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Chapter 2

Discovery of Intrinsic Clustering in Spatial Data

2.1 A Brief Background About Clustering

A fundamental task in knowledge discovery is the unraveling of clusters intrinsi-

cally formed in spatial databases. These clusters can be natural groups of variables,

data-points or objects that are similar to each other in terms of a concept of

similarity. They render a general and high-level scrutiny of the databases that can

serve as an end in itself or a means to further data mining activities. Segmentation

of spatial data into homogenous or interconnected groups, identification of regions

with varying levels of information granularity, detection of spatial group structures

of specific characteristics, and visualization of spatial phenomena under natural

groupings are typical purpose of clustering with very little or no prior knowledge

about the data. Often, clustering is employed as an initial exploration of the data

that might form natural structures or relationships. It usually sets the stage for

further data analysis or mining of structures and processes.

Clustering has long been a main concern in statistical investigations and other

data-heavy researches (Duda and Hart 1974; Jain and Dubes 1988; Everitt 1993).

It is essentially an unsupervised learning, a terminology used in the field of pattern

recognition and artificial intelligence, which aims at the discovery from data a class

structure or classes that are unknown a priori. It has found its applications in fields

such as pattern recognition, image processing, micro array data analysis, data

storage, data transmission, machine learning, computer vision, remote sensing,

geographical information science, and geographical research. Novel algorithms

have also been developed arising from these applications. The advancement of

data mining applications and the associated data sets have however posed new

challenges to clustering, and it in turn intensifies the interest in clustering research.

Catering for very large databases, particularly spatial databases, some new methods

have also been developed over the years (Murray and Estivilli-Castro 1998; Miller

and Han 2001; Li et al. 2006). To facilitate our discussion, a brief review of the

clustering methods is first made in this section.
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These are two basic approaches to perform clustering: hierarchical clustering

and partitioning clustering. With reference to some criteria for merging or splitting

clusters on the basis of a similarity or dissimilarity/distance measure, hierarchical

clustering algorithms produce, via an agglomerative or divisive manner, a dendro-

gram which is a tree showing a sequence of clustering with each being a partition of

the data set. According to the structure adopted, hierarchical clustering can be

further categorized into nested hierarchical clustering and non-nested hierarchical

clustering. In nested hierarchical clustering, each small cluster fits itself in whole

inside a larger cluster at a merging scale (or threshold) and every datum is not

permitted to change cluster membership once an assignment has been made. In non-

nested hierarchical clustering, a cluster obtained at small scale may divide itself

into several small parts and fits these parts into different clusters at the merging

scale and, therefore, each datum is permitted to change its cluster membership as

the scale varies. The single-link (nearest-neighbor) algorithms (Hubert 1974; Dubes

and Jain 1976), the complete-link (farthest-neighbor) algorithms (Johnson 1967;

Hubert 1974), and the average-link (average-neighbor) algorithms (Ward 1963) are

typical nested hierarchical clustering algorithms. The single-link method is more

efficient but is sensitive to noise and tends to generate elongated clusters. Complete

link and average link methods give more compact clusters but are computationally

more expensive. On the other hand, the algorithms proposed in (Taven et al. 1990;

Wilson and Spann 1990; Miller and Rose 1996; Blatt et al. 1997; Roberts 1997;

Waldemark 1997) generate non-nested hierarchical clusterings.

Early hierarchical clustering algorithms such as AGENS (agglomerative nest-

ing) and DIANA (divisa analysis) (Kaufman and Rousseeuw 1990) are under the

curse of dimensionality and do nor scale well for large data sets because of the

difficulties in deciding on the merge or split points. To handle large data sets,

BIRCH (balanced iterative reducing and clustering using hierarchies) obtains

clusters by compressing data into smaller sub-clusters (Zhang et al. 1996). The

algorithm appears to be linearly scalable and gives reasonably good-quality clus-

tering. Clusters are spherical in shape but they may not be natural clusters. By

combining random sampling and partitioning, CURE (clustering using representa-

tives) merges clusters via the concepts of representative objects and shirking factor

(Guha et al. 1998). It is relatively robust to outliers (objects in non-dense regions)

and can identify clusters with non-spherical shapes and large variance. Somewhat

similar to CURE, CHAMELEON employs the concepts of interconnectivity and

closeness to merge clusters (Karypis et al. 1999). The algorithm appears to be more

effective than CURE in identifying clusters with arbitrary shapes and varying

density. The advantage of hierarchical clustering algorithms is that it is more

versatile. They give a series of clusterings along some scales. The time complexity

for agglomerative algorithms is O(n2logn) and the space complexity is O(n2), where

n is the number of objects. The disadvantage of hierarchical clustering is that it is

often difficult to determine at which level the clustering gives the optimal clusters

essential to an investigation.

Differing from the hierarchical approach, partitioning algorithms give only a

single partition of a data set. The majority of such algorithms partition a data set
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into clusters through the minimization of some suitable measures such as a cost

function. The K-means method, FORGY, ISODATA, WISH (MacQueen 1967;

Anderberg 1973; Ball and Hall 1976; Dubes and Jain 1976), and Fuzzy ISODATA

(Bezdek 1980), for examples, are essentially based on the minimization of a

squared-error function. The K-means methods use the mean value of the objects

in a cluster as the cluster center. Its time complexity is O(nkt), where n is the

number of objects, k is the number of clusters, and t is the number of iterations. That

is, for fixed k and t, the time complexity is O(n). Thus, it is essentially linear in the

number of objects and this becomes its advantage. However, the K-means method

is sensitive to initial partition, noise, and outliers (objects whose removal improves

significantly the tightness of the clusters), and it cannot discover clusters of

arbitrary shapes. By using the most centrally located object (medoid) in a cluster

as the cluster center, the K-medoid is less sensitive to noise and outliers but in the

expense of a higher computational cost. PAM (partitioning around medoids) is an

earlier K-medoid method that uses a complex iterative procedure to replace

k cluster centers (Kaufman and Rousseeuw 1990). The computational complexity

in a single iteration is O(k(n-k)2). Thus, the algorithm is very costly for large data

sets. To deal with large volume of data, CLARA (clustering large application) takes

multiple samples of the whole data set and applies PAM to each sample to give the

best clustering as the output (Kaufman and Rousseeuw 1990). The computational

complexity for each iteration becomes O(ks2+k(n-k)), where s is the sample size.

So, the success of CLARA depends on the sample chosen. Good-quality clustering

will not be achieved if the samples are biased. To better combine PAM and

CLARA, CLARANS (clustering large applications based upon randomized search)

is constructed to search only the subset of a data set but not confining itself to any

sample at any time (Ng and Han 1994). The process is similar to searching a graph

as if every one if its nodes are potential solutions. The algorithm attempts to search

for a better solution by replacing the current one with a better neighbor in an

iterative manner. Though CLARAN appears to be more effective than PAM and

CLARA, its computational complexity is roughly O(n2). Furthermore, it assumes

that all objects to be clustered are stored in the main memory. It should be noted that

most of the partitioning methods cluster objects on the basis of the distance between

them. It actually constitutes the expensive step of the algorithms. Since the mini-

mization problems involved are generally NP-hard and combinatorial in nature,

techniques such as simulated annealing (Kirpatrick et al. 1983), deterministic

annealing (Rose et al. 1990), and EM (expectation maximization) algorithms

(Celeux and Govaert 1992) are often utilized to lower the computational overhead.

Moreover, most of the existing algorithms can only find clusters which are spherical

in shape.

In addition to the hierarchical and partitioning approaches, there are other

clustering methods such as the graph theoretic methods (Leung 1984; Karypis

et al. 1999), the density-based methods (Banfield and Raftery 1993), the grid-

based methods (Wang et al. 1997; Sheikholeslami et al. 1998), the neural network

methods (Kohonen 1982), the fuzzy sets methods (Bezdek 1980; Leung 1984), and

the evolutionary methods (Al-Sultan and Khan 1996). The graph theoretic methods
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often convert the clustering problem into a combinatorial optimization problem that

is solved by graph algorithms or heuristic procedures. The density-based methods

generally assume a mixture of distributions, with each cluster belonging to a

specific distribution, for the data. Their purpose is to identify the clusters and the

associated parameters. The grid-based methods impose a grid data structure on the

data space in order to make density-based clustering more efficient. They however

suffer from the curse of dimensionality as the number of cells in the grid increases.

Neural network models generally perform clustering through a learning process.

The self-organizing map, for example, can be treated as an on-line version of

k-means with competitive learning. The fuzzy sets methods solve clustering pro-

blems where an object can belong to multiple clusters with different degrees of

membership. The fuzzy c-means algorithm and fuzzy graph method are typical

examples. The evolutionary methods are stochastic multi-point search algorithms

that can be employed to solve clustering problems involving optimization. The

basic principle is to devise an evolutionary strategy so that global optimal clustering

can be obtained by evolving a population of clustering structures with some

evolutionary operators. To achieve good quality clustering, hybrid approaches are

often used in applications. In any case, all of these methods generate either the

hierarchical or partitioning clustering. They can, in a sense, be fitted under either

one of the frameworks.

Due to the complexity and size of the spatial databases, clustering methods

should be efficient in high dimensional space (though spatial clustering is often of

low dimensions), explicit in the consideration of scale, insensitive to large amount

of noise, capable of identifying useful outliers, insensitive to initialization, effective

in handling multiple data types, independent to a priori or domain specific knowl-

edge (except for application specific data mining), and able to detect structures of

irregular shapes. Conventional clustering algorithms often fail to fulfill these

requirements. Whilst it is difficult to develop an ideal method that can meet all of

these requirements, it is important to construct algorithms so that they can entertain

them as much as possible. Since each method has certain assumptions about the

data, it is generally impossible to determine the best clustering algorithm across all

circumstances. An algorithm may be best for one problem or data set but may not

perform as well for another problem or data set. A thorough understanding of the

problem that needs to be solved is the first step towards the selection of the

appropriate algorithm.

In the remaining part of this chapter, a detailed examination of some clustering

methods that we, with the view of satisfying some of the requirements specified

above, have developed to solve particular classes of clustering problems over the

years. In Sect. 2.2, scale space filtering is introduced as a method of hierarchical

clustering for the discovery of natural clusters in spatial data. Incorporation of scale

and treatment of noise, which are essential in spatial data analysis, are explicitly

dealt with in the discussion. In Sect. 2.3, fuzzy relational data clustering is described

as a method of partitioning clustering. The emphasis is again on the introduction of

scale and robustness against noise. Similar to scale space filtering in hierarchical

clustering, unidimensional scaling examined in Sect. 2.4 attempts to provide an
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answer to the issues of sensitivity to initialization, presupposition of a cluster

number, and difficulty of solving global optimization problem commonly encoun-

tered in partitioning clustering. To solve the problem of mixture distributions in

highly noisy environment, a method of mixture decomposition clustering is intro-

duced in Sect. 2.5 to discover natural clusters in spatial data. In Sect. 2.6, the concept

of convex hull is introduced to detect clusters in exploratory spatial data analysis.

2.2 Discovery of Clustering in Space by Scale Space Filtering

In pattern recognition and image processing, human eyes seem to possess a singular

aptitude to group objects and find important structures in an efficient and effective

way. Coding of continuities that occur in natural images was a main research area of

the Gestalt school in psychology in the early twentieth century. With respect to

spatial data mining, one can argue that continuity in scale/resolution in natural

images is analogous to continuity in space. Partitioning of spatial structures in scale

is a fundamental property of our visual system. Thus a clustering algorithm

simulating our visual processing may facilitate the discovery of natural clusters in

spatial databases in general and images in particular.

Based on this view, Leung et al. (2000a) propose a scale space filtering approach

to clustering. In this approach, a data set is considered as an image with each datum

being a light point attached with a uniform luminous flux. As the image is blurred,

each datum becomes a light blob. Throughout the blurring process, smaller blobs

merge into larger ones until the whole image contains only one light blob at a low

enough level of resolution. If each blob is equated to a cluster, the above blurring

process will generate a hierarchical clustering with resolution being the height of

a dendrogram. The blurring process is described by scale space filtering which

models the blurring effect of lateral retinal interconnection through the Gaussian

filtering of a digital image (Witkin 1983, 1984; Koenderink 1984; Babaud et al.

1986; Hummel and Moniot 1989). The theory in fact sheds light on the way we

cluster data, regardless of whether they are digital images or raw data. It also

renders a biological perspective on data clustering.

The proposed approach has several advantages. (1) The algorithms thus derived

are computationally stable and insensitive to initialization. They are totally free

from solving difficult global optimization problems. (2) It facilitates the formula-

tion of new cluster validity checks and gives the final clustering a significant degree

of robustness to noise in the data and change in scale. (3) It is more robust where

hyper-ellipsoidal partitions may not be assumed. (4) It is suitable for the preser-

vation of the structure and integrity of the outliers, peculiarities in space, which

should not be filtered out as noise in the clustering process. (5) The patterns of

clustering are highly consistent with the perception of human eyes. (6) It provides a

unified generalization of the scale-related clustering algorithms derived in various

fields.
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Scale space theory is first described in brief in the discussion to follow. It is then

extended to solve problems in data clustering.

2.2.1 On Scale Space Theory for Hierarchical Clustering

Consider a two-dimensional image given by a continuous mapping pðxÞ : R2 ! R.
In scale space theory, p(x) is embedded into a continuous family P(x, s) of

gradually smoother versions of it. The original image corresponds to the scale

s ¼ 0 and increasing the scale should simplify the image without creating spurious

structures. If there are no prior assumptions which are specific to the scene, then it is

proven that one can blur the image in a unique and sensible way in which P(x, s) is
the convolution of p(x) with the Gaussian kernel, i.e.,

P x; sð Þ ¼ pðxÞ � g x; sð Þ ¼
Z

p x � yð Þ 1

ðs22pÞ e
� yk k 2

2s2 dy; (2.1)

where g(x, s) is the Gaussian function g x; sð Þ ¼ 1

ðs ffiffiffiffi2pp Þ2 e
� xk k 2

2s2 ;s is the scale

parameter, (x, s)-plane is the scale space and P(x, s) is the scale space image.

For each maximum y 2 R2 of p(x), we define the corresponding light blob being
a region specified as follows:

By ¼ x0 2 R2 : lim
t!1 x t; x0ð Þ ¼ y

n o
; (2.2)

where x t; x0ð Þ is the solution of the gradient dynamic system

dx

dt
¼ rxpðxÞ

xð0Þ ¼ x0:
:

8<
: (2.3)

In what follows, y is referred to as the blob center of By. All blobs in an image

produce a partition of R2 with each point belonging to a unique blob except the

boundary points.

Let p(x) = g(x, s), which contains only one blob for s> 0. As s ! 0; this blob
concentrates on a light point defined as

dðxÞ ¼ lim
s!0

g x; sð Þ ¼ 1

ðs ffiffiffiffiffiffi
2p

p Þ2
e�

xk k 2
2s2 : (2.4)

Mathematically, such a function is called a d function or a generalized function.
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A light point at x0 2 R2 in an image is defined as a d function situated at x0, i.e.,
d x � x0ð Þ, which satisfies

g x; sð Þ � d x� x0ð Þ ¼ g x � x0 ; sð Þ ; (2.5)

where g is the Gaussian function. From (2.5) we can see that if we blur a light point,

it becomes a light blob again.

In our everyday visual experience, blurring of an image leads to the erosion of

structure: small blobs always merge into large ones and new ones are never created.

Therefore, the blobs obtained for images P(x, s) at different scales form a hierar-

chical structure: each blob has its own survival range of scale, and large blobs are

made up of small blobs. The survival range for a blob is characterized by the scale at

which the blob is formed and the scale at which the blob merges with others. Each

blob manifests itself purely as a simple blob within its survival range of scale.

Such blurring process can be related with the process of clustering. If p(x) is
a probability density function from which the data set is generated, then each blob is

a connected region containing a relatively high density probability separated from

other blobs by a boundary with relatively low density probability. Therefore, each

blob is a cluster, and all blobs together produce a partition of a data space which

provides a clustering for the data set with known distribution p(x).
For a given data set X ¼ xi 2 R2 : i ¼ 1; � � � ; N� �

; the empirical distribu-

tion for the data set X can be expressed as

p̂emp xð Þ ¼ 1

N

XN
i¼0

d x� xið Þ : (2.6)

The image corresponding to p̂emp xð Þ consists of a set of light points situated at

the data set, just like a scattergram of the data set. When we blur this image, we get

a family of smooth images P(x, s) represented as follows:

P x; sð Þ ¼ 1

N

XN
i¼1

1

ðs ffiffiffiffiffiffi
2p

p Þ2
e�

x�xik k2
2s2 : (2.7)

The family P(x, s) can be considered as the Parzen estimation with Gaussian

window function. At each given scale s, the scale space image P(x, s) is a

smooth distribution function so that the blobs and their centers can be deter-

mined by analyzing the limit of the solution x t; x0ð Þ of the following differential

equation:

dx

dt
¼ rxP x; sð Þ ¼ 1

s2N

XN
i¼1

xi � xð Þ
s
ffiffiffiffiffiffi
2p

p� �2 e�
x�xik k2
2s2

xð0Þ ¼ x0

:

8>><
>>: (2.8)
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Remark 2.1. Treatment of Noise. When a distribution p(x) is known but con-

tains noise or is indifferentiable, we can also use scale space filtering method to

erase the spurious maxima generated by the noise. In this case, the scale-space

image is

P x; sð Þ ¼ p xð Þ � g x; sð Þ ¼
Z

p yð Þ
ðs ffiffiffiffiffiffi

2p
p Þ2

e�
x�yk k 2
2s2 dy; (2.9)

and, the corresponding gradient dynamical system is given by

dx

dt
¼ rxP x; sð Þ ¼

Z
p yð Þ y� xð Þ
ðs ffiffiffiffiffiffi

2p
p Þ2s2

e�
x�yk k2
2s2 dy

xð0Þ ¼ x0

:

8><
>: (2.10)

When the noise in p(x) is an independent white noise process, (2.9) provides an

optimal estimate of the real distribution.

Thus, instead of clustering the data by the underlying distribution p(x), the scale
space method clusters data according to a gradient dynamic system generated by

P(x, s) for each s > 0. By considering the data points falling into the same blob as

a cluster, the blobs of P(x, s) at a given scale produce a pattern of clustering. In this
way, each data point is deterministically assigned to a cluster via the differential

gradient dynamical equation in (2.8) or (2.10), and the method thus renders a

hard clustering result. As we change the scale, we get a hierarchical clustering.

A detailed description of the clustering procedure and the corresponding numerical

implementations are given in the discussion to follow.

2.2.2 Hierarchical Clustering in Scale Space

In scale space clustering, we use the maxima of P(x, s) with respect to x as the

description primitives. Our discussion is based on the following theorem:

Theorem 2.1. For almost all data sets, we have: (1) 0 is a regular value of
rxP x; sð Þ, (2) as s ! 0, the clustering obtained for P(x, s) with s > 0 induces
a clustering at s ¼ 0 in which each datum is a cluster and the corresponding
partition is a Voronoi tessellation, i.e., each point in the scale space belongs to
its nearest-neighbor datum, and (3) as s increases from s ¼ 0, there are N
maximal curves in the scale space with each of them starting from a datum of
the data set.

We know that the maxima of P(x, s) are the points satisfying

rxP x; sð Þ ¼ 0: (2.11)
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Therefore, 0 being a regular value of rxP x; sð Þ means that: (1) all maxima form

simple curves in the scale space, and (2) we can follow these curves by numerical

continuation method (Allgower and Georg 1990).

Remark 2.2. Initialization. In terms of the criterion for cluster centers (i.e., max-

imizing P(x, s)), there is a unique solution at small scale with N centers (each

maximum is the blob center of the corresponding cluster) and hence the method is

independent of initialization.

