
The Practice of Econometric Theory

An Examination of the Characteristics of Econometric Computation

Bearbeitet von
Charles G. Renfro

1. Auflage 2011. Taschenbuch. XVI, 311 S. Paperback
ISBN 978 3 642 24251 9

Format (B x L): 15,5 x 23,5 cm
Gewicht: 497 g

Wirtschaft > Volkswirtschaft > Ökonometrie

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Renfro-Practice-of-Econometric-Theory/productview.aspx?product=10075790&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_10075790&campaign=pdf/10075790
http://www.beck-shop.de/trefferliste.aspx?toc=9884
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783642242519_TOC_001.pdf

Chapter 2
Econometric Software: Characteristics,
Users, and Developers

As the title indicates, this chapter takes as its major themes three aspects of econo-
metric software, namely its characteristics, its users, and its developers. What it is,
as a manifestation of its characteristics, is obviously quite relevant to this study as
a whole, but so also are those who use it, how it is used, and by whom it has been
created and developed. The users and developers of any type of software are clearly
each formative influences, as may also be the particular way it is used, since collec-
tively these circumstances shape and possibly explain its characteristics. Of course,
to a degree, these are separable topics, or at the very least they are topics that can be
considered progressively, beginning with the general characteristics of this software.

Following from the discussion in Chap. 1, there is a useful distinction to be made
initially between the act of creation of software that is motivated by the goal of per-
forming a specific task and the production of a finished program that is intended to
be used for a more generally defined purpose and possibly by others. For instance,
a given source code routine, or more often a set of routines, might be written specif-
ically in order to calculate and display a set of parameter estimates. Alternatively,
the goal might be to create a program to be used to build a “model,” or a class of
models, or to perform some other composite, possibly quite complex extended task.
Notice that what distinguishes these examples from each other is that the first de-
fines what can be viewed as a pure computational problem, with success or failure
to find the solution judged by the degree to which the specific calculations are accu-
rately, efficiently, and even elegantly or perhaps quickly performed. What could also
be included in this same qualitative assessment is whether, and to what degree, the
results are informatively and even attractively displayed. In contrast, in the alterna-
tive, more general case, what is involved and needs to be evaluated is the potentially
much more elaborate creation of the necessary computer code to perform an inte-
grated series of tasks, not all of which are individually computational problems in
the same pure sense. Furthermore, the performance of these tasks might also in-
corporate operations that only by an extreme stretch of imagination are likely to be
classified as either economically or econometrically interesting – at least as the sub-
ject matter of these disciplines is usually defined. Nevertheless, the storage, retrieval
and management of data, for example, as well as the development of the human
interface of a program, are just as much a part of econometric software creation as
is the programming of specific calculations. Moreover, whether all these aspects are

C.G. Renfro, The Practice of Econometric Theory, Advanced Studies in Theoretical 55
and Applied Econometrics 44, DOI 10.1007/978-3-540-75571-5 2,
c� Springer-Verlag Berlin Heidelberg 2009

56 2 Econometric Software: Characteristics, Users, and Developers

now individually considered to be econometrically relevant or not, the future devel-
opment of economics and econometrics may nonetheless be affected by the degree
to which each of these constituent software development problems is appropriately
solved.

At first sight, the essential distinction between these two cases is a subtle one, at
this stage even possibly obscure, making it necessary for clarity to recognize that the
crux of the matter is the question of the extent to which the work performed should
be seen by economists and econometricians to be within-discipline, not somebody
else’s concern. In the most general case, the econometric computational problem
should be considered to comprise not only the process of performing specific cal-
culations but in addition provision for the acquisition of an appropriate data set,
the management and useful display of that data – possibly displaying both inter-
mediate and final results – and maybe even the integration of a large number of
computational tasks. In effect, in this general case, this computational problem can
be defined as incorporating all the operational aspects of a given applied research
project ranging from obtaining the data used from the original source or sources
to the presentation of the published results, in whatever form these are presented –
rather than just the implementation of specific formulae that might appear in an
econometric text book or elsewhere in the literature.

However, although such an argument can be made, it can fall on deaf ears. Most
often, economists have been focused in their research interests upon economic
agents and their behavior, individually and collectively, and the econometrician
upon such topics as the properties of particular parameter estimators, the circum-
stances of their use, and the evaluation of that use, frequently defined ideally.
Consequently, econometric software development is an area of inquiry that is ordi-
narily interpreted to fall well outside the formal bounds of economic or econometric
investigation, as a subject best left to the computer scientist or someone else, cer-
tainly as regards its detailed aspects. It is indicative that, with few exceptions,
econometric textbooks and the more general econometrics literature ordinarily only
refer to the existence of econometric software, without considering its specific char-
acteristics. It is moreover telling that the various aspects of this software, even
those most obviously “econometric” in nature, have seldom been considered and
evaluated within this literature, except for relatively uninformative “software” re-
views (McCullough & Vinod, 1999). Mainstream journals are not the usual locus
of ongoing discussion of even the major developments most likely to affect applied
economic research. Indeed, these journals normally reject independent submissions
that focus too obviously on specific computational matters, even in those cases that
these underlie and are critical to the evaluation of applied economics findings. The
possible exception to this rule is numerical accuracy (McCullough & Vinod, 1999),
but only recently and still in token form (Brooks, Burke, & Persand, 2001; Bruno
& De Bonis, 2004; McCullough, 1997, 1999, 2004; McCullough & Renfro, 1998;
McCullough, Renfro, & Stokes, 2006; Stokes, 2004b, c, 2005). Economists ordi-
narily deal with computational issues at a full arm’s length and depend upon
others, often statisticians and the statistics literature, to intercede (Altman, Gill,
& McDonald, 2004; Cordeiro, 2007; Hotelling, 1943; Longley, 1967; Simon and

