in the interval [0, T ],

x(t, ω) =


exp
{
C1(ω)w(t, ω))− C2

1 (ω)
2

t

}
if 0 ≤ t ≤ t1

exp{C1(ω)w(t1, ω)) + C2(ω) [w(t, ω)− w(t1, ω)]}

× exp
{
−1

2
[
C2

1 (ω)t1 + C2
2 (ω)(t− t1)

]}
if t1 < t ≤ T .

Show that if C1(ω) and C2(ω) are bounded, then x(t, ω) is a martingale in [0, T ].
(iv) Find a more general condition than boundedness that ensures the same result
[115]. 2
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