2.2.2.1 Nested Hierarchical Clustering

The construction procedure of a nested hierarchical clustering based on the scale-

space image is as follows:

1. At scale s ¼ 0, each datum is considered as a blob center whose associated data

point is itself.

2. As s increases continuously, if the blob center of a cluster moves continuously

along the maximal curve and no other blob center is siphoned into its blob, then

we consider that the cluster has not changed and only its blob center moves

along the maximal curve. If an existing blob center disappears at a singular scale

and falls into another blob, then the two blobs merge into one blob and a new

cluster is formed with the associated data points being the union of those of the

original clusters.

3. Increase the scale until the whole data set becomes one single cluster. This

stopping rule is well-defined because we have only one blob in the data space

when scale is large enough.

A hierarchical clustering dendrogram can thus be constructed with scale as

height. Such a hierarchical clustering dendrogram may be viewed as a regional

tree with each of its node being a region so that data falling within the same region

form a cluster. Therefore, the nested hierarchical clustering thus constructed pro-

vides a partition of the data space. In one dimensional case, such a regional tree is in

fact an interval tree.

2.2.2.2 Non-Nested Hierarchical Clustering

Nested hierarchical clustering has been criticized for the fact that once a cluster is

formed, its members cannot be separated subsequently. Nevertheless, we can

construct a non-nested hierarchical clustering which removes such a problem. In

a non-nested hierarchical clustering, we partition the data set X ¼ {x} at a given

scale by assigning a membership to each datum x0 2 X according to (2.2). This

process is similar to the way we perceive the data set at a given distance or a given

resolution. Clusters obtained at different scales are related to each other by the

cluster center lines. As s changes, a non-nested hierarchical clustering is obtained
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since each datum may change its membership under such a scheme. The evolution

of the cluster centers in the scale-space image may be considered as a form of

dendrogram. By Theorem 2.1 we know that 0 is a regular value of rxP x; sð Þ for
almost all data sets. This means that cluster centers form simple curves in the scale

space which can be computed through the path which follows the solutions of the

equation rxP x; sð Þ ¼ 0 by the numerical continuation method.

Non-nested hierarchical clustering is more consistent with that obtained by

human eyes at different distances or different resolutions, while nested hierarchical

clustering has more elegant hierarchical structure.

2.2.2.3 Numerical Solution for Gradient Dynamic System

In the proposed clustering method, clusters are characterized by the maxima of

P(x, s) and the membership of each datum is determined by the gradient dynamical

system in (2.8) or (2.10). Since the solution of the initial value problem of either

equation cannot be found analytically, some numerical methods must be used. If the

Euler difference method is used, the solution of (2.8) or (2.10), x t; x0ð Þ, is then
approximated by the sequence {x(n)} generated in one of the following difference

equations:

x nþ 1ð Þ ¼ xðnÞ þ hrxp xðnÞ; sð Þ ¼ xðnÞ þ h

s2N

XN
i¼1

xi � xðnÞð Þ
ðs ffiffiffiffiffiffi

2p
p Þ2

e�
xðnÞ�xik k2

2s2

xð0Þ ¼ x0

;

8><
>:

(2.12)

or,

x nþ 1ð Þ ¼ xðnÞ þ h

s2

Z
p yð Þ y� xðnÞð Þ e� xðnÞ�yk k 2

2s2 dy

xð0Þ ¼ x0;

8<
: (2.13)

where h is the step length.

If the magnitude of P is scaled by the logarithmic function, the corresponding

gradient dynamical system of (2.8) and (2.10) becomes

dx

dt
¼ 1

s2

PN
i¼1

xi � xð Þ e�
x�xik k2
2s2

PN
i¼1

e�
x�xik k2
2s2

; (2.14)
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and,

dx

dt
¼ 1

s2

R
p yð Þ y� xð Þ e� x�yk k2

2s2 dyR
p yð Þ e� x�yk k2

2s2 dy
; (2.15)

and the discrete approximations to (2.12) and (2.13) then become

x nþ 1ð Þ ¼ xðnÞ þ h

s2

PN
i¼1

xi � xðnÞð Þ e�
xðnÞ�xik k2

2s2

PN
i¼1

e�
xðnÞ�xik k2

2s2

; (2.16)

or,

x nþ 1ð Þ ¼ xðnÞ þ h

s2

R
p yð Þ y� xðnÞð Þ e� xðnÞ�yk k2

2s2 dyR
p yð Þ e� xðnÞ�yk k2

2s2 dy
: (2.17)

Setting the step length h ¼ s2 in (2.17), we get

x nþ 1ð Þ ¼
PN
i¼1

xi e
� xðnÞ�xik k2

2s2

PN
i¼1

e�
xðnÞ�xik k2

2s2

: (2.18)

Such iteration can be interpreted as iterative local centroid estimation (Wilson and

Spann 1990; Linderberg 1990).

When the size of the data set is large or the data are given in a serial form, we can

use the stochastic gradient descent algorithm to search the blob center and deter-

mine the memberships of the data. The purpose is to find the maximum of P(x, s)
which can be represented as

P x; sð Þ ¼ E e�
xðnÞ�xik k2

2s2

� �
; (2.19)

where E[�] is the expectation of the density of the data set y. By the theory of

stochastic gradient descent algorithm, the blob center of a datum x0 can be obtained

by the following iteration initialized at x0:

x nþ 1ð Þ ¼ xðnÞ þ hðnÞ xðnÞ � xðnÞ
	 


e�
xðnÞ�xðnÞk k2

2s2 ; (2.20)
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where x(n) is the nth randomly chosen member of X or the nth datum generated

according to the distribution p(x) to be presented to the algorithm, and h(n) is the
adaptive step length chosen as:

hðnÞ ¼ 1

1þ n
: (2.21)

The datum x0 is then associated with a center x
* if x(n) initialized from x0 converges

to x*. In practice, x(n+1) is defined as a blob center if x nþ 1ð Þ � xðnÞk k < e or
rxp x nþ 1ð Þð Þk k < e, where e is a small positive value which may vary with

problems. If two centers x1 and x2 satisfy the condition x1 � x2k k < e, then they

are considered as one blob center.

To implement the proposed hierarchical clustering, we can use the path-following

algorithm to trace the blob centers along themaximal curves.When a singular scale at

which a blob center disappears is encountered, the new blob center is obtained by

solving (2.8) or (2.10) with initial value x0 ¼ x�. The new blob center is then

followed by the path-following algorithm again. Alternatively, we can use the

discretization of scale and an iterative scheme which works as follows:

2.2.2.4 Nested Hierarchical Algorithm

Step 1. Given a sequence of scales s0; s1; � � � with s0 ¼ 0. At s0 ¼ 0 each datum

is a cluster and its blob center is itself. Let i ¼ 1.

Step 2. Find the new blob center at si for each blob center obtained at scale si�1 by

one of the iterative schemes in (2.12) to (2.18). Merge the clusters whose

blob centers arrive at the same blob center into a new cluster.

Step 3. If there are more than two clusters, let i: ¼ i+1, go to Step 2.

Step 4. Stop when there is only one cluster.

2.2.2.5 Non-Nested Hierarchical Algorithm

Step 1. Given a sequence of scales s0; s1; � � � with s0 ¼ 0. At s0 ¼ 0 each datum

is a cluster and its blob center is itself. Let i ¼ 1.

Step 2. Cluster the data at si. Find the new blob center at si for each blob center

obtained at scale si�1 by one of the iterative schemes in (2.12) to (2.18).

If two new blob centers arrive at the same point, then the old clusters

disappear and a new cluster is formed.

Step 3. If there are more than two clusters, let i: ¼ i + 1, go to Step 2.

Step 4. Stop when there is only one cluster.

Remark 2.3. Computation for Large Data Sets. When the size of the data set is very

large, we can substitute each datum in the iterative scheme in (2.12)–(2.18) with its
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blob center and si with si � si�1 in step 2 to reduce the computational cost of the

above algorithm. In this case, (2.18) becomes

x nþ 1ð Þ ¼

PNi

j¼1

kjpj e
� xðnÞ�pjk k2

2s2

PNi

j¼1

kj e
� xðnÞ�pjk k2

2s2

; (2.22)

where pj is blob center j obtained at scale si, Ni is the number of pj, kj is the number

of data points in the blob whose center is pj and s ¼ si � si�1. Since Ni is usually

much smaller than N, so the computational cost can be reduced significantly.

In practical applications, si should increase according to

si � si�1 ¼ ksi�1: (2.23)

This comes from the requirement of accuracy and stability of the representation, as

proved in Koenderink (1984). In psychophysics, Weber’s law says that the minimal

size of the difference DI in stimulus intensity which can be sensed is related to the

magnitude of standard stimulus intensity I by DI ¼ kI, where k is a constant called
Weber fraction. Therefore, psychophysical experimental results may be used to

propose a low bound for k in the algorithms since we cannot sense the difference

between two images p x; si�1ð Þ and p x; sið Þ when k is less than its Weber fraction.

For instance, k¼ 0.029 in (2.23) is enough in one dimensional applications because

scale s is the window length in the scale space and the Weber fraction for line

length is 0.029 (Coren et al. 1994).

2.2.3 Cluster Validity Check

Cluster validity is a vexing but very important problem in cluster analysis because

each clustering algorithm always finds clusters, no matter they are genuine or not,

even if the data set is entirely random. While many clustering algorithms can be

applied to a given problem, there is in general no guarantee that two different

algorithms will produce consistent answers. They particularly do not provide

answers to the following questions: (1) Do the data exhibit a predisposition to

cluster? (2) How many clusters are present in the data? (3) Are the clusters real or

merely artifacts of the algorithms? (4) Which partition or which individual cluster is

valid? Therefore, cluster validity check should be an essential requirement of any

algorithm. Besides some procedures in statistics (Theodoridis and Koutroubas

1999), one widely used strategy is to employ visual processing to examine distribu-

tions on each separate variable by ways such as histograms, nonparametric density

estimates or plots of each pair of variables using scattergram. However, there is no
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theoretical basis for such visualization. Another strategy is to produce clustering

algorithms based directly on the laws of psychology of form perception. Zahn

(1971) has proposed a clustering algorithm based on the laws of Gestalt psychology

of form perception. The algorithm is a graphical one which is based on the minimal

spanning tree and attempts to mechanize the Gestalt law of proximity which says

that perceptual organization favors groupings representing smaller inter-point dis-

tance. Zahn’s algorithm has a strong influence on cluster analysis. Many algorithms

have been developed on the basis of similar ideas. However, Zahn’s algorithm is

derived from Gestalt psychology laws in a heuristic way since Gestalt laws cannot

be represented in an accurate computational model. This inaccuracy makes it

difficult to establish a formal and efficient cluster validity check.

In scale space filtering, the questions are tackled on the basis of human visual

experience: the real cluster should be perceivable over a wide range of scales. Thus,

the notion of lifetime of a cluster is employed as its validity criterion: A cluster with

longer lifetime is more valid than a cluster with shorter lifetime.

In Leung et al. (2000a), the lifetime of a cluster is used to test the “goodness” of a

cluster, and the lifetime of a clustering is used to determine the number of clusters

in a specific pattern of clustering.

Definition 2.1. Lifetime of a cluster is defined as the range of logarithmic scales
over which the cluster survives, i.e., the logarithmic difference between the point
when the cluster is formed and the point when the cluster is absorbed into or
merged with other clusters.

Each pattern of clustering in a non-nested hierarchical clustering only consists of

clusters which are formed at the same scale. A pattern of clustering in a nested

hierarchical clustering, however, is a partition of the data set X which may consist

of clusters obtained at the same scale or at different scales. In what follows, we

define the lifetime for these two kinds of clustering’s.

Definition 2.2. Let p(s) be the number of clusters in a clustering achieved at a given
scale s. Suppose Cs is a clustering obtained at s with p(s) = m. The s-lifetime of
Cs is defined as the supremum of the logarithmic difference between two scales
within which p(s) = m.

Definition 2.3. Suppose a clustering C in a hierarchical clustering contains K
clusters C1; � � � ; CKf g. Denote the number of data points in Ci by Cij j and the
lifetime ofCi by li. Then the mean lifetime of all clusters in clustering C is defined as

XK
i¼1

li
Cij j
Xj j : (2.24)

The lifetime of clustering C is the mean lifetime of all of its clusters. If a cluster

Ci is further divided into Ki sub-clusters Ci1 ; � � � ; CiKf g, and the lifetime of Cij is

denoted by lij , then the mean lifetime of all its sub-clusters is defined as
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XKi

j¼1

lij
Cij

�� ��
Cij j : (2.25)

The use of logarithmic scale in the above definitions is based on the experimen-

tal tests in Roberts (1997) which show that (s) decays with scale s according to

p sð Þ ¼ ce�bs (2.26)

if the data are uniformly distributed, where b is a positive constant related to the

dimensionality of the data space. If a data structure exists, then p(s) is a constant
over a range of scales. So the stability of p(s) can be used as a criterion to test

whether the data tend to cluster, i.e., have a structure. However, b is unknown and

p(s) is only allowed to take integers. From (2.26) we can see that even for

a uniformly distributed data set, if b is small, p(s) will then be a constant over a

wide range of scales for a small p(s). If b is large, then p(s) will also be a constant
over a wide range of scales for a large s. This makes it difficult to find the

structure in the p(s) plot. However, if the data are uniformly distributed and we

rescale s by a new parameter k such that the number of clusters in the clustering

obtained at the new parameter k, denoted by p(k), decays linearly with respect

to k, i.e.,

pðkÞ ¼ pð0Þ � k ; (2.27)

we can easily find the structure in the plot of p(k). The reason is that it is much

simpler to test whether p(k) decays linearly with respect to k than to test whether

p(k) decays according to (2.26) in which an unknown parameter b is involved.

Under the assumption that p(k) decays linearly with respect to k, the relationship
of k and s can be derived as follows:

Suppose s relates to k through a function s(k). Then we have

pðkÞ ¼ p sðkÞð Þ ¼ ce�bsðkÞ : (2.28)

Under the assumption that p(k) decays linearly with respect to k, see (2.27), we have

dpðkÞ
dk

¼ � 1 : (2.29)

From (2.26), we obtain

dpðkÞ
dk

¼ � cbe�bsdsdk : (2.30)

Equations (2.29) and (2.30) imply that the new parameter k should satisfy
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ds
dk

¼ 1

cb
ebs : (2.31)

Solving this differential equation, we get

k ¼ c 1� e�bs� �
: (2.32)

Such a scaling is an ideal one, but it contains a parameter b which is usually

unknown. In practice, we take the approximation b
�
ebs ¼ b= 1þ bsþ � � �ð Þ � 1=s

in (2.30) which does not contain the unknown parameter b, and this leads to the

logarithmic scale

k ¼ c log
s
e
; (2.33)

where e is a positive constant.
The term k defined in (2.33) is called the sensation intensity under the Fechner’s

Law (Coren et al. 1994). In terms of the new parameter k, lifetime should be

measured by the logarithmic scale of s.
Once a partition has been established to be valid, a natural question that follows

is “How good are the individual clusters?” The first measure of “goodness” of

a cluster is naturally its lifetime: a good cluster should have a long lifetime.

Associated measures are compactness and isolation of a cluster. Intuitively, a

cluster is good if the distances between the data inside the cluster are small and

those outside are large. Compactness and isolation of a cluster are two measures

suggested for the identification of good clusters (Leung et al. 2000a). For a cluster

Ci, the measures are defined as follows:

isolation ¼ Sx2Ci
e� x�pik k2=2s2

Sxe� x�pik k2=2s2 ; (2.34)

compactness ¼ Sx2Ci
e� x�pik k2=2s2

Sx2Ci
Sje

� x�pjk k2
=2s2

; (2.35)

where pi is the blob center of cluster Ci. For a good cluster, the compactness and

isolation are close to one. This measure is dependent on the scale and will be used to

find the optimal scale at which the clustering achieved by non-nested hierarchical

clustering is good.

Therefore, lifetime, compactness and isolation are three measures that can be

employed to check the validity of a good cluster. A genuine cluster should

be compact, isolated and have a relatively long life time. A natural clustering

should be the one which contains a certain number of good clusters with high

overall isolation and compactness, and stays relatively long in the scale space.
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Remark 2.4. A data set invariably contains noisy data points which may be genuine

outliers that carry crucial information. How to detect observations which appear to

be markedly different from the rest of a data set is an important problem in many

diagnostic or monitoring systems (Hawkins 1980; Barnett and Lewis 1994). Suc-

cessful detection of spatial outliers is important in the discovery of peculiar patterns

with significant spatial implications. In scale space clustering, we can use the

number of data points in a cluster Ci and the lifetime of Ci to decide whether or

not Ci is a genuine outlier. If Ci contains a small number of data and survives a long

time, then we say that Ci is an outlier, otherwise, Ci is a normal cluster. Therefore,

we can use the measure

outliernessi ¼ life time of Ci

number of data in Ci
(2.36)

to test for outliers. It means that an outlier is a well isolated group with small

number of data in a large scale range. Since the method treats the data point as light

point, each outlier should be a stable cluster in quite a large scale range. That is to

say, an outlier generally exhibits a high degree of “outlierness.” A threshold may be

used to exclude outliers that are non-essential in data clustering.

2.2.4 Clustering Selection Rules

Hierarchical clustering provides us with a sequence of clustering’s. Several selec-

tion rules are proposed in Leung et al. (2000a) to choose a good clustering from the

sequence of clustering’s in the hierarchy.

The first rule is based on the s-lifetime of a clustering and it tries to find a scale at
which the clustering achieved has long lifetime and high degree of compactness or

isolation.

2.2.4.1 Rule I

1. Find the integer m such that the clustering obtained at s with p(s) ¼ m has the

longest s-lifetime.
2. (a) In nested hierarchical clustering, clusterings which satisfy p(s) ¼ m are

identical to each other, so we can get a unique clustering when m is

obtained.

(b) In non-nested hierarchical clustering, clusterings obtained at two scales

s1 and s2 are usually different from each other even though the result

p s1ð Þ ¼ p s2ð Þ ¼ m is obtained. Therefore, we still need a method to find

the right scale at which a good clustering can be achieved when m is fixed.
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Define respectively the overall isolation and overall compactness for a

clustering achieved at s with p(s) ¼ m as follows:

FðiÞ sð Þ ¼
Xm
i

ith isolation � m

 !
(2.37)

FðcÞ sð Þ ¼
Xm
i

ith compactness � m

 !
(2.38)

where the i-th isolation and i-th compactness are the isolation and compact-

ness of the i-th cluster respectively. By maximizing FðtÞ or FðcÞ under the
condition that p(s) ¼ m, we can get a s at which a partition with maximal

isolation or maximal compactness is achieved. In the general case, p(s)¼ m
is held in an interval s1; s2½ �. Therefore we can use the gradient descent

method to optimize FðtÞ or FðcÞ. The gradient is given by

df

ds
¼
Xm
i¼1

rxiF
dxi
ds

(2.39)

where F is FðtÞ or FðcÞ, and xi is the center of the i-th cluster. Knowing that

each cluster center x is a maximal point of p x; sð Þ, the term dxi=ds can be

obtained as

dx

ds
¼ � rxxP x; sð Þ½ ��1 rxsP x; sð Þ : (2.40)

Finally, we obtain a s which is a minimal point of FðtÞ or FðcÞ and we consider

that the clustering obtained at this scale is good.

The second selection rule is constructed to search for a clustering with the

longest lifetime in nested hierarchical clustering. Let O be the set of all

clustering’s in a nested hierarchical clustering. For each clustering pi 2 O, its
lifetime is denoted by lPi

. The aim of the second rule is to find a clustering Pj

such that

lPj
¼ max

Pi2O
lPi
: (2.41)

Since such problem is usually difficult to solve, several heuristic procedures may

be used to obtain a solution. Leung et al (2000a) propose two greedy methods Rule

II.1 (depth-first search) and Rule II.2 (breadth-first search) for such purpose.