Developmental Characteristics of Econometric Software 57

James, 1988; Velleman & Welsch, 1976), notwithstanding that some related con-
ceptual issues have been considered (Belsley, 1986, 1991; Belsley, & Kuh, 1986;
Belsley, Kuh, & Welsch, 1980). Reflecting this situation, most economists are quite
aware of John von Neumann’s role in the development of game theory, but compara-
tively few know that he also wrote the first computer program and participated in the
design of the first stored program computer (Knuth, 1970; Neumann, 1993/1945).
Of these accomplishments, which ultimately will be judged to have had the greatest
impact on economic progress is an interesting question.

In order to appreciate better the relevant issues, it is pertinent to consider in con-
trast another technological development, namely the first production of a printed
book, using movable type, which occurred in 1455 or thereabouts. The invention of
printing obviously has had a fundamental impact on the entire world of knowledge.
More specifically, the transmission of information about economic and econometric
thought and research historically rests upon the previous development of this tech-
nology, as does also the general diffusion of economic knowledge. Therefore it is not
difficult to make a connection, as an enabling circumstance, between the develop-
ment of the printed book and the development of economics or econometrics. Yet it
is also immediately apparent that book production by or for economists or econome-
tricians – either as regards particular technical production aspects or in terms of the
publication or distribution of these objects – is only disciplinarily pertinent insofar
as the specific focus of a particular investigation becomes their pricing or marketing,
or perhaps the industrial organization of the book trade. Even then, it might still be
difficult to identify those properties of the book as an object that would merit its
isolated consideration as a uniquely characterized economic good. To make a con-
vincing argument that the investigation of the technical aspects of book production
appropriately falls within the discipline of economics or econometrics would thus
appear to be rather thankless, notwithstanding that most economists spend much of
their working lives participating in activities intimately associated with either the
production or use of books in either hardcopy or digital form. In short, the example
of the book illustrates that simple proximity is not the issue, nor are per se any his-
torical developmental dependencies. On what grounds does econometric software
present a better claim for attention?

Developmental Characteristics of Econometric Software

The essential nature of econometric software can be considered prescriptively,
following from a definition of econometrics and then proceeding to a determination
of what characteristics this software does, should, or must have. An alternative
approach, and the one that has been adopted here, is to define econometric soft-
ware as consisting of that software intended to be used as econometric software;
that is, software that is purposefully created by its designers and developers to
be “econometric” in nature. This second definition of course accords with the

58 2 Econometric Software: Characteristics, Users, and Developers

description in this volume’s preface and in Chap. 1. However, if too literally
interpreted, proceeding in this way risks a high degree of definitional circularity.

A possible solution to this potential circularity problem is to begin by consid-
ering the history of the development of this software, placing it in the context of
the historical development of the electronic computer, as was done in Chap. 1,
which considered also at least certain aspects of the particular economic and data
processing environment from which both the computer and economic computation
developed. These histories are not as separate as might be imagined. For instance,
as the example of von Neumann illustrates, certain of the people closely asso-
ciated with the design of the early computers and computer peripherals, if not
obviously economists, are at least recognizable for their important contributions to
the discipline or for the part they played in creating the context from which econo-
metric computing came. In addition, it so happens that a number of easily identified
economists and econometricians were among the earliest to start using the computer
as a disciplinary research tool, use that has continued from then to the present day.
This story also has several other interesting and relevant aspects that lead naturally
into a consideration of the modern characteristics of econometric software.

The Early History of Econometric Computation

The first use of computers by economists was a case of need meeting opportunity. It
goes almost without saying that the 1930s and 1940s constitute a formative period
for both economics and econometrics. During this period, in Britain, the United
States, and elsewhere, the organized compilation of economic statistics by gov-
ernments, trade organizations, and other such originating data sources began to be
pursued in earnest, although at first much of this effort was actually expended by in-
dividuals. As described briefly in the Introduction, the time just after World War II
more precisely marks the stage at which economic and social accounting first began
to become fully institutionalized (Hicks, 1990; Kenessey, 1994; Kurabashi, 1994;
Meade & Stone, 1941). These developments, although the culmination of an even
longer process, were supported by a generally felt need to monitor and better un-
derstand economic phenomena, reflecting both the impact of world wars and the
economic trials and tribulations of the 1920s and 1930s. In the 1930s, several statis-
tically significant events of course occurred, among them the establishment of the
Econometric Society and the publication of Keynes’ General Theory. In addition,
in 1936, not only was the General Theory published, but also Leontief’s first work
describing input-output relationships (Leontief, 1936). And, at about this time, Jan
Tinbergen created the first macroeconometric models. Meanwhile, associated with
the work of Ragnar Frisch, Trygve Haavelmo, Tjalling Koopmans, Richard Stone,
and a number of others, there was also a quickening development of the methodol-
ogy of econometrics and quantitative economics, which of course extended through
the 1950s and beyond.

Developmental Characteristics of Econometric Software 59

A revealing perspective on the circumstances of those times is provided by a
comment incidentally made by Lawrence Klein in 1950 (Klein, 1950). Referring
to the seminal Cowles Commission work and the methodological progress of the
1940s, he rather pessimistically observed (p. 12) that

An annoying problem that arises with the new methods is the laboriousness and complexity
of computation. Very economical techniques of dealing with multiple correlation problems
have been perfected, but they can no longer be used except in special cases . . . where the
system is just identified. Unless we develop more economical computational methods or
more efficient computing machines, the problems will remain beyond the reach of individ-
ual research workers.

This remark clearly demonstrates why economists were then ready to embrace
the computer. Yet further evidence of this readiness is Leontief’s purposeful partic-
ipation in 1947 at one of the first gatherings of computer designers, the Symposium
on Large-scale Digital Calculating Machinery, where he discussed certain aspects
of his then-current work on interindustry relationships (Leontief, 1948). In his pre-
sentation, he described some of the challenging computational problems he saw
that might be ameliorated by the use of such machines. Leontief was also during
that time successively an active user of the IBM-supported electromechanical Mark
I and II data processing and computational machines, in the process becoming the
first economist to use a computer, in the particular sense of using an “automatic”
device (Wilkes, 1956).

Other economists took similar advantage of the opportunities available to them.
The first stored program computer to begin operation was the EDSAC (Elec-
tronic Delay Storage Automatic Calculator), independently built at the University
of Cambridge by a team under the direction of Maurice Wilkes, yet in design a
sibling of the EDVAC (Wilkes, 1956, 1985; Wilkes & Renwick, 1949; Wilkes,
Wheeler, & Gill, 1951). The EDSAC was made available for academic research
starting about 1951, the first electronic computer to be used in this way (Rosen,
1969; Wilkes, 1956; Wilkes & Renwick, 1949). Members of the recently formed
Department of Applied Economics (DAE), several of whom had earlier been in-
vited to Cambridge by its Director, Richard Stone, not only employed this machine
(Aitchison & Brown, 1957; Farrell, 1957; Houthakker, 1951; Prais & Houthakker,
1955) but, in particular, Alan Brown, Hendrik Houthakker, and S. J. Prais (Brown,
Houthakker, & Prais, 1953) appear be the first to describe in print the process
of using such a device as a disciplinary research tool. Lucy Slater, working with
Michael Farrell at the DAE, created the first econometric software, consisting of
regression and matrix manipulation programs for the EDSAC (Barker, Dada, &
Peterson, 2004; Slater, 2004, 1962).

Computationally inclined economists elsewhere still operated electromechani-
cal desktop calculating machines, including Lawrence Klein, Arthur Goldberger
and their colleagues at the University of Michigan (Goldberger, 2004). However,
in 1954, these econometricians were able to use the semi-electronic IBM Card
Programmed Calculator (CPC), in addition to the 602A Calculating Punch, an elec-
tromechanical plugboard and card punch device, in order to estimate moments
in preparation for the estimation of model parameters for the Klein-Goldberger

60 2 Econometric Software: Characteristics, Users, and Developers

model (Klein & Goldberger, 1955; Sheldon & Tatum, 1973). A few years later, in
1958–1959, at what would become the Lawrence Livermore Laboratory, Frank and
Irma Adelman were the first to solve an econometric model using a computer, an
IBM 650 (Adelman, 2007; Adelman & Adelman, 1959; Knuth, 1986). Contempora-
neously, possibly at the IBM Scientific Center in New York, Harry Eisenpress wrote
the first program to perform Limited Information Maximum Likelihood estimation
(Eisenpress, 1959), and a few years earlier, with Julius Shiskin in Washington, DC
(Shiskin & Eisenpress, 1957), created the Census X-11 seasonal adjustment method
using a UNIVAC (UNIVersal Automatic Computer), developmentally also a sibling
to the EDVAC. This machine was built by another team under the direction of Eck-
ert and Mauchly (Rosen, 1969). It was installed at the US Bureau of the Census in
1951 and was the first stored program computer to be sold commercially. Another
UNIVAC was the machine used to predict the outcome of the presidential election
in 1952.

The Takeoff Period of Econometric Software Development

This description of early computer use by economists possibly appears to be a series
of exhibits, selectively chosen, but actually this work effectively constitutes the com-
plete early record, the salient exceptions being additional work by others at the DAE
(Barker et al., 2004; Begg & Henry, 1998; Cramer, 2006; Prais & Aitchison 1954)
and the beginning of Robert Summers’ Monte Carlo study of estimator properties
using an IBM 650 at Columbia University (Summers, 1965). The simple fact of
the matter is that, throughout the 1950s, computers were scarce, difficult to gain
access to, and expensive to use; an hour of machine time could cost literally triple
the monthly salary of the economist using it (Adelman, 2007). As Bernard Galler
has pointed out, “before 1955, any university that wished to establish a comput-
ing activity either had to build its own computer or have a special relationship with
a manufacturer” (Galler, 1986). Consequently, only 47 universities had installed
them by 1957 (Keenan, 1963). In addition, as mentioned in Chap. 1, the necessary
programming infrastructure took time to build: recall that it was only in 1957 that
Fortran, the first high level programming language, was developed (Backus, Beeber,
Best, Goldbereg, Haibt, & Herrick, 1957); prior to that users needed to program in
machine or assembly language. Hardware reliability was also a factor: only in 1959
did transistors begin to replace vacuum tubes (Rosen, 1969) and only in the 1960s
did computers based upon this more reliable technology become available in the full
sense of the word.