The first procedure is similar to Witkin’s “top-level description.” It works as

follows:
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2.2.4.2 Rule II.1 (Maximization with Depth-First Search)

1. Initially, let P be a clustering with the whole data set as a cluster. Assign 0 as the

lifetime of this unique cluster.

2. Find a cluster Ck in P whose lifetime is shorter than the mean lifetime of its

children, and delete the cluster Ck from P and add all children clusters of Ck into

P, i.e., the new clustering P consists of the children clusters of Ck and other

clusters except Ck. Repeat this process until the lifetime of each cluster in P is

longer than the mean lifetime of its own children.

Clustering obtained by this procedure is usually less complex, i.e., with small

number of clusters.

The second procedure can also be considered as a ‘longest-lifetime-first’ proce-

dure. It works as follows:

2.2.4.3 Rule II.2 (Maximization with Breadth-First Search)

1. Initialize U to be an empty set. Let C ¼ C1; C2 � � � ; CKf g be the set of all

clusters in the hierarchical clustering.

2. Pick the element Ck in C with the longest lifetime and put it into U. Remove Ck

and the clusters in C that are either contained in or contain Ck until C is empty.

The number of elements in U is the number of clusters and U is the

corresponding clustering.

2.2.5 Some Numerical Examples

The first example involves a two-dimensional data set with 250 data points gener-

ated by a five cluster Gaussian mixture model with different shapes. Figure. 2.1a is

the data plot and Fig. 2.1b is the p(k) plot. From Fig. 2.1b, we can observe that p(k)
has an approximately linear decrease with scale k between 0< k< 60, where

k ¼ c log s=eð Þ with e ¼ 0:1 and c ¼ 1=log 1:05ð Þ. For k> 60, the hidden data

structure appears and p(k) ¼ 5 has the longest s-lifetime. Figure. 2.1c, d are

respectively the overall isolation and overall compactness plots. FðtÞ and FðcÞ

achieve their maxima at about k ¼ 67(s ¼ 2.628). At this scale, the clustering

obtained by the non-nested hierarchical clustering algorithm is consistent with that

obtained by the nested-hierarchical clustering algorithm (the corresponding clus-

tering is shown in Fig. 2.2b). Figure 2.2a is the evolutionary plot of the blob centers

obtained by the nested hierarchical algorithm. Figure 2.2b is the data partition

obtained at different scales. It can be observed that the results obtained via the

concept of s-lifetime, isolation and compactness are consistent.

This is actually the solution for the cluster discovery problem (Fig. 1.1) raised in

Chapter 1, section 1.5.
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For the sake of visualization, Fig. 2.3 depicts another two-dimensional data set

with a hidden structure of pðkÞ ¼ 5. At each scale we can generate the pseudo-color

plot, the mesh plot and the contour plot of the scale space image. For example,

Fig. 2.4a–c are respectively the pseudo-color plot, the mesh plot and the contour

plot for s ¼ 0.163, and Fig. 2.5a–c are that for s = 1.868. Apparently, the five

clusters naturally settle in and form the natural clustering of the data at the

appropriate scale.

2.2.6 Discovering Land Covers in Remotely Sensed Images

Leung et al. (2000a) apply the scale-space clustering algorithm to a real-life Land-

sat TM image to discover natural clusters (land covers) in multidimensional data.

It should be noted that if the data set X ¼ xi 2 Rn : i ¼ 1; � � � ; Nf g is in the

space Rn, then its empirical distribution is expressed as p̂emp xð Þ ¼ 1
N

PN
i¼0

d x� xið Þ. The scale space image of p̂emp xð Þ, P x; sð Þ, can be written as

Px x; sð Þ ¼ 1
N

Pk
i¼1

1

s
ffiffiffiffi
2p

p
	 
N

e�
x�xik k2
2s2 , which is the convolution of p̂emp xð Þ with

Fig. 2.1 A numerical example of scale space clustering (a) Plot of the data set. (b) Logarithmic-

scale plot of the cluster number pðkÞ. (c) Logarithmic-scale plot of overall isolation.

(d) Logarithmic-scale plot of overall compactness
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Fig. 2.2 Evolution plot of the scale space clustering in Fig. 2.1 (a) Evolutionary tree of cluster

centers obtained by the algorithm. (b) The partition of the data space obtained by the nested

hierarchical clustering algorithm at scales s0 ¼ 0, s1 ¼ 0.99, s2 ¼ 2.38 and s3 ¼ 2.628 (from

bottom to top)
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Fig. 2.3 Scatter plot of a two-dimensional data set

Fig. 2.4 Visualization of the scale-space image obtained from data set in Fig. 2.3 at s¼ 0.163 (a)

Scale-space image pseudo-color plot for s¼ 0.163. (b) Mesh plot of scale-space image for

s¼ 0.163. (c) Scale-space image contour plot for s¼ 0.163
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the Gaussian kernel G x; sð Þ ¼ 1

s
ffiffiffiffi
2p

p
	 
N

e�
xk k2
2s2 . Each maximum of P x; sð Þ is

considered as a cluster center and a point in X is assigned to a cluster via the

gradient dynamic equation for P x; sð Þ. Since Theorem 2.1 holds in any dimension,

then the scale space filtering algorithms can straightforwardly be extended to n-

imensional data with slight adaptation.

The study area is Yuen Long, located in the northwest of Hong Kong, corres-

ponding to an area of 230KM2 on the Hong Kong topographic maps with geogra-

phical coordinates (113�58´E–114�07´E to 22�21´N–22�31´N). The main land covers

include forest, grass, rock, water, build-up area, trees, marshland, shoals, etc. They are

distributed in a complex way. The Landsat TM10 image used is from 3 March 1996

with fine weather. The image size is 455 � 568 pixels. In the experiment, six bands,

TM1, 2, 3, 4, 5 and 7, are utilized, i.e., the clustering is done in six dimensions.

The experiment first clusters a data set consisting of 800 pixels randomly

sampled from the image and then assigns each pixel to its nearest cluster center.

Figure 2.6 is the Landsat image of Yuen Long, Hong Kong, and Fig. 2.7 shows the

15 cluster solution obtained by applying the scale space clustering algorithm to the

image. The 15 clusters are obtained from Rule II.2 and the outliers are deleted

according to their outlierness defined in (2.36). Compared with the ground truth, the

Fig. 2.5 Visualization of the scale-space image obtained from data set in Fig. 2.3 at s¼1.868 (a)

Scale-space image pseudo-color plot for s ¼ 1.868. (b) Mesh plot of scale-space image for s ¼
1.868. (c) Scale-space image contour plot for s ¼ 1.868
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scale space clustering is capable of finding the fine land covers. For example, three

classes of water bodies corresponding to deep sea water, shallow seawater and fresh-

water of the study area have respectively been identified, while they cannot be distin-

guished by ISODATA method. In the experiments, it is discovered that 150–1,000

sample points are usually large enough to find the land covers contained in the image.

2.2.7 Mining of Seismic Belts in Vector-Based Databases

In seismology, the identification of active faults is crucial to the understanding of the

tectonic pattern and the assessment of seismic risk of a specific region. In areas of

strong seismic activity,major seismic faults are usually tracked by the epicenters of the

Fig. 2.6 Landsat Image of

Yuen Long, Hong Kong

Fig. 2.7 Land covers

revealed by the scale space

clustering algorithm
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seismic events. Seismic belts, by definition, are belts with dense and zonal distribution

of earthquakes controlled by the tectonic belts or the geotectonic aberrance.

Seismic belts are often linear in shape because faults usually exist as wide linear

features (Amorese et al. 1999). Due to the complexity of tectonic structures,

perfectly linear seismic belts can hardly be found. So, methods for the discovery

of seismic belts should be able to recognize features with less-than-perfect linear

shape. Since seismic belts often cluster as non-spherical (ellipsoid) shape, spatial

clustering algorithms need to identify such irregularly shaped structures.

Detecting all possible digital line components contained in a given binary edge

image is one of the most fundamental problems in pattern recognition. Hough

transform (Asano and Katoh 1996), for example, is a classical method which

basically maps each point in the image space to a line in the parameter space, and

counts the intersections to get the parameters of the lines in the image space. The

Hough transform is, however, not suitable for detecting wide linear features such as

the seismic belts (Amorese et al. 1999). Another conventional algorithm to clustering

linear features is the Fuzzy C-Lines (Bezdek et al. 1981). Its basic idea is similar

to ISODATA (Ball and Hall 1965), which minimizes some objective function to

achieve optimal partitioning of a data set in terms of pre-specified clusters. The

difference is that the centers of the clusters in Fuzzy C-Lines change from points to

straight lines. The method, nevertheless, is affected by outliers (Honda et al. 2002).

Seismologists have also developed several methods to search for seismic belts in

databases. The collapsing method (Jones and Steward 1997), the strip method (Zhang

and Lutz 1989), and the blade method (Amorese et al. 1999) are typical examples.

Though scale plays an important role in clustering, particularly for spatial

databases, all of the above methods have not taken scale into consideration. Since

seismic belts are natural structures which can only be detected or observed within a

certain scale range, methods for the mining of such linear clusters should take scale

into consideration. We particularly need to determine the appropriate spatial scale

for the discovery of seismic belts, and to observe their behavior along the scale.

Mathematical morphology provides mathematical tools to analyze the geometry

and structure of objects. To take advantage of such method, scale space can be

constructed with several morphology filtering operators for data mining. Many

attempts have been made to combine mathematical morphology with the concept

of scale space or clustering. Postaire et al. (1993), for example, attempt to find the

“core” of clusters with the opening and closing operators, and allocate the remain-

der points by the nearest neighbor method. Maragos (1989) use standard morpho-

logical opening and closing with structuring elements of varying shape and size to

generate a scale space for shape representation. With increasing or decreasing scale,

specific binary patterns are self-dilated or eroded and are subsequently used in the

open or close operations. The scale parameter is governed by the degree of self

dilation or erosion of a given pattern. In the study by Acton and Mukherjee (2000),

scale space is constructed with the opening and closing operators of area morpho-

logy and the “scale space vectors” are used to perform image classification. Park

and Lee (1996) have also studied the property of scale space using mathematical

morphology. They point out that the scale space of one dimensional gray-scale
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signals based on morphological filtering satisfies causality (no new feature points

are created as scale gets larger), and with the generalized concept of zero-crossing,

opening and closing based morphological filtering will construct a scale space

satisfying causality. Di et al. (1998), on the other hand, propose a clustering

algorithm using the closing operator with structuring elements increasing

iteratively in size, and use the heuristic method to find the best number of clusters.

They, however, do not describe their algorithm from the viewpoint of scale space,

and they do not give thorough analysis on how to specify the precision of the raster

image and how to remove noise to prevent it from disturbing the subsequent

morphological operations.

With special reference to the work of Di et al. (1998) but adopting the scale space

point of view (Leung et al. 2000a), Wang et al. (2006) propose a scale space

clustering method, called Multi-scale Clustering Algorithm with Mathematical Mor-

phology Operators (MCAMMO), for the mining of seismic belts in spatial databases.

To extract linear or semi-linear features, the algorithm is further enhanced by some

more morphological operations, and the algorithm is called Linear MCAMMO

(L_MCAMMO). The idea of MCAMMO is to use mathematical morphology to

obtain the most suitable scale to re-segment the seismic belts first. The final belts are

then obtained with further processing. The procedure of MCAMMO can in brief be

summarized as follows: the vector data set is first converted into a binary image data

set with a grid whose precision is specified by the sorted k-dist graph (Ester et al.

1996). A pair of closing and opening operators is used to remove the noise. A scale

space is then constructed by using the closing operator with structuring elements of

increasing size. Through that, the connected components (the set of cells with

neighborhood relationships, i.e., clusters) in the image will gradually merge into

each other and become a single cluster in the end. This is essentially a binary image

segmentation process, and can also be treated as a hierarchical clustering if the points

under each connected component are viewed as one cluster.

The main enhancement of MCAMMO to the work of Di et al. (1998) is that it

lucidly gives an effective and easy to follow solution to specify the precision of the

raster data set. Based on that, noise removing becomes easier and it makes

MCAMMO a robust clustering method.

To make it more effective in the mining of near linear belts such as the seismic

belts, Wang et al. (2005) perform further segmentation on the data. In brief, the

procedure obtains the skeletons of the segmented image at the most suitable scale

with the thinning operator. It then obtains the nodes, extracts and classifies the

linear (or near linear) axes, and uses such information to re-segment the image in

order to obtain the final linear belts. The procedure is a specialized MCAMMO

and is called the Linear MCAMMO (L_MCAMMO). Though it intends to mine

linear or near linear seismic belts, it is also suitable for the mining of other linear

or semi-linear features such as roads in a remote sensed image contaminated with

noise.

The advantages of MCAMMO are: (1) the number of clusters does not need to be

specified a priori, (2) only a few simple inputs are required, (3) capable of extracting

clusters with arbitrary shapes, and (4) robust to noise.
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2.2.7.1 Experiment 2.1

The data set in this experiment comes from real-life earthquake data collected in

China by the Seismic Analysis and Forecasting Center (1980, 1989). The objec-

tive is to mine seismic belts from this data set. A total of 3,201 seismic events

with magnitude 	 2.2 in the area of [34�–42�N, 106�–115�E] are extracted.

Figure 2.9a shows two nearly parallel seismic belts (in broken lines)

corresponding to the north segment of the North–South seismic belt (on the

left) and the Shanxi seismic belt (on the right) (Fu 1997). The difficulty in mining

the belts lies on the discontinuity of the dense areas in one single belt, which is

hard to pick up by the single-scale clustering algorithms such as DBSCAN (Ester

et al. 1996). The task can, however, be accomplished effectively and efficiently

by MCAMMO.

The lifetime of the clusterings along the scale is depicted in Fig. 2.8, and the

connected components, clusters, at selected scales are shown in Fig. 2.9. From

Figs. 2.8 and 2.9, we can observe that the lifetime of the 2-clusters clustering is the

longest, while that of the 3-clusters clustering is the second longest. By comparing

the images at scale 18 which starts the 2 clusters and scale 14 which starts the 3

clusters, we can observe that the connected components in the latter image are

actually closer to the true seismic belts. It indicates that 3 is the most suitable

number of clusters.

This experiment indicates that clustering of the longest lifetime may not

always be the best solution to every problem. We should also pay attention to

clustering’s whose lifetimes are relatively long, but not the longest. The scale

space approach does provide such valid patterns unraveled by the concept of

lifetime. Although the seismic belts can be extracted by MCAMMO, their shapes

are still not very close to the “near linear” shape of the real seismic belts. In more

complex situations (see Experiments 2.2 and 2.3), the differences would even be

greater. To have better performance, some specializations on MCAMMO need to

be made.
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2.2.7.2 Experiment 2.2

The image of scale 14 in Experiment 1 is re-processed with the strategy of

L_MCAMMO. The skeletons of the segmented image are extracted at the most

suitable scale. The nodes of the skeletons are obtained with the hit-or-miss trans-

form. They are “smashed” to split the skeletons into the arcs which are recombined

into several groups of “the longer the better” and “the straighter the better” linear

(or near linear) axes. Using the information of nodes, skeletons and axes, the image

is re-segmented into several linear (or near linear) belts. The belts such obtained

Fig. 2.9 Mining of seismic belts with MCAMMO (a) Original vector-based data set. (b) Raster-

ized image. (c) First scale with noises removed. (d) Scale 5. (e) Scale 10. (f) Scale 13. (g) Scale 14.

(h) Scale 18. (i) Scale 25
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will be very close to the true seismic belts. As a result, two linear belts are obtained

which are very close to the actual seismic belts (see Fig. 2.10). This actually

provides the answer to the discovery of seismic belts problem (Fig. 1.2) posed in

Chapter 1, section 1.5.

2.2.7.3 Experiment 2.3

In this experiment, the test area is moved to [40–50�N, 106–115�E] to further

validate the effectiveness of L_MCAMMO. There are three main seismic belts

which are conglutinated with each other, with the upper one in near arch shape

(Fig. 2.11a). MCAMMO is first employed to extract the most suitable image (see

Fig. 2.12). It can be observed that the clustering stabilizes at scale ***9 with two

clusters. Apparently, the segmented image (Fig. 2.11b) is very different from the

actual seismic belts. So, by applying the L_MCAMMO, the image at scale 9 is

employed to extract the skeletons (Fig. 2.11c), obtain the axes (Fig. 2.11d) and then

extract the linear belts (Fig. 2.11e). Subsequently, the three longest linear belts

obtained are very close to the actual seismic belts.

Fig. 2.10 Segmentation after specialization (a) Image with the longest lifetime. (b) Skeletons.

(c) Axes of the two longest linear belts. (d) Two belts extracted

Fig. 2.11 Another seismic area (a) Original data set. (b) Image at the most suitable scale.

(c) Skeletons. (d) Axes. (e) Linear belts. (f) Clustering result of Fuzzy C- Lines
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As a comparison, Fuzzy C-Lines is employed to extract the belts with the same

data set (Wang et al. 2003). Fuzzy C-Lines turns out to be very sensitive to

noise. So, noise removal needs to be performed first. The inputs of Fuzzy C-Lines

are: m ¼ 2, the number of clusters ¼ 4 (taking into account the short linear belts in

the center of the image), and 100 iterations. The central lines of the final clusters

and the points distributed around them are depicted in Fig. 2.11f. From this image,

we find that the upper seismic belt is split apart, where as L_MCAMMO is robust to

the “not very linear” clusters. Furthermore, a cluster composed by the points with

very large space in-between is obtained by Fuzzy C-Lines (see the bottom-right in

Fig. 2.11f), which is not very reasonable. This shows that L_MCAMMO does a

better job on this data set. It should also be noted that L_MCAMMO, unlike fuzzy

C-Lines, does not require the number of lines (m ¼ 2) and the number of

clusters ¼ 4, to be pre-specified as inputs. That is what makes scale space

clustering, L_MCAMMO in particular, more natural and spontaneous.

To recapitulate, MCAMMO, with the L_MCAMMO enhancement, can obtain

the most suitable scale to re-segment an image, and the mining of the linear belts is

completed by the re-segmentation procedure.

2.2.8 Visualization of Temporal Seismic Activities
via Scale Space Filtering

In seismology, the identification of seismic active periods and episodes in the

temporal domain, the seismic belts in the spatial domain, the seismic sequence

and the seismic anomaly in the spatio-temporal domain can all be treated as a

clustering problem. I have shown in Sect. 2.2.7 how scale space clustering can be

employed to mine seismic belts in spatial data. I will show in this subsection how

the clustering algorithm, together with its visualization, can be used to identify

seismic active periods and episodes in temporal data.
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In a larger spatial context, the temporal sequence of strong earthquakes exhibits

a certain pattern of clustering with interspersed quiescence and active periods, i.e.,

quasi-periodicity (Ma and Jiang 1987; Kagan and Jackson 1991; Fu and Jiang

1994). Accordingly, the regional seismic activity in the temporal domain can be

segmented into the seismic active periods and the seismic active episodes on the

finer temporal scale (Cao and Fu 1999). Exact and quantitative analysis of seismic

active periods and episodes has important implications to the understanding and

forecasting of long- and medium-term earthquakes.

Due to the complexity and unpredictability of earthquakes, as well as the

difficulty in analyzing the seismic active periods and episodes, the study of seismic

activities often rely on the seismologists’ expertise and judgments with simple

statistical indices (Matthews and Reasenberg 1988). To make the analysis more

rigorous and results easier to evaluate, quantitative methods are often needed in

conjunction with domain specific expertise (Kagan 1999). Cluster analysis has thus

become a common approach to study seismic activities.

As discussed, clustering by scale space filtering has an intrinsic relationship with

our visual system. The visualization of clustering by scale space filtering includes

two phases: namely visual representation and interactive analysis.