As a consequence, it was during the next two decades, starting in the early
1960s, as computers began to proliferate and programming languages and facilities
became generally available, that economists more widely became users (Bodkin,
1999; Desai, 2007). Beginning then, there were a number of econometric firsts, in-
cluding the implementation of increasingly computationally complex econometric
techniques, among them Two and Three Stage Least Squares, Seeming Unre-
lated Regression Equations, and Full Information Maximum Likelihood (Renfro,

Developmental Characteristics of Econometric Software 61

2004a, b, c, d). In addition, starting about 1964, economists created some of the ear-
liest large scale computer data bases (large scale for that day), also developing the
software to manage these (McCracken, 1966, 1967a, b). However, even in the mid
1960s, the progress made was neither uniform nor universal: the Wharton model, a
direct descendent of the Klein-Goldberger model (Bodkin, Klein, & Marwah, 1991;
Intriligator, 1978), was then still being solved using an electromechanical desk-
top calculator (Renfro, 2004a, b, c, d; Schink, 2004). It was only in the second
half of that decade that economists at the University of Pennsylvania first used the
electronic computer to solve large-scale macroeconometric models as nonlinear si-
multaneous equation systems, rather than as “linearized” reduced systems (Desai,
2007; Evans & Klein, 1967, 1968; Preston, 2006; Schink, 2004).

During the 1960s, expanding bootstrap-like on what had been learned, and mak-
ing use of the ongoing technological developments, the level of sophistication
progressively increased. Much of this work represented the efforts of individual
economists, although often in the context of formal research projects (Duesenberry,
Fromm, Klein, & Kuh, 1965, 1969; Evans & Klein, 1967, 1968; McCarthy, 1992;
Preston, 2006). This process began with the creation of single purpose software
to estimate parameters, manage data sets, and later solve macroeconometric mod-
els (Renfro, 2004a, b, c, d), but at the end of this decade, with the advent of
time-sharing computers, economists were among the first to create and imple-
ment network-resident interactive software systems (Renfro, 1970, 2004a, b, c, d),
a significant initial step in the development of the modern econometric compu-
tational environment. Beginning in the early 1970s, they made several concerted
attempts to give focus to this research. At the just founded MIT Center for Com-
putational Research in Economics and Management Science, under the direction of
Edwin Kuh, economists began to devote considerable effort to the study of rele-
vant computer algorithms (Berndt, Hall, Hall, & Hausman, 1974; Dennis, Gay, &
Welsch, 1981a, b; Dennis & Welsch, 1978; Holland & Welsch, 1977; Kuh, 1972,
1974; Kuh & Neese, 1982; Kuh & Welsch, 1980) and closely related regression
diagnostics (Belsley, 1974; Belsley, & Kuh, 1986; Belsley et al., 1980). Follow-
ing such advances, during the 1970s economists then proceeded to develop sev-
eral wide-area online telecommunications-linked economic data base, analysis and
econometric modeling systems that by the end of that decade became used world-
wide (Adams, 1981, 1986; Drud, 1983; Renfro, 1997a, b, 1980a). In other places,
such as at the London School of Economics, the development of software played
an integral part in the improvement of the methodology of specification search
(Pesaran & Pesaran, 1987, 1997; Pesaran & Slater, 1980), with the software specif-
ically conceived to be used as a tool to foster the so-called General-to-Specific, or
LSE, method (Hendry, 2003b; Hendry & Doornik, 1999a, b; Hendry & Srba, 1980;
Krolzig & Hendry, 2001; Mizon, 1984). As a consequence of initiatives of this type,
including numerous smaller scale, even individual efforts, economists were then
ready to adopt the emerging microcomputer at the beginning of the 1980s, by the
middle of that decade starting to use it widely as the primary locus for analytical
processing, including even the solution of econometric models of 600 and more
equations (Renfro, 1996).

62 2 Econometric Software: Characteristics, Users, and Developers

However, to provide the proper perspective for a more detailed evaluation of the
implications of these advances, it is first necessary to place them in their appropriate
historical context. The mention of microcomputers here is potentially misleading,
given their ubiquity today, for although it is true that the first microcomputers be-
came available to “hobbyists” as early as 1975, as a general proposition the 1970s
were still very much the age of the bigger machines, for economists as well as most
other people. Only later in this decade did economists begin to write software for
the microcomputer (Renfro, 2004a, b, c, d). Furthermore, many of the econometric
software initiatives just mentioned took almost 10 years to come to term, so that
considering 1970s computer use in context it is important to recognize that the pre-
dominant computational characteristic was not only its mainframe focus but, as a
matter of use, also a continuing selectiveness. The 1960s were a time during which
economists more generally became computer users, as suggested earlier, but this
was a change relative to the use in the 1950s. In 1970, only a small number of
economists, or people at large, had directly begun to use the computer. In the case
of economists, many were then graduate students, and of these only a proportion
customarily spent each night and weekend in the keypunch room. Today, in con-
trast, computer use of course begins at kindergarten, or even before, and extends to
any age pervasively, but such behavior began no earlier than the late 1980s.

Today there is also stress upon user accessibility. The human interface is much
more evolved, in a way that permits the user to operate programs at a much higher
level of abstraction. In contrast, programs in the early 1970s often, and in the later
1970s sometimes, still needed to be operated by placing numbers in fixed fields
of punched cards, a given integer number from 1 to k indicating which among k
options the user wished to select – or by the use of 0 the user might indicate omis-
sion. Sometimes data transformations needed to be made explicitly, the user coding
these in Fortran or other high level language. One of the most significant differences
between then and now is that in those earlier times, especially in the years prior to
1975, it was almost always requisite for a user to begin by writing some code, partic-
ularly in those instances that an application involved new techniques. So much was
there a common need to program, and comparatively so much less computer use
than today, that practically any econometric software written prior to about 1975
involves some aspect that can be declared a “first,” or at minimum viewed as involv-
ing some type of pioneering effort. There are certainly examples of off-the-shelf
software used by (comparatively small groups of) economists during the period be-
tween 1960 and 1980 (Bracy et al., 1975; Brown, 1975; Goldberger & Hofer, 1962;
Hendry & Srba, 1980; Kim, Chung, & Kim, 1979; McCracken, 1967a, b; Press,
1980; Slater, 1967, 1972); nevertheless, it was then usual that an intending hands-
on user needed to learn to program, to at least some degree and often at a rather
fundamental level. Until at least the middle 1970s, an applied economist would
commonly either start with nothing more than a textbook, or, at best, be given a
box of cards, or sometimes one or more paper tapes, onto which were punched the
source code statements for a program – although by 1975, perhaps even earlier, it
was not unusual for the “box of cards” to have been replaced by a machine-readable
card image file.

Developmental Characteristics of Econometric Software 63

However, in 1970, there were also certain incentives that led individual software
developers to begin to focus on the human interface and abstract symbolic pro-
cessing, as well as large scale data management, whereas others created particular
algorithms or programs that since have been developed effectively as representa-
tive of what might almost be considered econometric “schools” of thought. Yet
other economists and econometricians, as just indicated, created or modified par-
ticular programs for their personal use, certain of which ultimately became publicly
available and widely used. Particular examples of programs of the first type, not all
of which are still being developed, include DAMSEL, EPS, MODLER, TROLL,
and XSIM, each of which were then associated with the creation, maintenance
and use of often sizeable macroeconometric models (Renfro, 1980a). The use of
such models characteristically imposes the need to create and maintain relatively
large time series databases, involves the processing of symbolic data in the form of
equations, and establishes a requirement for software that can be used by teams of
people, hence the incentive to focus on the human interface. Examples of programs
of the second type, individually interesting because of their internal algorithmic
characteristics in the 1970s, include B34S, TSP, and Wysea, although TSP is also
notable for the early development of its human interface. Programs of the third
type, those that can be construed to be individually associated with a particular
econometric “school,” include AutoBox and AUTOREG (represented today by its
direct descendant PcGive). Finally, programs created originally in the 1970s for lo-
cal, even personal use, but that have since been developed for public use, include
AREMOS, CEF, FP, LIMDEP, MicroFit, Modeleasy+, RATS, REG-X, SHAZAM,
SORITEC, and WinSolve. Some of these might also be regarded as being assignable
to a “school.” These pigeonhole categories should all be regarded as being only ten-
tative, but they nevertheless illustrate aspects of econometric software development
before 1980.

During the 1970s, there were also larger forces propelling the development of
econometric software. Overall, the economic spirit of that time was distinctly ac-
tivist. At the end of the 1960s, in keeping with the particular Keynesian paradigm
then prevailing, not only was there some feeling among economists that the econ-
omy was possibly precisely manageable (although possibly not to the degree this
belief has been represented since), but – just as important – there was also a broader
willingness on the part of government officials and corporate leaders, particularly
in the United States, to believe in the capability of the economist to “fine tune”
the economy. All this was to a degree the consequence of the fact that then the
memory was still vivid of both the 1930s depression and the escape from it in
the 1940s and 1950s. In 1945, it was popularly believed, an expectation shared by
a number of economists, that an economic downturn was likely, that World War
II possibly represented a temporary period of “full employment” that would give
way to widespread unemployment when “the troops came home” (Klein, 1946; Or-
cutt, 1962; Woytinsky, 1947). However, 25 years later, at least in the case of the
major industrialized countries, the recessions that had occurred had proved to be of
short duration and represented minor fluctuations about a distinctly upward trend,
particularly in comparison to before the war. One of the consequences, in the later

64 2 Econometric Software: Characteristics, Users, and Developers

1960s, was substantial forthcoming corporate and government support for the cre-
ation of economic consulting firms such as Data Resources, Chase Econometric
Forecasting Associates, and Wharton Econometric Forecasting Associates, each of
which about 1970 began to create and support large scale, computer-resident eco-
nomic data bases and econometric software systems (Renfro, 1980a, 2004a, b, c, d).

The development of econometric software during the period between 1960 and
1980 can therefore be seen as reflecting two distinct “motivating forces”: those inter-
nal to econometrics and those external, often deriving from economics as the parent
discipline. Individual econometricians characteristically created software dedicated
to parameter estimation using a variety of estimators; the academic imperative driv-
ing this type of innovation was of course the usual desire to present the new and
different. For the major economic consulting and forecasting firms, the impera-
tive was to provide billable services to clients; that is, to applied economists in
governments, corporations, and other organizations. Software developed for the
use of these clients was usually motivated by the goal to provide time-sharing
software services in combination with access to substantial time series economic
data bases, in many cases via telecommunications links (Adams & Ross, 1983;
Mendelssohn, 1980; Renfro, 1980a). An important aspect of this software develop-
ment was its emphasis on the creation of semi-natural language, symbolic command
interfaces of the type that can be found even today as macro languages, intended to
be easy-to-learn and easy-to-use (Adams, 1981; Drud, 1983; Kendrick & Meeraus,
1983; Meeraus, 1983; Renfro, 2004a, b, c, d). Another important aspect of this work,
reflecting the widening range of users – many of whom might be less likely to call
themselves econometricians than simply economists or even planners, statisticians,
or something else – was the creation of more broadly-based facilities to support
onscreen tables, graphs, and even maps, although not yet at today’s standards.