In the first phase, the construction process of scale space clustering can naturally

be visualized via a top-to-bottom tree-growing animation in two-dimensional/three-

dimensional (2D/3D) views. Animation facilitates the generation of the original

qualitative cognition about the clustering in the whole scale space. We can interac-

tively set the visual properties of animation and navigate the scale space in 2D/3D

view, including the rotation of a view and the one-dimensional or all-dimensional

zooming of a view. This phase suits the visual representation of the scale space.

After the construction of the scale space, visualization based on the scale space

and the indices for cluster validity check can assist us to interactively construct,

verify and revise at any scale our cognition of the optimal clustering until the final

result is obtained. The visualization techniques include the 2D/3D graphs and

diagrams of indices which provide the interaction with the concrete numeric indices

and customization of the visual properties. Based on the information conveyed by

the indices, we can use the slider technique to select the scale of interest in free-

style. The corresponding clustering result is shown by both the view of the scale

space and the map or time sequence graph. Obviously this phase enables interactive

analysis for obtaining the optimal result.

For illustration, I give in the following a brief description of a study on the

visualization of seismic activities by scale space clustering (Qin et al. 2006).

2.2.8.1 Experimental Data

In this application, periodic seismic activity of strong earthquakes in Northern

China (34–42�N, 109–124�E) is identified via the visualization of the clustering

process of scale space filtering. Considering the completeness of the strong earth-

quake catalog (Huang et al., 1994a, b), two datasets are chosen: (1) the strong

2.2 Discovery of Clustering in Space by Scale Space Filtering 43



earthquakes (Ms	 6.0) of 1290–2000 AD which have 71 records, and (2) the strong

earthquakes (Ms	 4.7) of 1484–2000 AD which have 670 records. In seismology,

both Ms6.0 and Ms4.7 are lower bounds of strong seismic meanings.

2.2.8.2 Temporal Segmentation of Strong Earthquakes (Ms	 6.0)

of 1290–2000 AD

The scale space for the time sequence of earthquakes in this period is depicted in 2D

in Fig. 2.13. The number of clusters and the indices including lifetime, isolation and
compactness of the clustering are shown in Fig. 2.14.

The scale-space graph and indices call for special attention to the patterns

appearing in both the 59–95th and the 6th scale steps (Fig. 2.14). In the 59–95th

scale range, there are three clusters in the clustering with the longest lifetime,

isolation and compactness. It is the seismic active period recognized through the

visualization of the clustering algorithm (Fig. 2.15a). It actually corresponds to the

Second, Third, and Fourth Seismic Active Periods singled out by the seismologists

(Jiang and Ma 1985). The correspondence between the clustering and seismologists’

results is summarized in Table 2.1.

In the 6th scale step, the number of clusters changes dramatically. The number of

clusters deceases rapidly for scales preceding the 6th. After the 6th step, however,

the change in clustering becomes comparatively smooth. This clustering process

shows that the earthquakes, which are comparatively frequent in the time dimension

preceding the 6th step, merge rapidly into clusters when the observation scale

increases in this scale range. When the time scale is larger than six and seven,

however, clusters are formed in more apparent isolations. Fewer clusters are formed

in a relatively long scale range. The clustering result in the 6th scale step in fact

corresponds to what is recognized by the seismologists as the seismic active

episodes (Fig. 2.15b).

2.2.8.3 Temporal Segmentation of Strong Earthquakes (Ms	 4.7)

of 1484–2000 AD

Similar analysis and visualization are applied to the time sequence of strong earth-

quakes (Ms	 4.7) of 1484–2000 AD. Based on the indices shown in Fig. 2.16, two

Fig. 2.13 Scale-space

clustering for earthquakes

(Ms	 6)
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clusters are deciphered in the 74–112th scale range. They correspond well with the

Third and Fourth Seismic Active Periods identified by the seismologists

(Fig. 2.17a). Similar to the 1290–2000 AD situation, in the 10th scale step of this

time period, we discover 18 clusters which match well with the seismic active

episodes identified by the seismologists (Fig. 2.17b).

2.2.8.4 An Overall Interpretation of the Clustering Results

Table 2.1 tabulates the seismic active periods and episodes unraveled by the scale

space clustering algorithm versus that of the seismologists.

It can be observed that the periods and episodes of earthquakes (Ms	6) and

(Ms 	 4.7) obtained by scale space clustering are consistent with the results identified

by the seismologists’ domain specific expertise, with the exception that the episodes of
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the Fourth Seismic Active Period recognized by the clustering algorithm is not as

consistent. It seems that there is a quasi-periodicity of about 10–15 years for active

episodes.

2.2.9 Summarizing Remarks on Clustering by Scale
Space Filtering

1. Lifetime is a suitable cluster-validity criterion. This can be observed in Fig. 2.2.

2. The algorithms are robust to the variation of cluster shape which can even be

non-Gaussian. This is mainly because the objective function in (2.7) is the

density distribution estimate and the algorithm is a “mode-seeking” one which

tries to find the dense regions. If the data consist of long and thin clusters, we can

make use of the Mahalanobis distance instead of the Euclidean distance in the

algorithms, and the covariance matrices can be estimated iteratively with a
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particular regulation technique if too few a data is contained in a given cluster.

This phenomenon can also be seen in Fig. 2.1 and the other experiments where

data are of different shapes.

3. The algorithms are insensitive to outliers because outliers can easily be detected

in these algorithms. From (2.7) and (2.8), we can see that the influence of one

point on a given cluster center is proportional to O de�d2=s2
	 


with d being the

distance between them. When d is large, O de�d2=s2
	 


is very small. An outlier

is usually very far from the cluster centers, so it has little influence on the

estimation of the cluster center. On the other hand, the normal data points are

usually far away from the outlier, so they have little influence on an outlier. That

is to say, an outlier can survive for a long time as a cluster. Therefore, it has a

high degree of outlierness (see (2.36)) and can easily be detected.

Table 2.1 Seismic active periods and episodes obtained by the clustering algorithm and the

seismologists

Seismologists’ results Clustering result

Seismic

active

period

Seismic

active

episode

(Jiang and

Ma 1985)

(Gu et al. 1995) Ms	6 Ms	4.7

II 1290–1340 (6)

III 1484–1730 1481–1730 1484–1730 (31) 1484–1772 (200)

IV 1815– 1812– 1815–(34) 1789–(470)

II 1 (?) 1290–1314 (5)

2 (?) 1337 (1)

III 1 1484–1487 1481–1487 1484–1502 (3) 1484–1494 (12)

2 1497–1506 1501–1506 1495–1533 (37)

3 1522–1538 1520–1539 1524–136 (2)

4 1548–1569 1548–1569 1548–1568 (4) 1536–1569 (30)

5 1578–1597 1580–1599 1587–1597 (2) 1576–1599 (28)

6 1614–1642 1614–1642 1614–1642 (8) 1610–1633 (31)

1638–1649 (10)

7 1658–1683 1658–1695 1658–1695 (10) 1654–1695 (38)

8 1695–1708 1698–1708 (3)

9 1720–1730 1720–1730 1720–1730 (2) 1720–1746 (7)

Quiescent

Period

1754–1772 (4)

1789–1798 (6)

V 1 1815–1820 1812–1820 1815–1830 (4) 1805–1835 (26)

2 1829–1835 1827–1835

3 1855–1862 1846–1863 1861 (1) 1851–1862 (11)

4 1880–1898 1880–1893 1879–1888 (3) 1879–1893 (13)

5 1909–1923 1909–1918 1903–1918 (4) 1898–1924 (28)

6 1929–1952 1921–1952 1922 (1) 1929 (2)

1929–1945 (6) 1931–1948 (15)

7 1966–1978 1965–1976 1966–1983 (13) 1952– (369)

1998– (2)

(The number in parentheses is the number of earthquakes in the cluster)
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4. Since the proposed algorithm allows cluster in a partition to be obtained at different

scales,more subtle clustering, such as the discovery of land covers, can be obtained.

5. The algorithms work equally well in small and large data sets with low and high

dimensions.

6. The proposed clustering method can also be applied to the clustering of data with

known distribution containing noise or being indifferentiable.

7. Several scale-based clustering algorithms have been proposed in recent years

(Taven et al. 1990; Wilson and Span 1990; Wong, 1993; Chakravarthy and

Ghosh 1996; Miller and Rose 1996; Waldemark 1997; Roberts 1997; Blatt et al.

1997). They are derived from very different approaches, such as estimation theory,

self-organization feature mapping, information theory, statistical mechanics,

and radial basis function networks. One, however, can show that these algorithms

are closely related to each other, and in fact, each of these algorithms is equivalent

to a special implementation of the proposed algorithm in Leung et al. (2000a).

Fig. 2.16 Indices of clustering along the time scale for earthquakes (Ms	 4.7) (a) Number of

clusters (The vertical axis just shows the part no larger than 150). (b) Lifetime, isolation and

compactness of the clustering
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8. For further research, mechanism should be devised to separate clusters which are

close to each other. Furthermore, since Gaussian scale space theory is designed

to be totally non-committal, it cannot take into account any a priori information

on structures which are worthy of preserving. Such a deficiency may be im-

proved by employing more sophisticated nonlinear scale space filters or by

integrating appropriate methods, such as mathematical morphology in the seis-

mic belt experiment.

2.3 Partitioning of Spatial Data by a Robust Fuzzy Relational

Data Clustering Method

As discussed in Sect. 2.1, there are two basic approaches to discover clusters in

data. Scale space filtering that has just been discussed in Sect. 2.2 belongs to

hierarchical clustering. To make our discussion more complete, a method for

partitioning clustering, called robust fuzzy relational data clustering, is introduced

in this section. Similar to scale space filtering, special attention is again paid to the

issue of scale and noise in the clustering of spatial data.

Fig. 2.17 Ms-time plot of clustering results for earthquakes (Ms	 4.7) (a) 2 clusters in the

74–112th scale range. (b) 18 clusters at the 10th scale step
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2.3.1 On Noise and Scale in Spatial Partitioning

In spatial clustering, data may be object data X ¼ x1; x2; � � � ; xNf g 2 Rs, with

feature vector xk corresponding to object k, or relational data represented by an

N � N relational data matrix D ¼ Dij

� �
N�N

, in which Dij measures the relationship

between object i and object j, and D may be a similarity or dissimilarity relation

(Leung 1984, 1988; Jain and Dubes 1988; Kaufmann and Rousseeuw 1990). The

classical clustering algorithms for relational data can be found in Jain and Dubes

(1998), and several fuzzy clustering algorithms for relational data can be found in

(Hathaway et al. 1989; Bezdek et al. 1991; Hathaway and Bezdek 1994; Hathaway

et al. 1994). In general, these methods are sensitive to noise and outliers in the data.

However, data in real applications usually contain noise and outliers. Thus, cluster-

ing techniques need to be robust if they are to be effective under noise. Since fuzzy

clustering, by showing the degree to which an object fits into each cluster (Bezdek

et al. 1991, 1999), has the obvious advantage in conveying more information about

the cluster structure, many robust fuzzy clustering algorithms have been developed

in recent years (Ohashi 1984; Dave 1991; Dave and Krishnapuram 1997; Frigui

and Krishnapuram 1999). While most of the existing robust clustering algorithms

are designed to solve clustering problems involving object data only, a huge

number of data sets collected in communication, transportation and other spatial

analyses is however relational in nature. Therefore, it is essential to develop robust

fuzzy relational data clustering algorithms for the analysis of such data type. By

incorporating the concept of clustering against noise in the relational algorithms,

Hathaway et al. (1994) and Sen and Dave (1998) have developed algorithms

for clustering relational data contaminated by noise. Since the algorithms proposed

by Ohashi (1984) and Dave (1991) are robust against noise in the object data, its

relational versions are expected to be insensitive to noise in relational data. How-

ever, this approach is criticized for having only one “scale” parameter whilst in

practical applications each cluster may have its own special scale. Another defi-

ciency of the current clustering approach under noise is that a consistent method to

find an appropriate value for the scale parameter is non-existent.

To be able to handle noise and scale, Zhang and Leung (2001) proposed a robust

fuzzy relational clustering method by introducing multiple scale parameters into

the objective function so that each cluster has its own scale space parameters.

Without loss of generality, the method only considers dissimilarity relation, and

the value of Dij is arbitrary and no specific relations, such as positivity, reflexivity /

anti-reflexivity or symmetry, are imposed on the dissimilarity matrix D. (A fuzzy

graph theoretic approach to clustering on the basis of a similarity or dissimilarity

matrix resulting in hierarchical partitioning of spatial data can be found in

Leung (1984)).

Based on Zhang and Leung (2001), noise clustering techniques are first briefly

reviewed in this section, and a multiple-scale parameter clustering algorithm for

object data containing noise is then proposed. Its relational versions are subse-

quently described and a new necessary condition for optimizing the corresponding
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objective function is stipulated. The estimation of the scale parameters and

detailed description of the proposed algorithm are then made and substantiated

with examples.

2.3.2 Clustering Algorithm with Multiple Scale Parameters
for Noisy Data

For an object data set X ¼ x1; x2; � � � ; xNf g, we denote its cluster centers by

Pv; v ¼ 1; � � � ; k. The fuzzy c-means algorithm (FCM) (Bezdek et al. 1999) assumes

that the number of clusters c is known a priori and the goal is to minimize

Jfcm ¼
Xk
v¼1

XN
i¼1

uivð Þmdiv; (2.42)

wherem > 1 is fixed, div is the squared distance from a feature point xi to the cluster

center pv, and uiv is the membership of xi in cluster v which satisfies:

viv 	 0; for i ¼ 1; � � � ; n; v ¼ 1; � � � ; k; (2.43)

Xk
v¼1

uiv ¼ 1; for i ¼ 1; � � � ; n: (2.44)

The necessary conditions for local extrema of the minimization of (2.42) subject to

(2.43) and (2.44) are

uiv ¼
Xk
w¼1

div
diw

 �1= m�1ð Þ !�1

; i ¼ 1; � � � ; n; v ¼ 1; � � � ; k; (2.45)

and,

pv ¼
PN
i¼1

uivð Þmxi
PN
i¼1

uivð Þm
; v ¼ 1; � � � ; k: (2.46)

Similar to hard c-means algorithms, fuzzy c-means algorithm is sensitive to

noise and outliers. Robust clustering technique is thus introduced to make FCM less

sensitive to noise. The goal of such an algorithm is to minimize

Jnc ¼
Xk
v¼1

XN
i¼1

uivð Þmdiv þ
XN
i¼1

� 1�
Xk
v¼1

uiv

 !m

(2.47)

2.3 Partitioning of Spatial Data by a Robust Fuzzy Relational Data Clustering Method 51



subject to

uiv 	 0; i ¼ 1; � � � ; n; v ¼ 1; � � � ; k; (2.48)

Xk
v¼1

uiv 
 1; i ¼ 1; � � � ; n: (2.49)

The necessary conditions for local extrema of the above optimization pro-

blem are

uiv ¼
Xk
w¼1

div
diw

 �1= m�1ð Þ
þ div

�

 �1= m�1ð Þ !�1

; i ¼ 1; � � � ; n;

v ¼ 1; � � � ; k;
(2.50)

and,

pv ¼
PN
i�1

uivð Þmxi
PN
i¼1

uivð Þmxi
; v ¼ 1; � � � ; k: (2.51)

It should be noted that the clustering algorithm works satisfactorily provided that

an appropriate value of the scale parameter,�, is known. However, a consistent

method to find a good value of � is not available. Another deficiency of clustering

under noise is that only one “scale” parameter is used while in practical applica-

tions, each cluster may have its own special scale. Zhang and Leung (2001) address

these problems by letting each cluster have its own scale parameter. The proposed

objective function becomes

Jnc ¼
Xk
v¼1

XN
i¼1

uivð Þm div
�v

þ
XN
i¼1

1�
Xk
v¼1

uiv

 !m

; (2.52)

where uiv; i ¼ 1; � � � ; n; v ¼ 1; � � � ; k, are membership values that need to satisfy

(2.48) and (2.49). The necessary conditions for local extrema of the minimization of

(2.52) subject to (2.48) and (2.49) are

uiv ¼
Xk
w¼1

div=�v
diw=�w

 �1= m�1ð Þ
þ div

�v

 �1= m�1ð Þ !�1

;

i ¼ 1; � � � ; n; v ¼ 1; � � � ; k;
(2.53)
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and,

pv ¼
PN
i¼1

uivð Þmxi
PN
i¼1

uivð Þmxj
; v ¼ 1; � � � ; k: (2.54)

Since each cluster has its own scale parameters, we can use the techniques

developed in the possibilistic c-means clustering approach (Dave and Krishna-

puram 1997) to estimate the scale parameters as follows:

Obtain a pilot clustering by the FCM first and then estimate �v by

�v ¼ K

PN
i¼1

uivð Þmdiv
PN
i¼1

uivð Þm
; v ¼ 1; � � � ; k; (2.55)

where uiv is the membership value obtained by the FCM, div is the corresponding

squared distance between xi and cluster center pv, and K is typically chosen to be 1.

Another estimate of �v is given by

�v ¼
PN
k¼1

uikð Þ	adik

PN
k¼1

uikð Þ	a
; v ¼ 1; � � � ; k; (2.56)

where a 2 0; 1ð Þ gives the crisp a-cut partition

uikð Þ	a ¼ 0; if uik < a;

1; if uik 	 a:

(
(2.57)

Based on the multiple-scale parametric objective function in (2.52), the multi-scale

parametric clustering algorithm (MPCA) for noisy data is formulated as follows:

Step 1. Execute a FCM algorithm to find an initial membership values uiv.
Step 2. Apply (2.55) to compute �1; � � � ; �k based on the membership values and

cluster centers obtained in step 1.

Step 3. Repeat the following sub-steps: Apply (2.54) to update pv, Apply (2.53) to

compute uiv, until maxiv uiv iþ 1ð Þ � uivðiÞj j < e:
Step 4. Apply (2.55) or (2.56) to compute �1; � � � ; �k based on the membership

values obtained in step 3.

Step 5. Repeat step 3 to improve div and uiv, and then stop.
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In possibilistic c-means clustering, Krishnapuram and Keller (1993) have sug-

gested the use of (2.55) in step 2 and (2.56) in step 4. However, there is no consistent

method for finding an appropriate value of a for a given data set at present. Zhang

and Leung (2001) propose to use (2.55) in steps 2 and 4 since the membership values

obtained in step 3 are made robust by the noise clustering algorithm. Therefore,

the outliers are of small membership values and they contribute very little to the

estimates of �v’s.

2.3.3 Robust Fuzzy Relational Data Clustering Algorithm

The clustering algorithm for relational data containing noise is perhaps first consid-

ered by Hathaway et al. (1994), and subsequent relational versions are developed by

Sen and Dave (1998). These algorithms are the robust versions of fuzzy relational

data clustering algorithms and their objective function is

J U;Dð Þ ¼
Xk
v¼1

Pn
i;j¼1 uivð Þm ujv

� �m
Dij

2
Pn

j¼1 ujv
� �m þ �

XN
i¼1

1�
Xk
v¼1

uiv

 !m

; (2.58)

where themembership values uiv are subjected to (2.48) and (2.49). The dissimilarity

matrix D in these algorithms is assumed to have the following property:

Dij 	 0;Dij ¼ Dji; i 6¼ j and Djj ¼ 0: (2.59)

It has been proved that the necessary conditions for minimizing (2.58) subject to

(2.48) and (2.49) are as follows:

uiv ¼ 1=divð Þ1= m�1ð ÞPk
w¼1 1=diwð Þ1= m�1ð Þ þ 1=�1= m�1ð Þ

; i ¼ 1; � � � ; n; v ¼ 1; � � � ; k; (2.60)

where

div ¼
Xn
j¼1

Dij

ujv
� �m
qv

 !
� 1

2

Xn
j;k¼1

Djk

ujv
� �m

ukvð Þm
qvð Þ2

 !
; i ¼ 1; � � � ; n;

v ¼ 1; � � � ; k;
(2.61)

and qv ¼
Pn

j¼1 ujv
� �m

. When div is negative, then uiv may become negative. There-

fore, there is no guarantee that the constraint in (2.48) will be satisfied. This

problem can be solved by applying a “spreading” transformation proposed by

Hathaway and Bezdek (1994). The spreading transformation adds a positive
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number b to all off-diagonal elements of D. In fact, Hathaway and Bezdek’s

algorithms are derived under the condition that the relational data D is Euclidean,

which means that Dij ¼ xj � xi
�� ��2 for some data set X ¼ x1; x2; � � � ; xNf g, and it

has been proved that there exists a positive b0 such that all dissimilarity matrices

obtained by the spreading transformation with b 	 b0 are Euclidean. When D is

Euclidean, div is the squared Euclidean distance between xi and center of the cluster
pv. Therefore, all div’s are non-negative.