Both types of software development have proved to be important ultimately,
each in its own way. Individual software development, for self-consumption, does
not normally result in programs that can be used easily by other people, no matter
how econometrically interesting the algorithms created. In contrast, programs devel-
oped intentionally for general use tend, by design, to offer not only “user friendly”
interfaces, but also even extensive data display capabilities, which actually can be
quite important in applied research, even if this type of software is open to criticism
for “usually [lagging] some years behind the state-of-the-art technical econometric
frontier” (Hendry, 1993, p. 314). The academic payoff, such as it is, tends to be
much greater for software development that leads to the publication of information
about new econometric technologies or embodies what are perceived to be theoret-
ical advances, but this return represents a private, not necessarily a social benefit,
beyond the creation of new knowledge that may or may not be of wide interest.
In contrast, the greatest social benefit may derive from the implementation of new
computational technologies that support the research of all economists and econo-
metricians alike.

The particular historical details matter. The 1970s were years of substantial
aspiration, yet also a time when the economist’s reach might be seen to exceed
his grasp. Among the reasons this circumstance needs to be recognized is that

Developmental Characteristics of Econometric Software 65

economists have been known to indulge in a form of poetic license. Specifically, in
introductions to journal articles and other publications, or in the body of the piece,
they have too often provided stylized, frequently not particularly well-founded state-
ments of “fact,” intended as motivators for the argument presented. But even if not
originally written to be definitive history, nor expected to be wholly believed, at
least some of these statements have later tended to be cited repeatedly and in the
end read as gospel, finally entering into the folk wisdom of the discipline. It is easy
to demonstrate that the perspective provided by contemporaneous statements about
technology, especially when read 10, 20, 30 or more years later, can be materially
deceptive. For example, John Diebold, writing in 1962 (Dibold, 1962), presented
an enthusiastic description of the capabilities of the language translation programs
of that generation, asserting that that they could be used to “scan a printed page,
translate its contents from one language to another, make an abstract of the trans-
lations and store both text and abstract in ‘memory’ until they are called for by an
information-retrieval network” (pp. 40–41). To anyone historically knowledgeable,
this description clearly involves more than just a touch of hyperbole, as it would
even if applied to modern language translation programs 45 years later.

In addition, it can be difficult even for those who were there to recall accurately
all the relevant characteristics of the past when there has been substantial techno-
logical change in the meantime. Modern readers of an historical account may be
even more inclined to assign present day capabilities to the past, making it difficult
for them to separate historical fact and fiction. For instance, also in 1962, Daniel
Suits wrote about macroeconometric models (Suits, 1963), asserting that “in the
days before large digital computers, individual relationships generally had to be
kept simple, and the number of equations that could be used in a system was rather
small. Today [that is, 1962], with the aid of high speed electronic computers, we can
use models of indefinite size, limited only by the available data” (p. 7). For proper
perspective, it needs to be appreciated that this assessment precedes by several years
the first successful computer-based solution of any econometric model, the single
special-case exception being the Adelman work mentioned earlier. Furthermore,
from 1962 to 1965, every working macroeconometric model (of the few operating)
was solved using electromechanical desktop calculating machines, not computers.
Even including the Adelman simulations, before 1965 model solutions were invari-
ably enabled only by linearization of the model and then by first solving out all
but a few variables. As indicated earlier, modern methods of solution only began to
be implemented in 1967 (Desai, 2007; Preston, 2006; Schink, 2004); even then, in
certain cases, desktop calculating machines continued to be used. Suits’ assessment
was written before any software systems had been developed that had the capability
to manage to any significant degree computer-resident economic data bases or to
estimate, particularly at the scale suggested, the parameters of individual relation-
ships or to handle any of the other computer-related tasks necessary to support the
use of even small models, much less those of “indefinite size.” If unrecognized, past
technological mis-assessments can cause hard-won successes to be undervalued and
the causes of past failures to be misjudged.

66 2 Econometric Software: Characteristics, Users, and Developers

The Adoption of the Microcomputer

The computers ordinarily used by economists prior to the middle 1980s can be
classified as mainframes or minicomputers, although by then supercomputers
had also appeared, after being introduced in the 1960s, even if seldom used by
economists. Mainframes were of course intended (and priced) for “enterprise” use,
whereas minicomputers were meant to be used in departments and other, generally
small, sub-classifications of organizations. Supercomputers, typically a category
of fast, vector processor machines in the 1970s, had the interesting characteristic
that they generally used mainframes as auxillary processors for the input of data
and output of results. However, irrespective of such classification, the fundamental
characteristic of econometric computing before the later 1980s was not only that the
computers used by economists were ordinarily organizationally owned, rather than
personally, but also that they were shared. Mainframe sharing at this time meant
that, however fast the machine’s operation when used by a single person, it could be
quite slow for the average (multi)user. It might be slow because it operated in batch
mode, with programs prioritized and queued as they were read in and, on output,
the hardcopy results sorted and distributed by hand by its one or more operators. In
many contexts, output in those days was essentially hardcopy, notwithstanding that
it was possible to create a permanent or semi-permanent machine-readable record.
The result could be turnaround times of an hour or more, or even 24 hours for
“large” jobs, those requiring memory in excess of 512 KB or, sometimes, as little
as 256 KB. But even when machines were used in “time-sharing” mode, the fact
that individual users’ “jobs” were still almost always prioritized and then queued,
and might require a human operator to mount tapes and removable hard disk drives,
could mean that several minutes or more might pass between the entry of a sin-
gle command and the computer’s response. The first personal computers were
themselves slow, compared either to mainframes or minicomputers (or personal
computers today), but they were single user and self-operated. These character-
istics caused them to be time competitive with mainframes, and sometimes even
supercomputers, as early as 1981 or 1982 (Fried, 1984, p. 197).