Zhang and Leung (2001) propose a new robust fuzzy relational data clustering

algorithm with multiple-scale parameters and give an alternative approach to

address the problem of negative div. The algorithm aims at the minimization of

the objective function

J U;Dð Þ ¼
Xk
v¼1

Pn
i;j¼1 uivð Þm ujv

� �m
Dij

2�v
Pn

j¼1 ujv
� �m þ

XN
i¼1

1�
Xk
v¼1

uiv

 !m

; (2.62)

with the membership value uiv; i ¼ 1; � � � ; n; v ¼ 1; � � � ; k, constrained by (2.48)
and (2.49). In (2.62), �v; v 2 1; � � � ; kf g, is a normalization constant, called the scale

parameter (which is usually a threshold used to determine which object is an

outlier), and k is the given cluster number. No restriction is imposed on the

dissimilarity matrix D.

The first term in the objective function is employed to reduce the uiv when

object i is with high dissimilarity with other object j in cluster v, and the second

term is employed to guarantee that most data should be in the meaningful

clusters.

For the object data clustering problem, if �v ¼ 1 and Dij is the Euclidean

distance between two vectors representing object i and object j, the first term in

the objective function is the general fuzzy c-means clustering objective function

(Bezdek et al. 1999). Furthermore, if �1 ¼ � � � ¼ �k ¼ �, then the objective function
in (2.62) is equivalent to the objective function in Dave (1991).

If we denote

div ¼ 1

2

Xn
j¼1

Dij

ujv
� �m
qv

 !
þ 1

2

Xn
j¼1

Dji

ujv
� �m
qv

 !

� 1

2

Xn
j;k¼1

Djk

ujv
� �m

ukvð Þm
qvð Þ2

 !
; i ¼ 1; � � � ; n; v ¼ 1; � � � ; k;

(2.63)

where qv ¼
Xn
j¼1

ujv
� �m

, then we can prove that

uiv ¼ 1= divj jð Þ1= m�1ð ÞPk
w¼1 1= diwj jð Þ1= m�1ð Þ þ 1=�

1= m�1ð Þ
v

; i ¼ 1; � � � ; n;

v ¼ 1; � � � ; k;
(2.64)
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satisfies the Karush–Kuhn–Tucker conditions for optimality of the problem in

(2.62) when m� 1 ¼ r1=2r2 with r1 and r2 being odd numbers. Since each m� 1

can be approximated by such numbers, (2.63) and (2.64) are used to estimate the

membership value in the proposed algorithm for any m 	 1.

If Dij is the squared Euclidean distance between objects i and j, then div is the
squared distance from object i to the center of cluster v.

In the proposed algorithm, we must give the estimated value of �v. In Zhang and
Leung (2001), a fuzzy clustering is first obtained by minimizing the following

objective function

J1 U;Dð Þ ¼
Xk
v¼1

PN
i;j¼1 uivð Þm ujv

� �m
Dij

2
Pn

j¼1 ujv
� �m ; (2.65)

with membership values uiv; i ¼ 1; � � � ; n; v ¼ 1; � � � ; k, constrained by (2.43)

and (2.44). This objective function is a natural extension of a fuzzy relational data

clustering algorithm called FANNY (Kaufmann and Rousseeuw 1990) and is first

proposed by Hathaway et al. (1989). As discussed in the above section, we can

derive a necessary condition for the optimal membership variables:

uiv ¼ 1= divj jð Þ1= m�1ð ÞPk
w¼1 1= diwj jð Þ1= m�1ð Þ ; i ¼ 1; � � � ; n; v ¼ 1; � � � ; k; (2.66)

in which

div ¼ 1

2

Xn
j¼1

Dij

ujv
� �m
qv

 !
þ 1

2

Xn
j¼1

Dji

ujv
� �m
qv

 !

� 1

2

XN
j;k¼1

Djk

ujv
� �m

ukvð Þm
qvð Þ2

 !
; for i ¼ 1; � � � ; n; v ¼ 1; � � � ; k:

(2.67)

The fuzzy relational data clustering algorithm (FRDC) based on (2.66) and

(2.67) is as follows (Zhang and Leung 2001):

Step 1. Initialize the membership values uivð0Þ, taking into account constraints in

(2.43) and (2.44). Let i ¼ 0.

Step 2. Compute div by (2.67).

Step 3. Compute uivðiþ 1Þ by (2.66).

Step 4. If maxi;v uiv iþ 1ð Þ � uivðiÞj j < e, then stop. Otherwise, i ¼ iþ 1, then go

to step 2.

When there is one div ¼ 0, we can update uiv, as proposed in the fuzzy c-means

algorithms, in step 3.

Compared with other fuzzy relational data clustering algorithms, the proposed

algorithm has no restrictions on the fuzzy exponent m and the data type. Therefore,

it is a more general fuzzy relational data clustering algorithm.
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When a fuzzy clustering is obtained by the FRDC algorithm, the obtained

membership value uiv is employed to estimate �v as follows:

�v ¼

Pn
j¼1

ujv
� �m

djv
�� ��

Pn
j¼1

ujv
� �m ; v ¼ 1; � � � ; k: (2.68)

To formulate the robust fuzzy relational data clustering algorithm (RFRDC), the

alternating optimization approach with three stages is employed to minimize the

objective function in (2.62). In the first stage, we execute the FRDC algorithm to

determine an initial membership value. In the second stage, (2.68) is applied to

compute the scale parameters �1; � � � ; �k based on the initial cluster membership

values. Then (2.63) and (2.64) are employed to iteratively update the pseudo-

distance and membership values until a given stopping criterion is satisfied (i.e.,

when the membership values uiv cannot be significantly changed in two successive

iterations). In the third stage, �v is estimated on the basis of the membership values

determined in the second stage. Then (2.63) and (2.64) are applied to refine div and
uiv. Details of the robust fuzzy relational data clustering algorithm (RFRDC) are

given as follows:

Step 1. Execute the FRDC algorithm to find the initial membership values uiv.
Step 2. Apply (2.68) to compute �1; � � � ; �k based on the membership values

determined in step 1.

Step 3. Repeat the following sub-steps:

Apply (2.63) to update div,
Apply (2.64) to compute uiv,
until maxi;v uiv iþ 1ð Þ � uivðiÞj j < e.

Step 4. Apply (2.68) to compute �1; � � � ; �k based on the membership values

determined in step 3.

Step 5. Repeat step 3 to improve div and uiv, and then stop.

2.3.4 Numerical Experiments

2.3.4.1 A Pedagogic Example

This example involves two well separated clusters of seven points each and three

noisy points (Fig. 2.18). We assume that the dissimilarity matrix D is Euclidean

with Dij ¼ xi � xj
�� ��2. In this case, the sequence of partitioning membership value

uiv produced by the relational data clustering under noise is identical to the

sequence produced by the corresponding clustering for object data under noise.

The cluster centers in the experimental results can be computed by (2.46) which are

listed in Table 2.2.
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From Table 2.2, we can see that the cluster centers found by the proposed

algorithm are more precise than that of the relational noise clustering algorithm.

Similar phenomena have also been observed in many other numerical experiments

(Zhang and Leung 2001).

2.3.4.2 Concordance in Languages

This example is based on the real relational data from the study carried out by

Johnson and Wichern (1992, Table 12.4), called “concordant first letters for num-

bers in eleven languages” which compares eleven European languages (English,

Norwegian, Danish, Dutch, German, French, Spanish, Italian, Polish, Hungarian,

and Finnish) by looking at the first letters of the first ten numbers. The words for the

same number in two different languages are concordant if they have the same first

Fig. 2.18 Scatter plot of a noisy data set

Table 2.2 Cluster centers in the experiment

cluster 1 cluster 2

real cluster centers (60,150) (140,150)

cluster centers obtained by noise clustering algorithm

(Hathaway et al., 1994b)

(60.2724,

150.2078)

(140.3632,

150.1987)

cluster centers obtained by MPCA (60.0002,

150.0001)

(140.0006,

150.0001)
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letters and discordant if they do not. The following matrix of discordant first letters

for numbers is used as the dissimilarity matrix D to cluster these languages.

E N Da Du G Fr Sp I P H Fi

E 0

N 2 0

Da 2 1 0

Du 7 5 6 0

G 6 4 5 5 0

Fr 6 6 6 9 7 0

Sp 6 6 5 9 7 2 0

I 6 6 5 9 7 1 1 0

P 7 7 6 10 8 5 3 4 0

H 9 8 8 8 9 10 10 10 10 0

Fi 8 9 9 9 9 9 9 9 9 8 0

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

For k ¼ 2, the results obtained by the proposed RFRDC algorithm and NERF

(Hathaway and Bezdek 1994) are listed in Table 2.2, where u:v denotes the

membership value of a language in cluster v obtained by the RFRDC algorithm,

uN�v denotes the membership value of a language in cluster v obtained by NERF, d�v
denotes the distance value obtained from (2.63) by the RFRDC algorithm.

From Table 2.3, we can observe that English, Norwegian, Danish, Dutch and

German form a group, French, Spanish, Italian, and Polish form another group,

while Hungarian and Finnish appear to be standing alone. This clustering result

can be checked by our visual impression of the dissimilarity matrix D. The

advantage of the proposed approach is that it is less subjective in creating clusters

and it gives the extent to which a language is in a cluster. For example, from

Table 2.3, we can see that English, Norwegian, and Danish are more typical than

Dutch and German in cluster 2, and Dutch is less typical than German in this

Table 2.3 Experimental results of the concordance in languages

u�1 u�2 uN�1 uN�2 d�1 d�2
E 0.0346 0.8694 0.1548 0.8452 5.2637 1.0948

N 0.0059 0.9794 0.0488 0.9512 5.2348 0.4095

Da 0.0136 0.9602 0.1041 0.8959 4.5612 0.5492

Du 0.0622 0.3488 0.1427 0.8573 8.1486 4.2307

G 0.0901 0.4447 0.1834 0.8166 6.1874 3.2897

Fr 0.9155 0.0168 0.9542 0.0458 0.6598 4.9528

Sp 0.9499 0.0109 0.9805 0.0195 0.4923 4.6468

I 0.9858 0.0030 0.9824 0.0176 0.2572 4.6619

P 0.3495 0.1405 0.8609 0.1391 3.0218 5.5482

H 0.0589 0.1781 0.2874 0.7126 9.0909 6.7481

Fi 0.0743 0.1491 0.4172 0.5828 8.1090 7.3931
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cluster. In cluster 1, Italian is the most typical one and Polish is the least typical

one. While these conclusions can be drawn from the clustering results produced

by the proposed RFRDC algorithm, they are not obvious in the results obtained by

NERF (see Table 2.3).

2.3.4.3 Clustering of Oil Types

This example employs a real data set from Gowda and Diday (1992) for eight

different types of oil. The similarity matrix obtained from that study is given as

follows:

Oil Type o1 o2 o3 o4 o5 o6 o7 o8

o1 : Linseedoil �
o2 : Perillaoil 4:98 �
o3 : Coiion� seedoil 3:66 5:70 �
o4 : Sesmaeoil 3:77 5:88 7:00 �
o5 : Camelia 3:84 4:70 6:25 5:90 �
o6 : Oliveoil 3:24 5:30 6:68 6:37 6:24 �
o7 : Beef � tallow 0:86 2:78 4:11 3:61 3:48 4:28 �
o8 : Lard 1:22 3:08 4:44 3:97 3:89 4:68 6:74 �

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

The dissimilarity matrix can be generated from the similarity matrix in either of

the following ways:

Dij ¼ 1=Sij � minr 6¼t 1=Srtð Þ; i 6¼ j

or

Dij ¼ maxr 6¼t Srtð Þ � Sij; i 6¼ j

and Dij ¼ 0 for all i. The dissimilarity matrices D1 and D2 generated respectively

by the above equations are as follows:

D1 ¼

0 0:0579 0:1304 0:1224 0:1176 0:1658 1:0199 0:6768
0:0579 0 0:0326 0:0272 0:0699 0:0458 0:2169 0:1818
0:1304 0:0326 0 0 0:0171 0:0068 0:1005 0:0824
0:1224 0:0272 0 0 0:0266 0:0141 0:1342 0:1090
0:1176 0:0699 0:0171 0:0266 0 0:0174 0:1445 0:1142
0:1658 0:0458 0:0068 0:0141 0:0174 0 0:0908 0:0708
1:0199 0:2169 0:1005 0:1342 0:1445 0:0908 0 0:0055
0:6768 0:1818 0:0824 0:1090 0:1142 0:0708 0:0055 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
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and

D2 ¼

0 0:0579 0:1304 0:1224 0:1176 0:1658 1:0199 0:6768
0:0579 0 0:0326 0:0272 0:0699 0:0458 0:2169 0:1818
0:1304 0:0326 0 0 0:0171 0:0068 0:1005 0:0824
0:1224 0:0272 0 0 0:0266 0:0141 0:1342 0:1090
0:1176 0:0699 0:0171 0:0266 0 0:0174 0:1445 0:1142
0:1658 0:0458 0:0068 0:0141 0:0174 0 0:0908 0:0708
1:0199 0:2169 0:1005 0:1342 0:1445 0:0908 0 0:0055
0:6768 0:1818 0:0824 0:1090 0:1142 0:0708 0:0055 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Table 2.4 exhibits the final memberships found by the RFRDC algorithm and

NERF on the dissimilarity matrices D1 and D2. The cluster number is k ¼ 2. In

Table 2.4, u
ð1Þ
�v is the membership value produced by the proposed algorithms for

dissimilarity matrix D1, and u
ð2Þ
�1 is the membership value for D2; uN1�v is the

membership value produced by NERF for dissimilarity matrix D1 , and uN2�v is

the membership value produced by NERF for dissimilarity matrix D2 (the mem-

bership value is taken from Hathaway and Bezdek 1994). It is interesting to see

that in the results obtained by the RFRDC algorithm, o2; o3; o4; o5; o6 form the fist

cluster; o7; o8 form another cluster; o1 seems to be alone and o2 seems to be less

typical in the first cluster. However, we cannot observe these phenomena in the

clustering results obtained by NERF.

2.4 Partitioning of Spatial Object Data by Unidimensional

Scaling

2.4.1 A Note on the Use of Unidimensional Scaling

In Sect. 2.3, I have introduced an algorithm for the discovery of optimal partitioning

of fuzzy relational data in noisy environment. The emphasis is on the robustness to

noise and the multiplicity of scale for clusters. The method falls within the realm

Table 2.4 Experimental results of clustering of oil types

u
ð1Þ
�1 u

ð1Þ
�2 u

ð2Þ
�1 u

ð2Þ
�2 uN1�1 uN1�2 uN2�1 uN2�2

o1 0.0619 0.0000 0.0771 0.0019 0.888 0.112 0.704 0.296

o2 0.4914 0.0002 0.3513 0.0039 0.811 0.189 0.818 0.182

o3 0.9998 0.0000 0.9993 0.0001 0.631 0.369 0.935 0.065

o4 0.9874 0.0004 0.9726 0.0016 0.696 0.304 0.924 0.076

o5 0.8329 0.0006 0.7015 0.0051 0.663 0.337 0.816 0.184

o6 0.9687 0.0011 0.9340 0.0046 0.539 0.461 0.834 0.166

o7 0.0001 0.8275 0.0005 0.9391 0.087 0.913 0.036 0.964

o8 0.0002 0.8475 0.0006 0.9395 0.096 0.904 0.028 0.972
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of partitioning clustering. Though it is robust and scale-based, it, similar to

other partitioning methods, is sensitive to initialization and is subjected to the

presupposition of a class number k.
To circumvent the sensitivity to initial seed values (if handled appropriately), the

presupposition of a cluster number, and the trapping by localminima, I introduce in this

section the clustering of object data by unidimensional scaling (UDS). The method is

mainly developed byGuttman (1968). It has been applied to social science andmedical

science research (Gorden 1977; McIver and Carmines 1981), and equipped with

algorithms for solving the associated global optimization problem (Pliner 1984, 1996;

Simantiraki 1996; Lau et al. 1998). Our discussion in this section is based on the study

by Leung et al. (2004e) on the mining of natural clusters in remotely sensed data.

2.4.2 Basic Principle of Unidimensional Scaling
in Data Clustering

The basic idea of UDS is to arrange n objects on the real line so that the inter-point

distances/dissimilarities can best approximate the observed distances (McIver and

Carmines 1981). UDS is a relatively simple but effective algorithm. Compared with

multidimensional Scaling (MDS) methods such as K-means and ISODATA, UDS

is easier to understand and implement, free from the presupposition of a cluster

number, insensitive to initial seed values, independent of information structure, and

not limited by the feature-space dimension.

In UDS, the basis of analysis is the dissimilarity matrix. Let there be n observed

objects with p dimensions:

xi ¼ xi1; xi2:::::xip
� �T

; xi 2 Rp; i ¼ 1::::n: (2.69)

Then we can establish a matrix of dissimilarities among these objects. As

discussed in Leung (1984), dissimilarity between objects can be expressed by the

distance between them as follows:

dij ¼
Xp
k¼1

xik � xjkÞ
�� ��q( )1=q

; 1 
 q 
 1: (2.70)

Specifically, dij is the L1 distance or City block metric when q ¼ 1, and the L2

distance or Euclidean distance when q ¼ 2. Here we select the Euclidean distance

as a basis of measurement.

Based on the distance measure, we can establish the n � n matrix of dissimi-

larity between objects as:

D ¼ ðdijÞ (2.71)

UDS attempts to map n objects xi; i ¼ 1::::n, from the p-dimensional space into the

one dimensional coordinates yi; i ¼ 1::::n, and arrange them on the real line so that
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their inter-point distances are as close as possible to their observed distances. That

is, it arranges these coordinates in ascending order. The objective is to find the real

numbers y1; ::::; yn by minimizing the following objective function:

sðyÞ ¼
X
i < j

ðdij � jyi � yjjÞ2; y ¼ ðy1; y2::::ynÞT ; yi 2 R : (2.72)

The solution is however not unique. For example, the translation and reflection

of y also give the same minimum. To overcome this shortcoming, Guttman imposes

a centering constraint:
Pn
i¼1

yi ¼ 0 on the above function.

As an illustration, the Guttman algorithm and Pliner algorithm are outlined as

follows:

2.4.2.1 Guttman Algorithm (1968)

First, we set the initial value, y0, for y as:

y0 ¼ y0
1
; y02:::::y

0
n

	 
T
; (2.73)

where y0starts with any random value, or y0i ¼ 1
p

Pp
k¼1

xik.

Then, the optimal estimator y can be obtained with an iterative algorithm using

the equation below:

y
ðrþ1Þ
i ¼ 1

n

Xn
j¼1

di;jsignðyðrÞi � y
ðrÞ
j Þ; i ¼ 1::::n; (2.74)

where y
ðrÞ
i is the coordinate of object i at the r-th iteration.