The adoption problem the microcomputer initially posed for the econometrican
was the lack of software, which always occurs when the hardware characteristics
are radically changed because of the introduction of an entirely new Central Pro-
cessing Unit (CPU). In addition, the architecture of this new class of computer at
first also represented a significant step back in capabilities: maximum memory size
on the order of 64 KB, rising to 640 KB only more than a year later, and small,
slow diskette drives for permanent storage rather than hard disks, with hard disks
initially unavailable and then reaching the size of 20 MB, as a common charac-
teristic, only in 1984 – not to mention CPU operating speeds of 6–8 MHz or less
before 1986 (Byte, 1984, 1986). Furthermore, it took several years before micro-
computer software provided the capabilities of mainframe software, reflecting that
writing software takes time, but also that the language compilers and linkers avail-
able for the microcomputer were at first “bug” ridden, idiosyncratic, and originally

Developmental Characteristics of Econometric Software 67

designed for small, memory-undemanding programs. In at least one case, in 1982,
it was necessary to “patch” an existing linker in order to make it possible to convert
an econometric software package from the mainframe to the PC.

Nevertheless, by the autumn of 1983, the first econometric software package ca-
pable of estimating and solving (small) econometric models was available for the
IBM Personal Computer and compatibles. In September 1984, a microcomputer
based economic forecast service was introduced at the annual meeting of the Na-
tional Association of Business Economists, combining a 250 + equation Wharton
Quarterly Econometric Model of the United States with the MODLER software
(Renfro, 1996). The solutions for a 12 quarter forecast horizon took less than 4 min.
This software had the same capabilities as its mainframe version (Drud, 1983); in
particular, it could be used to create, maintain and solve econometric models of as
many as 1,000 equations. By the end of 1985, other packages available for the “PC”
included AREMOS, AutoBox, Gauss, PcGive, RATS, SHAZAM, SORITEC and
Stata, as well as limited versions of both SAS and SPSS. Even earlier, at the begin-
ning of the 1980s, more limited packages had been implemented on both a Tandy
machine and the Apple II (Renfro, 2004a, b, c, d), including a program called “Tiny
TROLL,” created by Mitch Kapor at MIT, parts of which were then incorporated
into the VisiCalc spreadsheet package and subsequently also influenced aspects of
the development of Lotus 1-2-3, and later other packages, such as Excel.

Many of these individual efforts continue to have a modern day relevance, but to
explain the subsequent evolution of this software during the present microcomputer
age, it is possible to trace the broad outlines of the computational developments of
the past 20–30 years. The computational shift during the 1980s, from the creation of
software and systems on large institutionally based machines to the use of the per-
sonal computer as the locus of such work, can be viewed as responsible for the range
of econometric software that exists today. The personal computer, because of its af-
fordability, ultimate wide distribution, and steadily increasing capabilities, not only
provided an important context but also became the basis of a progressively more
extensive market. The 1960s may have been the decade that economists first began
to learn to use the computer, but it was the 1980s and subsequently that computer
use became widespread in a pervasive sense. The comparative degree of market ex-
tensivity is even more apparent today, given the ubiquity of the notebook, or laptop,
computer, and otherwise the sheer number of personal computers now commonly
found in offices and homes, not to mention such things as the recently accelerating
convergence of television and computer technologies. Of course, the development of
the Internet as an effective successor to the more local, mainframe-based wide area
networks of the 1970s has obviously had a significant impact, particularly since the
middle 1990s, especially on the distribution of economic data and information.

Consequently, although it is possible to talk in terms of nearly 60 years of evolu-
tion, the impetus for the development of today’s number and variety of econometric
software packages is decidedly more recent. Their present characteristics are the
direct result of a combination of relatively modern circumstances, among them be-
ing the introduction of the microcomputer in the 1970s and 1980s, the essentially
simultaneous expansive development of econometric techniques since the 1960s

68 2 Econometric Software: Characteristics, Users, and Developers

(Gilbert & Qin, 2006), and most recently the increasingly common adoption of a
graphical interface, often while preserving macro language capabilities, in conjunc-
tion with the progressively more widespread use of the Internet since the 1990s.
Among the effects, the broadening and deepening of econometrics – and, more
generally, quantitative economics – especially during the past 30 years, has had
a significant impact on the range of the present day properties of these programs,
resulting in considerable diversity. For example, functionally classified, today they
can be placed in categories that include basic regression, advanced estimation, and
econometric modeling languages. Considered in terms of both functionality and in-
terface, they can be classified as ranging from those defined by specific-selection,
menu-oriented econometric features to algebraic quasi-natural language economet-
ric modeling and programming languages that provide also the capability for an
individual user to create new techniques (Renfro, 2004a, b, c, d, p. 59ff).

Substantive changes in hardware have also occurred during the past 20 years.
As indicated, the desktop Personal Computer in 1987 operated at 6, 8, or 10 MHz;
in contrast, many modern notebooks operate at or near 2 Ghz or better. The 1985
microcomputer ordinarily contained at most 640 KB of easily accessible memory;
today’s variety commonly contains as much as 1 gigabyte or more. Furthermore,
the microcomputer has progressed to the point of incorporating (in a single chip
package) even two to four processing units (with the prospect of eight or more in
the foreseeable future), as well as having other characteristics that make it more
and more difficult to conceptually distinguish between the capabilities and types of
large and small machines in a meaningful way that does not involve mind-numbing
detail. What is certainly true is that the microcomputer found either on the desktop
or an airline tray table is now the locus of the vast proportion of all the empirical
analysis that is done by economists. In almost every sense, the composite history
of the electronic stored program computer is now present in the modern personal
machine.