The iterative process stops when y
ðrþ1Þ
i � y

ðrÞ
i

��� ��� < d (a small number) is met. The

algorithm is fast, simple and has the self-centering property. Nevertheless, the

objective function sðyÞ has many local minima and they increases with n. To

prevent trapping by local minima, Pliner (1996) proposes a smoothing algorithm

for the UDS problem.

2.4.2.2 Pliner Algorithm (1996)

The smoothing technique is employed to obtain the minimum of seðyÞ:

seðyÞ ¼ ð1=enÞ
Z

Dðy;eÞ

sðxÞdx (2.75)
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where Dðy; eÞ is a cube in Rn with the center in y and a side e. Taking the integral

in the above equation we obtain:

sðyÞ ¼
X
i < j

ðyi � yjÞ2 � 2di;jgeðyi � yjÞ
h i

þ c (2.76)

where c is a constant and

geðtÞ ¼
t2ð3e� tj jÞ=3e2 þ e=3; if tj j < e ;

tj j; if tj j 	 e:

(
(2.77)

It is easy to verify that seðyÞ is twice continuously differentiable. Taking the

partial derivatives of seðyÞ and setting them to zero, we obtain the following

equation:

y
ðrþ1Þ
i ¼ 1

n

Xn
j¼1

dijueðyðrÞi � y
ðrÞ
j Þ; i ¼ 1; :::; n (2.78)

where

ueðtÞ ¼
ðt=eÞð2� tj j=eÞ; if tj j < e ;

signðtÞ; otherwise

(
: (2.79)

The quality of solution of both methods however depends on the initial

configuration. Leung et al. (2003) propose a method for finding a good starting

configuration. In general, the UDS algorithm produces a curve with obvious break

off points according to the number of natural clusters in a data set (Fig. 2.20).

Generally, if the differences among classes are apparent, there will be distinct step

changes in the UDS curve. Consequently, we can choose the corresponding y

coordinates as the natural break off points demarcating the cluster. To make the

identification of break off points less judgmental, Leung et al. (2004e), propose

the UDS histogram method to assist us in determining more objectively the break

points in the UDS curve for the discovery of land covers in remote sensing

imagery (see Sect. 2.4.4).

2.4.3 Analysis of Simulated Data

To better understand the characteristics and the performance of the UDS method,

Leung et al. (2004e) perform simulation studies on three sets of artificially gener-

ated data with specific data properties (Arbia 1989).
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Data set G1 is of cirque shape and includes 160 sample points, with 60 samples

evenly distributed on the circumference and the rest distributed randomly around

the circle center. The spatial distribution is unusual but not too complicated

(Fig. 2.19a1). Data set G2 includes 200 sample points distributed randomly around

two cluster centers with 100 samples each. The distribution is relatively simple and

common (Fig. 2.19b1). Data set G3 consists of 200 sample points splitting into two

cincture lines, with each having 100 samples. The spatial distribution is complicat-

ed (Fig. 2.19c1). The three data sets are employed to test the UDS method against

the K-means classifier.

Basing on the UDS curves obtained in the three experiments (Fig. 2.20a), we can

observe that Data set G1 has two obvious step changes. The coordinates at which

(a1) Original data set G1 (a2) Clustering result of K-
means 

(a3) Clustering result of UDS

(b1) Original data set G2 (b2) Clustering result of K-
means 

 (b3) Clustering result of UDS

(c1) Original data set G3 (c2) Clustering result of K-
means 

(c3) Clustering result of UDS
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Fig. 2.19 Simulated Experiments of UDS clustering
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step change occurs are the natural break off points between classes. So, we can say

that Data set G1 can be clustered into three groups. With reference to the UDS curve

for data set G2 (Fig. 2.20b), we can say that there are two natural clusters. As for

data set G3, due to the interactive effect of the two cincture lines, the natural breaks

in the UDS curve are not obvious (Fig. 2.20c). Nevertheless, it manages to bring

forth the spatial features of the clusters involved. Apparently, UDS out-performs

the K-means method in the clustering of data set G1 (Fig. 2.19a2, a3). Their

performances are nearly the same for the simpler data set G2 (Fig. 2.19b2, b3).

With some human interaction with the computer, UDS performs better for the more

complicated data set G3 (Fig. 2.19c2, c3). For substantiation, the accuracy assess-

ments are provided in Table 2.5.

2.4.4 UDS Clustering of Remotely Sensed Data

The UDS method is customized by Leung et al. (2004e) in the analysis of a SPOT-

HRV multispectral image acquired over Xinjing on August 30, 1986. The size of

the original image is 3,000� 3000 pixels with three spectral bands. It contains sand

(a) The UDS curves for data set G1 

  
(b) The UDS curve for data set G2 (c) The UDS curve for data set G3
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Fig. 2.20 The experimental UDS curves
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(c1) water (c2), and saline area (c3) as land covers. As usual, the image is

preprocessed by filtering, stretching and geometric correction.

For pedagogy, a 100� 100 small area (Fig. 2.21) is extracted from this image to

evaluate the performance of the UDS method against the K-means and ISODATA

methods.

Due to the spatial characteristics and continuity of remotely sensed data, it is

necessary to take additional measures to facilitate the application of the UDS

method in the clustering of remotely sensed data. First, similarity of pixels in

remote sensing images should be analyzed in the multispectral space, for this

case the space of 3-dimensional spectral bands. Second, the matrix of similarity

D is constructed by calculating the distances between pixels in the multispectral

space. Third, the ordinates yi, i ¼ 1; :::; 10000, are calculated and sorted in ascen-

ding order. Four, due to the continuity of ground objects in a remotely sensed

image, the derived UDS curve naturally has no obvious step changes (Fig. 2.22).

Table 2.5 The error matrix of the numerical experiment

K-Means UDS Total Accuracy

Class C1 C2 C1 C2 C3 K-Means UDS

G1 C1 54 46 100 0 0 100 52.50% 76.90%

C2 30 30 0 23 37 60

Total 84 76 100 23 37 160

G2 C1 99 1 100 0 100 99.50% 100%

C2 0 100 0 100

Total 99 101 100 100 200

G3 C1 91 9 100 0 100 92% 98.50%

C2 7 93 3 97 100

Total 98 102 103 97 200

Fig. 2.21 SPOTmultispectral

image acquired over Xinjing
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However, we could observe an obvious ascending trend between different clusters

in the UDS curve if there are natural clusters, such as this experiment. To facilitate

the location of the break off points, Leung et al. (2004e) propose to plot the

histogram of the UDS curve (Fig. 2.23). The abscissa is the intervals of the UDS

curve and the ordinate is the number of objects in the interval.

80
UDS Classifier for Remotely Sensed Data
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Fig. 2.22 The UDS curve obtained in the remote sensing experiment

3616
3390
3164
2938
2712
2486
2260
2034
1808
1582
1356

N
o 

of
 c

od
e

1130
904
678
452
228

0
<=–70 (–60,–50] (–40,–] (–20,–10] (0,10] (20,30] (40,50] (60,70]

(–70,–60] (–50,–40] (–30,–20] (–10,0] (–,0] (10,20] (30,40] (50,60] >70
Y

Fig. 2.23 The histogram of the UDS curve

68 2 Discovery of Intrinsic Clustering in Spatial Data



In this experiment, Yi 2 ½�60; 70�, and the interval length is 10. From Fig. 2.23,

we can observe that the number of objects rises and drops when Yi ¼ �10 and 10

respectively. It indicates that abscissa �10 and 10 can be regarded as the natural

break off points of the clusters. According to this principle, there are two break off

points: (2,000, �10.7214) and (8,250, 10.7285) in the UDS curve. On that, we can

partition the remotely sensed image into three clusters (Fig. 2.24), which are

consistent with the real situation.

In casewe cannot directly obtain the break off points, we can just adjust the interval

value continually to find the optimal break off points. We can also simultaneously

employ visual interpretation or other knowledge to facilitate the identification process.

As a comparison, the K-means and ISODATA methods are applied to the

same image and the results are depicted in Figs. 2.25 and 2.26, respectively.

Fig. 2.24 Result obtained by

the UDS method

Fig. 2.25 Result obtained by

the K-means method
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The accuracies of the three methods are summarized in Table 2.6. We can observe

that the UDS method is more sensitive to the spectral features of the ground objects.

Remark 2.5. The K-means and ISODATA methods calculate the distance of a pixel

from the seed and discriminate pixels according to their distances. Thus, if the seed

setting is not optimal and the objects actually do not belong to the cluster determined

by the seed, it may lead to undesirable results. The UDS, on the other hand,

calculates the spectral distance of a pixel to all pixels rather than the seed. Therefore,

the classification result of the UDS is more objective and insensitive to seed

initialization. It thus leads to higher accuracy than the K-means and ISODATA.

2.5 Unraveling Spatial Objects with Arbitrary Shapes

Through Mixture Decomposition Clustering

2.5.1 On Noise and Mixture Distributions in Spatial Data

A major problem in the mining of spatial objects or natural features is the rampant

existence of noise and mixture distributions in large spatial databases. Thus, being

Table 2.6 The error matrix of the remote sensing experiment

K-Means ISODATA UDS Total

True Class C1 C2 C3 C1 C2 C3 C1 C2 C3

C1 39 1 2 39 0 3 40 0 2 42

C2 7 9 0 3 13 0 3 13 0 16

C3 9 0 8 6 0 11 3 0 14 17

Accuracy 74.50% 84% 89%

Fig. 2.26 Result obtained by

the ISODATA method
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able to describe distribution in the feature space with a high tolerance of noise is

essential to detect successfully features in spatial data in general and remotely

sensed images in particular.

Density-based method can often discover clusters of arbitrary shapes in data-

bases consisting of noise/outliers. Unlike most partitioning methods that cluster

features in terms of the distance between them, density-based methods identify

clusters as dense regions interspersed by low density regions (often treated as noise/

outliers) in the feature space. The DBSCAN algorithm (Ester et al. 1996) and

OPTICS (Ankerst et al. 1999), for example, are early density-based methods that

cluster (in a partitioning way) data on the basis of density and a set of user supplied

parameters. Since both methods rely on some spatial index structures such as

R*-tree and X-tree, they are not efficient for clustering high dimensional spatial

data. By using the sum of influence functions of all data points and a grid-like

structure to assist the calculation of the density function and the hill-climbing

procedure that identify the density attractor of each data point, the DENCLUE

algorithm (Hinneburg and Keim 1998) exhibits a much better performance in

cluster discovery. However, the algorithm again requires a set of parameters that

need to be carefully chosen.

Due to the noise level and feature inter-mixing or overlapping, spatial features

often take on the form of mixture density distributions. Thus, conventional

approaches for simple distributions are inadequate for feature representation and

mining in such feature spaces. Mixture density models, on the other hand, become

useful for such purpose.

In a mixture model, data are assumed to follow two or more common parametric

distributions mixed in varying proportions. Thus, finite mixture density models

provide an important means to describe complex phenomena in relatively simple

ways (Derin 1987; McLachlan and Basford 1988; Dattereya and Kanal 1990). In

practice, the most important class of finite mixture densities is Gaussian (or normal)

mixtures. For parametric estimation of this class of mixtures, we can usually select

the expectation maximization (EM) algorithm which enables us to compute the

maximum likelihood (ML) estimates of the mean vectors and covariance matrices

of a Gaussian mixture distribution in an iterative manner (McLachlan and Krishnan

1997). The EM algorithms have been employed to perform spatial feature extrac-

tion, data fusion, and data mining in remotely sensed images (Bruzzone et al. 1999;

Tadjudin and Landgrebe 2000).

However, the EM algorithm is severely handicapped in the estimation of suitable

number of mixtures, especially when the overlapping of features exists in very

noisy feature space. To overcome such difficulty, the Gaussian mixture density

decomposition (GMDD) algorithm has been proposed as an effective clustering

approach for data sets with mixture densities (Zhuang et al. 1996; Dave and

Krishnapuram 1997). As an extension of GMDD, an effective data mining method,

called regression-class mixture decomposition (RCMD), for regression relations

has been developed for large data sets (Leung et al. 2001a) (see Chapter 5 for a

detailed description of the approach). Within the framework of RCMD, a data set is

treated as a mixture population composed of many components. Each component
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corresponds to a regression class defined as a subset of the data set that is subjected

to a regression model. The RCMD method then extracts those regression classes in

succession. In essence, a regression class reflects a kind of structure existing in the

data set. Therefore, the RCMD method is more suitable for mining structured

features in data sets. It can be extended to extract spatial features in remotely

sensed images. Leung et al. (2006b) propose the RCMD-based feature mining

model (RFMM) with genetic algorithms (GA). Through the RFMM-GA model,

geometric features, represented by extended parametric models such as the linear

structures, ellipsoidal structures, and more complicated parametric structures are

extracted from noisy, complex and large spatial data sets. The main idea of the

RFMM-GA model is to estimate effectively the parameters of the components of a

mixture data set in order to find the components corresponding to the individual

features. The GA is employed as a multi-point global optimization procedure to

estimate efficiently the parameter sets of RFMM.

In a feature space, it is generally difficult to describe the distributions of feature

sets with a common simple density distribution model since distributions of sam-

ples usually follow a mixture model. As depicted in Fig. 2.27, there are apparently

three structured features in a two-dimensional space. However, the shapes of the

features are so different and they overlap to some extent. Hence, the conventional

density distribution model is too simple to successfully mine such features. They,

however, can be appropriately unraveled by an extension of mixture density

models.

As a flexible approach to density estimation, mixture density models have been

applied to solve problems in a variety of disciplines. Mixture density modeling

and decomposition (MDMD) (Zhuang et al. 1992, 1996; Dave and Krishnapuram

1997) can be viewed as a mixture clustering model that involves the use of robust

statistics to identify individual densities more accurately and reliably. The basic

flows of a MDMD algorithm are depicted in Fig. 2.28. Given a data set, the

parametric distribution model corresponding to the feature to be mined is pre-

specified at each step. After performing estimation procedure for the parameters

of the distribution model, the data subset, which is fittest to the model, is mined

and taken out from the data set. The iterative decomposition procedure is

completed until the whole data set is decomposed into categories of features in

the mixture.

Gaussian mixtures are commonly employed to model finite mixture densities.

The widespread use of Gaussian mixture densities is due to the fact that a univariate

Gaussian distribution has a simple and concise representation requiring only two

parameters: mean and variance. The Gaussian density is symmetric, unimodal, and

isotropic, and it assumes the least prior knowledge (as measured in terms of the

uncertainty or entropy of the distribution) in estimating an unknown probability

density with given mean and variance. These characteristics of the Gaussian

distribution along with its well-studied properties give the Gaussian mixture density

models the power and effectiveness that other mixture densities can hardly surpass.

Evolved from the MDMD algorithm and the GMDD algorithm, robust regression-

class mixture decomposition (RCMD) is formulated as a composition of simple
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structured regression classes. With respect to a particular regression class, all data

points from the other regression classes can be classified as the outlier with different

statistical characterization. Thus, a mixture population can be viewed as a con-

taminated regression class with respect to each class component in the mixture.

When all of the observations fitting a single regression class are grouped together,

the remaining observations can be considered as elements of an unknown outlier

set. Each class component in the mixture population can be estimated separately

one at a time in an iterative fashion by using the contaminated model. The iterative
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estimation successively reduces the number of class components in the resulting

mixture until all regression classes in the mixture are mined.

The output of the RCMD algorithm includes a number of extracted regression

classes and possibly an unassigned set containing samples that do not belong to any

of the detected classes. Compared to conventional statistical clustering methods, the

scheme of RCMD has several distinct advantages:

1. The number of regression classes does not need to be specified a priori. Given a

group of sample data sets, the number of classes can be determined one by one

with the RCMD. Domain knowledge can even be integrated into the data mining

process.

2. The mixtures can contain a large proportion of noise. In fact, a regression-class

mixture population can be viewed as a contaminated distribution with respect to

each class component in the mixture. Thus the proportion of outliers relative to a

component may be large. Even in such situation, RCMD still can pick out each

class component sequentially via the robust statistics approach. It is shown that

RCMD can resist a large proportion of noise.

3. The estimation of parameters of each class component is virtually independent

of each other. This property is derived from the search strategy adopted by the

RCMD (Leung et al. 2001). However, for high dimensional feature space, it is

more effective if a suitable search range can be pre-determined.

4. The variability in the shape and size of the components in the mixture is taken

into consideration. In the search procedure, parameters of each component

should be dynamically changed so that points identified by this component

follow the corresponding distribution. Therefore, the distribution for the whole

data set should be a variable mixture, but not single and fixed.

2.5.2 A Remark on the Mining of Spatial Features
with Arbitrary Shapes

Spatial data mining should be built upon definite spatial analysis model and follows

the true regularity of spatial distribution. The target is to discover spatial features

from complicated spatial data sets. Due to complexity and uncertainty, overlapping

and inter-disturbing phenomena among spatial data sets often occur. It is thus

difficult to acquire substantial structure of the feature distribution which will

directly affect the accuracy of the analysis and interpretability of the features

unraveled. An effective way to describe complexity and uncertainty of data in

statistics is mixture modeling, i.e., utilizing a mixture model of finite number of

simple distributions (called components) to characterize a complicated data set.

However, features in spatial databases such as remotely sensed images may often

not appear as a conventional mixture in which the distribution of each component is a

density function with a fixed point as its “center” (mean), as in usual statistical

distributions. The more likely situation is that they may take on a mixture whose
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components may contain features such as roads and rivers. It is thus inappropriate to

model them by a single conventional distribution model. Many of the conventional

feature mining approaches, however, are based on such a conventional distribution

(especially the multivariate Gaussian distribution model) and the number of the

features usually needs to be known a priori. Since the number of significant features

is generally not known a priori, then the conventional single-distribution approach is

not suitable to model and optimally extract features in an image. As pointed out in

Richards and Xia (1999, p. 261), information classes of interest often do not appear as

single distributions but rather a set of constituent spectral classes or sub-classes. So

we not only need a descriptive approach to characterize spatial features in remotely

sensed images but also an effective method for mining those features.

An important application of the RCMD algorithm is to identify features or classes

in multi-dimensional data sets. It can easily be observed that a regression class

actually corresponds to a feature so that the variable y, called the response (depen-

dent) variable, is a function of the other variables x1; x2; :::; xp, called the explanatory
(independent) variables, i.e., y ¼ f ðx1; x2; :::; xpÞ. However, in many practical

situations, we may not be able to explicitly express a variable by other relevant

variables. Thus, a feature may only be characterized by an equation

Fðz1; z2; :::; zpÞ ¼ 0 with respect to p variables z1; z2; :::; zp, where dependent and

independent variables are indistinguishable. Obviously, such a representation of

features generalizes that of the regression-class framework. It is more flexible and

effective in the mining of features in remotely sensed images. Leung et al. (2006b)

further extend the RCMDmethod into the RFMMmethod to perform feature mining

in more general situations. The RFMM method is first described in the following

subsection and then the version with a genetic algorithm for more efficient perfor-

mance in discussed in Sect. 2.5.4.

2.5.3 A Spatial-Feature Mining Model (RFMM) Based on
Regression-Class Mixture Decomposition (RCMD)

Within the RFMM framework, the spatial feature to be mined should first

be determined. The shape distribution is extended on the regression-class

concepts in RCMD. Let X ¼ fx1; :::; xng be a p-dimensional data set, xk ¼
ðxk1; :::; xkpÞT 2 Rp, Assume that xk follows a distribution gðxk; uÞ with probability

1� e (0< e< 1) and another distribution h ðxk; uÞ with probability e for the outlier,
where u is the parameter vector of the feature to be estimated. Thus, data samples

are identically distributed with the common density:

f ðxk; uÞ ¼ ð1� eÞ � gðxk; uÞ þ e � h ðxk; uÞ: (2.80)

According to the strategy of RCMD, the search process is to maximize the

model-fitting function:
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QðuÞ ¼
X
k

logðgðxk; uÞ þ tÞ; (2.81)

where t > 0 is called a partial model and is selected by the method suggested in

RCMD. According to the derivation in Leung et al. (2001a), the partial model

t actually corresponds to the partial information about the outlier distribution

h ðxk; uÞ. Although outliers with respect to an underlying model gðxk; uÞ exist

inevitably in reality and the knowledge on the whole shape of the outlier distribu-

tion is usually unknown, we can approximately represent their existence by intro-

ducing a positive number t and use its value as a reduction of the information about

the outlier as a whole. If the partial model t does not appear in (2.81), that is t ¼ 0,

then the method determined by (2.81) is the ordinary maximum likelihood (ML)

method, which is not robust. However, once we have t > 0, the resulting method is

fairly robust. Here, the shape of the distribution, controlled by the parameter u,
represents the feature structures hidden in the mixture.

As depicted in Fig. 2.29, spatial features can generally be categorized into

several basic shapes, such as the simple Gaussian classes, linear structures, curvi-

linear structures, ellipsoidal structures, and other complicated structures integrated

with domain specific knowledge. Specifically we have:

1. Simple Gaussian class (Fig. 2.29a)

The density corresponding to the Gaussian feature in a data setX can be expressed as:

gðxk; uÞ ¼ 1

ð ffiffiffiffiffiffi
2p

p Þp ffiffiffiffiffiffi
Sj jp exp � 1

2
d2ðxkÞ

 �
; (2.82)

d2ðxkÞ ¼ ðxk � mÞTS�1ðxk � mÞ; (2.83)

a b c

d e

Fig. 2.29 The distributions of various spatial features (a) Simple Gaussian class. (b) Linear

structure. (c) Ellipsoidal structure. (d) General curvilinear structure. (e) Complex structure
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where d2ðxkÞ is the square of the Mahalanobis distance, and S is the covariance

matrix such that the parameter vector y to be searched is the mean vector m and the

covariance matrix S.

2. Linear structure (Fig. 2.29b)

In multi-dimensional space, linear features can be characterized by the following

distribution with parameter vector u ¼ ðbT; sÞT:

gðxk; uÞ ¼ 1ffiffiffiffiffiffi
2p

p
s
exp � r2k ðbÞ

2s2

 �
; (2.84)

where b ¼ ðb0; b1; � � � ; bpÞT is the coefficient vector of the following linear

equation:

b0 þ ðb1; � � � ; bpÞx ¼ 0; (2.85)

and rk denotes the residuals of data xk with respect to (2.85):

rk ¼ b0 þ ðb1; � � � ; bpÞxk; (2.86)

s is such that at least 98% of the points constituting the feature are contained within

3s from the line.

3. Ellipsoidal structure (Fig. 2.29c)

In multi-dimensional space, an ellipsoidal-like structure depicted by

Fðx; uÞ � 1�
Xp
i¼1

ðxi � biÞ2
g2i

¼ 0; (2.87)

can also be considered, where x ¼ ðx1; :::; xpÞT, u ¼ ðbT;gT; sÞT is the parameter

vector, b ¼ ðb1; � � � ; bpÞT is the location of the center point, g ¼ ðg1; � � � ; gpÞT, and
gi is the i-th semimajor-like axes of length? In this situation, its features are still

characterized by (2.84), but the residuals become

rk ¼ 1�
Xp
i¼1

ðxki � biÞ2
g2i

: (2.88)

For simplicity, we consider the ellipse feature (i.e., the case p ¼ 2). In this situa-

tion, the major and minor axes of the ellipse depicted by (2.87) are parallel to the

coordinate axes. For more general ellipses, their equations can be transferred into

(2.87) by the rotation transformation. Then the expression in (2.88) still holds.
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4. General curvilinear structure (Fig. 2.29d)

For more general curvilinear structure, (2.76) is still applicable. We only need to

modify the residuals rk. As the general curve can be described by the equation

f ðx ; bÞ ¼ 0, the corresponding residuals rk are:

rk ¼ f ðxk;bÞ; (2.89)

where f is a known function for specifying a curve and b is the parameter vector of

the curve.

5. Complex structure (Fig. 2.29e)

Spatial features often take on a more complex shape. A simple method to represent

features with complex shape is to combine simpler feature structures into an

integrative one with prior knowledge. For example, a production system can be

employed to determine a complex structure as follows:

0 ¼

f1ðxÞ; ifðx 2 A1Þ;
f2ðxÞ; ifðx 2 A2Þ;

� � �
fmðxÞ; ifðx 2 AmÞ

8>>><
>>>:

(2.90)

Moreover, more complicated structures or irregular structures, seemingly not

being able to be parametrically represented, can be simulated by appropriate

combinations of these simple parametric structures.

2.5.4 The RFMM with Genetic Algorithm (RFMM-GA)

Finding solution for the RFMM is essentially an optimization process that estimates

the parameter vector y of the feature structures. Mean squared error (MSE) is

frequently employed as an optimization criterion. The disadvantages of many of

the conventional optimization methods are their computational complexities and

their prone to local minima. It, in particular, becomes more difficult when complex

distributions integrated with domain knowledge in symbolic forms are encountered

in optimization. The use of more flexible methods such as genetic algorithms (GA)

is often necessary.

Genetic algorithms (GA) are highly parallel and adaptive search processes based

on the principles of natural selection (Holland 1975; Goldberg 1989; Zhang and

Leung 2003) (see Chap. 3 for a more formal discussion of GA). Genetic operators

(namely selection, crossover and mutation) are applied to evolve a population of
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coded solutions (strings /chromosomes) in an iterative fashion until the optimal

population is obtained. GA is thus a multi-point search algorithm which seeks

the optimal solution with the highest value of a fitness function. For example, in

order to solve the optimization problem in (2.81) in which gðxk; uÞ is defined by

(2.82) or (2.84), the function in (2.81) is selected as the fitness function to be

maximized. The GA starts with a population of individuals (chromosomes) repre-

senting the parameter vector u ¼ ðy1; y2 � � � ; ylÞT which is encoded as a string of

finite length. A chromosome is usually a binary string of 0’s and 1’s. For example,

suppose the binary representation of y1; y2 � � � ; yl for 5-bit strings are 10110,

00100,. . ., 11001, respectively. Then the string s ¼ 10110 00100 . . . 11001 is a

binary representation of u ¼ ðy1; y2 � � � ; ylÞT and forms a one-to-one relation with

u. The q-tuple of individual strings ðs1; :::; sqÞ is said to be a population S in which

each individual si 2 S represents a feasible solution of the problem in (2.81). The

randomly generated binary strings then form the initial population to be evolved by

the GA procedure, i.e., by the GA operators briefly outlined as follows:

1. Selection. It is the first operator by which individual strings are selected into an

intermediate population (termed mating pool) according to their proportional

fitness obtained from the fitness function. The roulette wheel selection technique
is employed in such a way that strings with higher fitness would have higher

probability to be selected for reproduction.

2. Crossover. After selection, two individuals can exchange materials at certain

position(s) through the crossover operator. Crossover is a recombination mech-

anism to explore new solutions. The crossover operator is applied with some

probability Pc. Single-point, multi-point, or uniform crossover may be

employed. In practice, single-point crossover is simpler and more popular.

First, individuals of the intermediate population are paired up randomly. Indi-

viduals of each pair (parents) are then combined, choosing one point in accor-

dance with a uniformly distributed probability over the length of the individual

strings and cutting them in two parts accordingly. The two new strings

(offspring) are formed by the juxtaposition of the first part of one parent and

the last part of the other parent.

3. Mutation. After crossover, the mutation operator is applied with uniform

probability Pm. Mutation operates independently on each offspring by probabi-

listically perturbing each bit string. In other words, it alters the genetic code (e.

g., from 0 to 1 or 1 to 0) of an individual at a certain randomly generated

position. The mutation operator helps to prevent the irrecoverable loss of

potentially important genetic material in an individual.

The basic procedure of the GA-based optimization for parameter estimation of the

RFMM is depicted in Fig. 2.30. The GA search aims at the maximization of Q in

(2.81). The parameter u is estimated while Q attains its maximum through the GA-

based evolution. The spatial feature specified by u is thus successfully mined from

the image.
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Initialization:
(1) Determine the fitness function Q and the parameter vector q;
(2) Chromosomal Encoding of q;
(3) Determine the size of the Population and its initial state;
(4) Determine the probabilities of crossover and mutation.

Fitness Evaluation

Genetic operation:
Selection, Crossover, mutation

New population

Optimality Evaluation

End

Fig. 2.30 RFMM-GA optimization algorithm

2.5.5 Applications of RFMM-GA in the Mining of Features in
Remotely Sensed Images

For substantiation, the first two numerical experiments involve the extraction of one

and two ellipsoidal features in simulated data sets contaminated with noise, and the

third experiment deals with the automatic detection of linear features in a real-life

remotely sensed image.

To simplify our discussion, the default set up of the RFMM-GA is specified as

follows: the partial model level t ¼ 0:1, q ¼ 300, Pc ¼ 0:8, Pm ¼ 0:5.

2.5.5.1 Experiment 2.4 Ellipsoidal Feature Extraction from Simulated Data

In this experiment, the RFMM-GA is employed to extract features with ellipsoidal

shape from simulated data sets contaminated with noise. It is actually a special

clustering approach for estimating and extracting patterns. As shown in Fig. 2.31,
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there is an ellipsoidal feature in a two-dimensional feature space with a lot of noisy

points distributed randomly around it. The parameters of the true model in (2.87)

are p ¼ 2, b1 ¼ 1 ¼ �b2, g2 ¼ 8 ¼ 2g1, and s in (2.84) is selected as 0.5. There are

300 points in Fig. 2.26, i.e., n = 300, in which 200 points (inliers) are generated

randomly from the true model with ellipsoidal feature, and 100 points (outliers) are

uniform noise. Applying RFMM-GA, the feature parameter y can be acquired. In

this experiment, the obtained parametric estimation includes the center point:

ðb̂1; b̂2Þ ¼ (0.999, �1.025); semi-major axes of length: ĝ1 = 3.989, ĝ2 ¼ 8.031;

and ŝ = 0.502. With these unraveled parameters, the fitness value Q in (2.81)

attains its maximum at – 124.379, and the feature is successfully mined.

2.5.5.2 Experiment 2.5 Extraction of Two Ellipsoidal Features

from Simulated Data

To further illustrate the effectiveness of the RFMM-GA, this experiment is

designed for the extraction of two ellipsoidal features in a data set contaminated

with noise (Fig. 2.32). In the data set, 200 points come from the ellipsoidal feature

characterized by the equation: x2
�
22 þ y2

�
12 ¼ 1; 200 points come from the

ellipsoidal feature characterized by the equation: x� 1ð Þ2
.
12 þ y� 5ð Þ2

.
22 ¼ 1;

and the other 100 points are noise. The first ellipsoidal feature in (2.87) unraveled

by the RFMM-GA has the parameter estimates: ðb̂1; b̂2Þ ¼ (�0.049, �0.009),

ðĝ1; ĝ2Þ ¼ (2.023, 1.050), ŝ¼ 0.20, and the fitness value Q in (2.81) attains its

maximum�1952.813 at t¼ 0.005. The corresponding data points are then removed

from the data set. The RFMM�GA is again applied to unravel the second ellipsoi-

dal feature with parameters: ðb̂1; b̂2Þ ¼ (1.040, 5.007), ðĝ1; ĝ2Þ ¼ (1.008, 2.013),

X

Y
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–6

–2

2

6

–3.5 –1.5 0.5 2.5 4.5

Inliers
Outliers

Fig. 2.31 Extraction of ellipsoidal feature
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ŝ¼ 0.20, and Q has its maximum �1277.918 at t¼ 0.005. This clearly shows that

the RFMM-GA can effectively extract multiple features from noisy data sets.

2.5.5.3 Experiment 2.6 Linear Feature Extraction from a Satellite Image

A lineament in a feature space is defined as a simple or composite linear feature

whose parts are aligned in a rectilinear or slightly curvilinear manner which might

indicate the existence of some kind of spatial structures. Classical lineament

detection methods are mainly based on gradient or Laplacian filtering which

often generate a large amount of false edges and fail to link together missing

occluding parts combined with the use of thresholds. Though some improvements

have been achieved by applying a Hough transform to the threshold image, more

recent approaches attempt to circumvent the problem by extracting the gray level in

high variability through filtering techniques. Neural network models, such as

adaptive resonance theory (ART), multilayer perceptron with back propagation

(MLP-BP), and cellular neural networks (CNN), have also been proposed to extract

connected edges (Basak and Mahata 2000; Lepage et al. 2000; Wong and Guan

2001). However, all of these approaches could only produce good results in

detecting small scale edge features, but are of very limited use in the detection of

linear or non-linear features, especially when lineaments have a fuzzy, gleaming, or

broken appearance in aerial or satellite images (Man and Gath 1994).

Since features can be parametrically defined in the feature space under RFMM-

GA, it can then provide a framework to parametrically extract spatial features

from remotely sensed images. By the RFMM-GA method, the fittest linear features

are successively searched and extracted from the feature space by stepwise

–3 –2 –1 0 1 2 3
–4

–2

0

2

4

6

8

Fig. 2.32 Extraction of two ellipsoidal features
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decomposition. The RFMM-GA is supported by robust statistical technique which

could reduce the interference of adjacent features and noisy points, and enable a

reliable discrimination of linear features without any a priori knowledge about the

number involved. Finally, linear features are mined and characterized by the

associated parameters.

Figure 2.33 depicts the result of an experiment on the extraction of lineaments,

defined by (2.85), by the RFMM -GA from a real-life satellite image.

Figure 2.34a depicts the original imagery of TM band 5 in another experiment

located in Guangzhou, China, acquired on January 2, 1999. Three lineaments are

Fig. 2.33 Feature extraction system with RFMM

a b

Fig. 2.34 Lineament extraction from satellite imagery (a) Original TM5 imagery (b) Results of

lineament extraction
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apparently three highways intersecting at a small town in the image. The features

are first separated from the background with the threshold segmentation approach.

Then according to the feature distribution of the lineaments, the targets are

extracted by the stepwise search of the RFMM-GA. The three highways are

successfully mined from the blurred imagery (Fig. 2.34b). These two experiments

demonstrate that RFMM-GA provides a novel framework for feature extraction in

remotely sensed images.

2.6 Cluster Characterization by the Concept of Convex Hull

2.6.1 A Note on Convex Hull and its Computation

In the search for spatial clusters, we sometimes may not have any idea about the

exact location and size of a cluster, particularly in databases with undefined or

ill-defined spatial boundaries. In some applications, we might just need to discover

and delimit a cluster (a particular spatial concentration or hotspot) in real-time. The

discovery of disease concentration, particularly the time varying concentration and

spread of epidemics such as SARS and avian flu, is a typical example. Such study

might not be interested in the partition of the whole data set but the discovery of

localized incidence of excessive rate (Lawson 2001). Under some situations, we

might need to compute the cluster diameter or to determine whether a point in space

belong to a cluster. All of these tasks need a formal approach for cluster characteri-

zation and detection in spatial databases. It is proposed in here the method of

convex hull computation formulated by Leung et al. (1997a) to detect spatial

clusters. The basic idea is to encompass a cluster by a convex hull in high

dimensional space.

To facilitate our discussion, I first give some notions of convex hulls and

their computations. Let S ¼ pð1Þ; pð2Þ; � � � ; pðMÞ� �
be a set of M points in RN .

The convex hull of S, denoted as CðSÞ, is the smallest convex set that

contains S. Specifically, CðSÞ is a polygon in the planar case, and a polyhedron in

the three-dimensional (3-D) case. In general, CðSÞ can be described in terms of one

of the following characteristics:

1. The faces of CðSÞ, or equivalently, the boundary of CðSÞ denoted as BoundðSÞ.
2. The vertex set, VerðSÞ, which is the minimum subset of S such that

C VerðSÞ½ � ¼ CðSÞ.
3. The set of hyperplanes, denoted as H�ðSÞ, by which CðSÞ becomes the intersec-

tion of the closed-half spaces bounded by H�ðSÞ.
Thus, three types of convex hull computation problems with respect to the

above-stated characteristics can be formally stated as:

Problem 1: to find the boundary set BoundðSÞ.
Problem 2: to determine the vertex set VerðSÞ.
Problem 3: to specify the hyperplanes H�ðSÞ.
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These three problems are closely related to each other. Each of them, however,

has its own concern and applications. Over the years, much effort has been devoted

to develop algorithms for convex hull computation which can generally be classi-

fied into two different approaches: computing the exact convex hull (Atallah 1992;

Bentley et al. 1993) and computing an approximate convex hull (Bern et al. 1992;

Guibas et al. 1993).

For computing the exact convex hull by a serial computer, it has been shown that

the problem can be solved in the planar and the 3-D cases with a time complexity of

O M logMð Þ if all the points pðiÞ are given (the off-line problem) (Graham 1972;

Preparata and Hong 1977), or with a complexity of O logMð Þ if the points are given
one by one and the convex hull is updated after each point is added (the on-line
problem) (Preparata 1979). Bentley et al. (1993) propose a novel algorithm that

computes the convex hull in N-dimensional space in 2MN þ O M1�1=Nlog1=NM
� �

expected scalar comparisons, which represents a substantial improvement over the

previous best result of 2Nþ1NM (Golin and Sedgewick 1988). Wennmyr (1989)

presents a neural network algorithm which computes an exact convex hull in OðMÞ
time off-line, and O logMð Þ time on-line in the planar case. The respective perfor-

mances are O hMð Þ and OðMÞ in the 3-D case, where h is the number of faces in the

convex hull.

There are essentially two kinds of algorithms for computing an approximate

convex hull. The first kind can be classified as robust algorithms which compute

the convex hull with imprecise computation. The basic geometric tests needed to

compute the convex hull are considered unreliable or inconclusive when imple-

mented with imprecise computations (e.g., ordinary floating-point arithmetic). Such

algorithms aim at constructing a convex hull very close to containing all the points

under consideration. The algorithms of this kind are often much more complicated

than those for computing the exact convex hull.

The second kind of algorithms for computing an approximate convex hull is the

approximate algorithms. The geometric tests are considered as reliable and con-

clusive. Such algorithms compute a convex hull that closely approximates the

exact one (Bern et al. 1992). Despite of losing a certain degree of accuracy in

computing the convex hull, approximate algorithms have in general very low

complexity but very high computation efficiency. They would be particularly

useful in applications where the speed rather than the accuracy of computing a

convex hull is of major concern, or generating the exact convex hull is not

necessary or impossible (e.g., when the data involved in the set of points are

inherently not exact).

Leung et al. (1997a) employ a neural-network approach to develop an approximate

algorithm for computing approximate convex hulls in the general N-dimensional

space. It solves the off-line problem with a linear time complexity of OðMÞ, and the

on-line problem with Oð1Þ time complexity. Its advantages are: First, unlike the

known linear expected-time complexity algorithm (Bentley et al. 1993) which might

not keep linear time complexity for the worst case (it could even be much worse),

the convex hull computing neural network (CHCNN) always keep linear time
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complexity for any case. Second, the massively parallel processing capability of

the neural network makes the derived algorithm developed to be real-time in

nature. This real-time processing capability is of particular importance and is

required in a wide variety of applications related to adaptive and real-time proces-

sing. For example, in the collision avoidance applications (Hwang and Ahuja

1993), a robot is to be controlled to move automatically in an environment

involving variable obstacles. Assume the obstacles are polyhedrons. The problem

then can be deduced to determining in real-time the condition (the control strategy)

under which the two convex hulls, one being the obstacle(s) and the other the range

of the robot’s motion, do not intersect. This then requires the real-time construc-

tion of the related convex hulls. Third, once the neural network is implemented as

a physical device, it becomes extremely direct and handy to use it in various

applications, such as judging if a given point (e.g., suspected outlier) belongs to

a cluster, and computing cluster diameter (e.g., extent of spread of a contagious

disease) when the given points constitutes a set of samples.

2.6.2 Basics of the Convex Hull Computing Neural Network
(CHCNN) Model

Let n ¼ n1 ; n2 ; � � � ; nNð ÞT 2 RN be a unit vector. For any real number a, the setH
defined by

H ¼ x 2 RN : n ; xh i ¼ a
� �

(2.91)

is called a hyperplane and the set �H defined by

�H ¼ x 2 RN : n ; xh i 
 a
� �

(2.92)

is called a closed half-space bounded by H. In the case, the vector n is said to be the

normal vector of H.

Given any set S of finite number of points in RN, CðSÞ can be expressed as the

intersection of a finite number of closed half-space bounded by certain hyperplanes.

A hyperplane H is said to be a supporting hyperplane of CðSÞ if S � �H and H
itself contains at least one point of S. Therefore a supporting hyperplane supports

CðSÞ in a specific direction. Every point inH \ S is referred to as a supporting point
of CðSÞ, and any intersection of H \ CðSÞ is referred to as a face of CðSÞ. Any
supporting point of CðSÞ clearly lies on the boundary of CðSÞ. A supporting point

p is a vertex of CðSÞ if there do not exist two different points a ; b in CðSÞ such
that p lies on the open line segment a ; b� ½ (i.e., no b 2 0 ; 1ð Þ exists such that

p ¼ 1� bð Þaþ bb).
The CHCNN generates two specific approximations of the convex hull CðSÞ:

one is inscribed within CðSÞ and the other circumscribes CðSÞ in the geometric
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sense. These two types of approximate convex hulls are specified by the following

definitions:

Definition 2.4. A convex hull C1 is said to be an inscribed approximation of CðSÞ
if C1 � CðSÞ and any vertices of C1 are on the boundary of CðSÞ. A convex hull
C2 is said to be a circumscribed approximation of CðSÞ if CðSÞ � C2 and every
face of C2 contains at least a vertex of CðSÞ.

In Figs. 2.35 and 2.36, all convex hulls demarcated by thin lines are inscribed

approximations of CðSÞ and those demarcated by bold lines are circumscribed

approximations of CðSÞ. The line with medium width represents the CðSÞ.
The CHCNN developed in Leung et al. (1997a) is motivated by the following

observations: every vertex (say, p) of the convex hull CðSÞmust be supporting point

and therefore, there is a direction vector n in which p will maximize the inner

product n ; pðiÞ
� �

among all the pðiÞs in S. With finite points in S, all vertices of CðSÞ
can be uniquely recognized in terms of the maximization procedure with a finite

number of direction vectors. The basic idea in developing the CHCNN then is to

yield the vertices of CðSÞ through the maximization process via a prespecified set of

direction vectors.

Fig. 2.35 The CðSÞ and its inscribed and circumscribed approximations obtained by the CHCNN:

case 1
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The following Lemma Underlies the CHCNN:

Lemma 2.1. Let U ¼ nð1Þ ; nð2Þ ; � � � ; nðkÞ� �
be a given set of unit direction

vectors in RN . If iðjÞ 2 1 ; 2 ; � � � Mf g is the index such that

nð jÞ ; p ið jÞ½ �
D E

¼ max
1
 i
M

nð jÞ ; pðiÞ
D En o

; (2.93)

we denote

yj ¼ nð jÞ ; p ið jÞ½ �
D E

(2.94)

HðjÞ ¼ x 2 RN : nð jÞ ; x
D E

¼ yj
n o

(2.95)

V� ¼ p ið1Þ½ � ; p ið2Þ½ � ; � � � ; p iðkÞ½ �
n o

(2.96)

and,

Fig. 2.36 The C(S) and its inscribed and circumscribed approximations obtained by the CHCNN:

case 2
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H� ¼ [ HðjÞ : j ¼ 1 ; 2 ; � � � ; k
n o

; (2.97)

then

1. CH H�ð Þ ¼ \k
j¼1

�HðjÞ is a circumscribed approximation of C Sð Þ.
2. C V�ð Þ is an inscribed approximation of C Sð Þ.

(See Leung et al. (1997) for the proof)

Lemma 2.1 indicates that for a pre-specified set of directions U, as long as the yj
and p ið jÞ½ � defined by (2.93) and (2.94) are known, the convex hulls C V�ð Þ and

CH H�ð Þ provide respectively two approximations of C Sð Þ in the inscribed and

circumscribed manners. Furthermore, in this case, (2) in Lemma implies that the

set V� defined by (2.96) offers a very good approximation to the vertex set Ver Sð Þ,
and hence to the convex hull under Problem 2. Also, (1) implies that every Hð jÞ is a
supporting hyperplane of the convex hull C Sð Þ, and consequently yields an appro-

ximate solution to the convex hull under Problem 3 stated in Sect. 2.6.1.

2.6.3 The CHCNN Architecture

Given a set of k unit direction vectors U ¼ nð1Þ ; nð2Þ ; � � � ; nðkÞ� �
. According to

Lemma 2.1, the aim is then to build an appropriate neural network such that after

adaptive training, the network can yield the vertex set V� and the hyperplanes H�:
The network is the CHCNN shown in Fig. 2.37.

Topologically, CHCNN consists of one input layer of N neurons and one output

layer of k neurons. Similar to the adaptive resonance theory (ART) developed by

Carpenter and Grossberg (1987), the two layers of neurons communicate via a

feedforward connection W and a feedback connection T. The input neurons are all
McCulloch–Pitts type with zero threshold and linear input–output activation

Fig. 2.37 The CHCNN

architecture

2.6 Cluster Characterization by the Concept of Convex Hull 89



function, but the output neurons all have nonzero thresholds and the hard-limiter

input–output activation function defined by

f ðxÞ ¼ 1; if x > 0;

0; if x 
 0:

(
(2.98)

Let wij and tij be, respectively, the feedforward and feedback connections

(weights) between neuron i in the input layer and neuron j in the output layer. Let

yj be the threshold value attached to the output neuron j. Denote

wð jÞ ¼ w1j ; w2j ; � � � ; wNj

� �
;

tð jÞ ¼ t1j ; t2j ; � � � ; tNj
� �

:

In the CHCNN, the feedforward connection wð jÞ is fixed as the jth prespecified

direction under nð jÞ. The feedback connection vector tð jÞ and the threshold yj are
trained adaptively to yield the supporting point p iðjÞ½ �, defined in (2.93), and the

maximum value defined in (2.94) [or equivalently, the hyperplane Hð jÞ defined in

(2.95)], respectively. Consequently, after training, the CHCNN is capable of yield-

ing the vertex set V� and the hyperplanes H� specified in Lemma 2.1.

A parameter-setting rule forU and a training algorithm for T and y are as follows:

2.6.3.1 Parameter-Setting and Training Rules

The CHCNN is inherently dependent on the setting of the direction vectors U

(which specify the direction of the supporting hyperplanes), and the training rule

for adjusting the weights T (which record the supporting points) and the thresholds

y (which control the positions of the supporting hyperplanes).

1. Setting of U andW. Since every supporting hyperplanes Hð jÞ bounds the convex
hull in a given direction nðjÞ, so a very reasonable approximation should apply a

set of uniformly distributed directions U to direct the hyperplanes. Nevertheless,

finding a uniformly distributed direction set U is very difficult and complicated

in high dimensions. Leung et al. (1997) suggest U to be specified in such a way

that they distribute regularly on a unit sphere as follows:

U ¼ U að Þ
¼ nðjÞ : j ¼ 1 ; 2 ; � � � ; k ¼ 2d N�1ð Þ
n o

with

nðjÞ ¼ n i1 ; i2 ; ��� ; iN�1ð Þ
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¼ sin
p i1
d

 �
þ a1

� �
sin

p i1
d

 �
þ a2

� �
� � � � � sin

p iN�1

d

 �
þ aN�1

� �
;

�

cos
p i1
d

 �
þ a1

� �
sin

p i1
d

 �
þ a2

� �
� � � � � sin

p iN�1

d

 �
þ aN�1

� �
;

cos
p i2
d

 �
þ a2

� �
sin

p i3
d

 �
þ a3

� �
� � � � � sin

p iN�1

d

 �
þ aN�1

� �
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cos
p i3
d

 �
þ a3

� �
sin

p i4
d

 �
þ a4

� �
� � � � � sin

p iN�1

d

 �
þ aN�1

� �
;

� � �

cos
p i N�2ð Þ

d

 �
þ aN�2

� �
� sin

p iN�1

d

 �
þ aN�1

� �
;

cos
p iN�1

d

 �
þ aN�1

� ��

(2.99)

where a ¼ a1 ; a2 ; � � � ; aN�1ð Þ 2 RN�1, i1 ¼ 1 ; � � � ; 2d , i1 ¼ 1 ; � � � ; d for

l ¼ 2 ; � � � ; N � 1, and, j ¼ i1 þ 2d i2 � 1ð Þ þ 2d2 i3 � 1ð Þ þ � � � þ 2dN�2

iN�1 � 1ð Þ. The variable a is a rotation parameter whose components are ran-

domly chosen. The function of a is explained in Theorem 2.4. It is shown that

with such specified direction vectors U, the CHCNN is always capable of

yielding very accurate approximation of the convex hull C Sð Þ. As mentioned

previously, once the direction vectors U is specified, the feedforward connec-

tions W ¼ wð1Þ ; wð2Þ ;
� � � � ;wðkÞÞ are fixed as the same as U. That is,

wð jÞ ¼ nð jÞ
h iT

; j ¼ 1 ; � � � ; k:

2. A Learning Rule for T and u. The jth neuron in the output layer of the CHCNN is

said to be excited by an input x if f w ; xh i � yj
� � ¼ 1, otherwise the neuron is

said to be inhibited. The feedback connections T ¼ tð1Þ ; tð2Þ ; � � � ; tðkÞ� �
and

thresholds u ¼ yð1Þ ; yð2Þ ; � � � ; yðkÞ
h i

will then be adjusted according to the

following learning rule.

2.6.3.2 Excited Learning Rule:

Initialize tðjÞð0Þ ¼ pð1Þ; yjð0Þ ¼ nðjÞ ; pð1Þ
� �

.

Begin with i ¼ 1.

Step 1. Input pðiÞ, and find all neurons excited by pðiÞ in the outer layer. Denote all

the excited neurons by JðiÞ.
Step 2. For every j 2 1 ; 2 ; � � � ; kf g, do the following (a and b).

(a) update tðjÞ according to
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tðjÞðiÞ ¼ tðjÞ i� 1ð Þ þ DtðjÞðiÞ

with

DtðjÞðiÞ ¼ pðiÞ � tðjÞ i� 1ð Þ ; if j 2 JðiÞ ;
0; if j =2 JðiÞ:

(

(b) update yj according to

yjðiÞ ¼ yj i� 1ð Þ þ DyjðiÞ

with

DyjðiÞ ¼
wðjÞ ; pðiÞ
D E

� yj i� 1ð Þ ; if j 2 JðiÞ;
0; if j =2 JðiÞ :

8<
:

Step 3. If i ¼ M, then terminate the learning process, otherwise, go to Step 1 with

i : ¼ iþ 1.

It is shown in Leung et al. (1997a) that the learning rule can guarantee conver-

gence to the supporting points of C Sð Þ within M steps. That is, the CHCNN

succeeds in M-step learning as summarized by the following theorem:

Theorem 2.2.

1. The learning algorithm of the CHCNN converges in M steps.

2. The CHCNN algorithm is an on-line algorithm, processing every input in a
single iteration.

3. The trained CHCNN yields V� and H�, such that C V�ð Þ is an inscribed approxi-
mation and CH H�ð Þ is a circumscribed approximation of C Sð Þ.
From Theorem 2.2, we obtain the following conclusion:

Corollary 2.1. The CHCNN algorithm has time complexity OðMÞ for off-line
problems and Oð1Þ for on-line problem.

Theorems 2.3 and 2.4 below further show that C V�ð Þ and CH H�ð Þ both actually

provide very accurate approximations of C Sð Þ.
Theorem 2.3. Assume d 	 2, V� is the supporting point set and H� is the sup-
porting hyperplanes generated by the CHCNN, with the direction vectors U

defined as in (2.99). Then there is a constant KN, which is only dependent of N,
such that

1. dist CH H�ð Þ ; C V�ð Þ½ � 
 KNdiam Sð Þk�1= N�1ð Þ;
2. dist C V�ð Þ ; C Sð Þ½ � 
 KNdiam Sð Þk�1= N�1ð Þ;
3. dist CH H�ð Þ ; C Sð Þ½ � 
 KNdiam Sð Þk�1= N�1ð Þ:
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(See Leung et al. (1997) for the proof)

Remark 2.6. Let A and B be two subsets of RN . The diameter of the set A is

defined by

diamðAÞ ¼ max x� yk k : x ; y 2 Af g:

The distance of a point p to the set A, denoted by dist p ; Að Þ, is defined by

dist p ; Að Þ ¼ min p� xk k : x 2 Af g;

and the distance between A and B is defined by

dist A ; Bð Þ ¼ max max
x2A

dist x ; Bð Þ;max
y2B

dist y ; Að Þ
� �

:

The distance between two sets can serve as a measure of the difference of

the sets.

Theorem 2.3 says that the C V�ð Þ and CH H�ð Þ generated by the CHCNN approx-

imate C Sð Þ with the same accuracy O k�1=ðn�1Þ� �
, which is proportional to the

number of neurons adopted in the CHCNN and is independent of the specified S.

The significance if this is twofold. First, one can determine the size of the neural

network based directly on this accuracy of estimation in a given convex–hull

computation application with any prespecified level of approximation. Second, it

follows that the approximation accuracy of C V�ð Þ and CH H�ð Þ can assuredly

increase as k increases. Thus, any highly accurate approximation of C Sð Þ can be

ascertained via the CHCNN. This shows further that CHCNN, as an approximate

algorithm, can converge to the exact convex hull with sufficient large number of

neurons.

The following theorem further explains that it is not necessary to have an infinite

number of neurons in order to get an exact approximation of C Sð Þ via the CHCNN.
Clarification of this is tightly related to another important issue: whether or not the

supporting point set V generated by the CHCNN is a portion of Ver Sð Þ. An
affirmative answer to this question is offered in the theorem:

Theorem 2.4. Let V� að Þ be the set of supporting points generated by the CHCNN
with the direction vectors U að Þ defined by (2.99). Then we have the following:

1. For almost every a inRN�1 (namely, every a except a zero measure set),V� að Þ is
a portion of Ver Sð Þ.

2. There is a constant K Sð Þ such that, for almost every a in RN�1, V� aÞ ¼ VerðSð Þ
whenever k 	 K Sð Þ.
(See Leung et al. (1997a) for the proof)
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Remark 2.7. Property (2) in Theorem 2.4 shows that for any given point set S, the

CHCNN with a finite number of neurons is capable of almost always yielding the

exact vertices of C Sð Þ. Therefore, it provides an accurate solution to convex-hull

problem 2. In this case, C V�ð Þ then provides an accurate solution to convex-hull

Problem 1 stated in Sect. 2.6.1.

2.6.4 Applications in Cluster Characterization

2.6.4.1 Determining Whether a Point p is Inside C Sð Þ, a Cluster.

Given a point p, check whether or not p belongs to C Sð Þ is a basic point-location

problem in computational geometry. This naturally arises in applications such as

collision avoidance problem for robot motion planning, and infection area detection

problem in epidemics. The idea in this application is that instead of checking if

p 2 C Sð Þ, we can check if p belongs to CH H�ð Þ, which is known to be a circum-

scribed approximation of C Sð Þ. Obviously, the latter can easily be accomplished by

the CHCNN. The main step are as follows:

Step 1. Input p into the neural network trained by S.

Step 2. If there is no neuron being excited, i.e.,

p ; nðiÞ
D E


 yi ; i ¼ 1 ; � � � ; k;

then, p 2 �HðiÞ holds for any i. Therefore, p 2 CH H�ð Þ. Otherwise, there is a
neuron, denoted by j, being excited, i.e.,

p ; nðiÞ
D E

> yi ; i ¼ 1 ; � � � ; k:

Thus, p =2CH H�ð Þ. This also means p =2C Sð Þ since C Sð Þ � CH H�ð Þ.
It should be observed that for this application, only one iteration is required by

the CHCNN to determine whether p belongs to CH H�ð Þ. This is clearly an optimal

property one can expect of an on-line algorithm for dynamically changing problems

such as spatial spread of epidemics.

2.6.4.2 Computing the Diameter of a Cluster S

The diameter of a set S is defined by

Diam Sð Þ ¼ max x� yk k : x ; y 2 Sf g: (2.100)
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The problem of determining the diameter of a set S occurs in various applica-

tions. For instance, in clustering techniques, the “minimum diameter K-clustering”

problem can be stated in the following way:

Given a set of m points in RN , partition them into K clusters C1 ; C2 ; � � � ; Ck

such that the maximum diameter of Ci, i ¼ 1 ; � � � ; K, is as small as possible

(Preparata and Shamos 1985).

The success of applying the CHCNN to this problem is in part due to the

following well-known result:

Lemma 2.2. The diameter of a set equals that of its convex hull, which in turn is
the greatest distance between parallel supporting hyperplanes (Preparata and
Shamos 1985).

It should be noted that in the CHCNN developed in Subsection 2.6.2, if n 2 U is

the pre-specified direction vector defined in (2.99), then the direction � n must

also belong to U. Therefore, if y nð Þ, y� nð Þ, t nð Þ, t� nð Þ, H nð Þ, H� nð Þ respectively
denote the corresponding threshold values, supporting points and supporting hyper-

planes for n and � n in the CHCNN trained by S, then H nð Þ and H� nð Þ would be

parallel to each other, and the distance between them is equal to y nð Þ � y� nð Þj j.
According to Lemma 2.2, we thus can use

max
n2U

y�ðnÞjf � yðnÞjg (2.101)

as an approximation of the diameter of S, However, t nð Þ and t� nð Þ are both

the supporting points (therefore belong to S), which shows Diam Sð Þ 	 t nð Þ�j
t� nð Þj by the definition in (2.100). From the inequality t nð Þ � t� nð Þj j 	
y nð Þ � y� nð Þj j, it then follows that a more accurate approximation of Diam Sð Þ
should be given by

max
n2U

t nð Þ � t� nð Þj jf g: (2.102)

The advantage of this computational method is that it is not only very easy to

implement but also very efficient for solving high dimensional problems. Table 2.7

shows the simulation results for diameters of a set of ten four-dimensional point

sets, with all sets containing 200 points randomly chosen and the CHCNN was run

with k ¼ 20. In Table 2.7, D Sð Þ is the exact diameter of the set S, and

D1 Sð Þ ¼ max
n2U

y� nð Þ � y nð Þj jf g (2.103)

and

D2 Sð Þ ¼ max
n2U

t nð Þ � t� nð Þj jf g (2.104)

are the approximations defined respectively by (2.101) and (2.102).
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A pleasant and surprising result found in Table 2.7 is that D2 Sð Þ almost always

yield the exact diameter of a set S. It implies that CHCNN is highly effective and

efficient in computing the diameter of a cluster.

Table 2.7 Diamater of a set S

Si D Sið Þ D1 Sið Þ D2 Sið Þ
S1 131.1992 130.0681 131.1992

S2 143.9056 143.8920 143.9056

S3 137.0960 135.9434 137.0960

S4 138.4248 136.4933 138.4248

S5 144.4680 142.7688 144.4680

S6 135.6954 134.5078 135.6954

S7 136.9296 134.8861 134.8861

S8 146.5135 144.9885 146.5135

S9 149.6796 149.0020 149.6796

S10 146.6331 145.0052 146.6331
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