The Characteristics of Econometric Software

To this point the focus has been upon the developmental characteristics of economet-
ric software during the past nearly 60 years. An inference that might be drawn is that,
on the one hand, there are historical examples and, on the other, modern examples. It
also might be thought that the historical examples are only of historical interest. To
a degree, this characterization is reasonable: a number of econometric software pro-
grams were created, used for a period of time, often years, and then dispensed with.
However, to a significant degree it is misleading. None of the programs created in the
1950s are still employed today, but certain of those from the 1960s continue to be, al-
though in modern form. In particular, AutoBox, B34S, Microfit, MODLER, Mosaic,
PcGive, TSP and Wysea all have their origins then and at least some still incorpo-
rate a certain amount of original source code. Furthermore, the majority of these
programs continue to be maintained by their original principal developers. Others,

The Characteristics of Econometric Software 69

including AREMOS, FP, LIMDEP, Modeleasy+, RATS, SHAZAM, and SORITEC
began life on mainframes in the 1970s, as did also SAS, SPSS, and other well-known
statistical software packages; in some cases, these too continue to be maintained by
their original developers. All were converted to microcomputers, in most cases be-
ginning at various times during the period 1980–85. In contrast, REG-X began to be
developed on a Tandy microcomputer in 1979, was moved to a mini-computer and
then to the PC in the 1980s. Others, including EViews (as MicroTSP), Gauss, and
Stata, began to be developed on the microcomputer in the 1980s, joined by Betahat,
EasyReg, Ox, and the present day incarnation of TROLL in the 1990s. Of all the
recognized existing programs, only gretl began to be developed in the present cen-
tury, albeit on the basis of “inherited” code, even if there are also certain Gauss and
Ox-based special applications that have been created during the past few years. The
packages just identified include those that have been surveyed and are evaluated in
this monograph.

Inasmuch as the origins of most date from before 1980, their history and that of
the electronic computer are intertwined. Econometric software spans the develop-
ment cycles of hardware change from earliest times. For instance, in addition to the
early use of the computer described in the first part of this chapter, the first use of the
computer by economists at the University of Pennsylvania apparently involved some
later use of the UNIVAC during the early 1960s, the immediate design successor to
the EDVAC (Desai, 2007; Preston, 2006), although this is almost incidental. How-
ever, the connections to the second generation are quite meaningful. At least three of
the existing packages began to be developed on second-generation computers, and
several more on the third. The distinguishing hardware characteristic of the second
generation was the introduction of the transistor, which occurred first in 1959 with
the IBM 7090/94 (Rosen, 1969). Another machine, the IBM 7040, was effectively
an IBM 7090 “lite.” The IBM 1130 and 1620, used in several cases by economists,
were second generation, small mainframes principally designed for scientific use.
The CDC 6400, used in at least one case, can be described as a second generation
mainframe, although it is architecturally compatible with the earlier CDC 6600, de-
signed by Seymour Cray, which is generally regarded as the first supercomputer.
Interactive, local area econometric computing began in 1970 at the Brookings Insti-
tution on a Digital Equipment PDP-10 (Renfro, 1970), another of which was later
used by Bill Gates and Paul Allen (www.pdpplanet.com). The IBM 360 was a third
generation machine and was used by econometric software developers, as were also
its successors the IBM 370 and the 3090. Other econometric software developers,
especially those in the United Kingdom, if they did not actually cut their teeth on
the first EDSAC, can nevertheless date their earliest work to the use of the Atlas in
the 1960s, particularly the machines at the Universities of Cambridge and London,
or even the EDSAC 2 or Titan (Slater & Barker, 1967). More recently, econometric
software has involved the use of Apple, Tandy, the Victor 9000, the RS/6000, sev-
eral Sun machines, and multiple generations of the IBM PCs and compatibles. The
inference to be drawn is that econometric software enjoys a long and rich hardware
patrimony, one only partially described here.

70 2 Econometric Software: Characteristics, Users, and Developers

However, until recently, this history has been part of the econometric deep
background. Only certain individual developers have ventured into print to any
significant degree (Belsley, 1974; Eisner, 1972; Eisner & Pindyck, 1973; Hendry
& Doornik, 1999a, b; Hendry & Srba,1980; McCracken, 1967a, b; McCracken &
May, 2004; Renfro, 1981, 1996, 1997a, b, 2004a, b, c, d; Slater, 1962; Stokes,
2004b, c; White, 1978). Furthermore, although the user guides and reference man-
uals commonly provided with individual programs often do give some informa-
tion about their history, these accounts tend to be presented selectively, ordinarily
without technical details. The most readily available, collective description of the
existing econometric software packages, albeit somewhat limited, is found in the
compendium published in 2004 (Renfro, 2004a, b, c, d). This collection comprises
edited accounts by each of the current principal developers of each of the existing
packages, although there are certain exceptions to this rule. The exceptions occur
mainly in the case of historically significant programs that are today no longer
maintained. Other, more selective, descriptions of particular econometric software
packages, available in 1983 and earlier, can be found in an article of that date by
Arne Drud (Drud, 1983), articles in a special issue of the Journal of Economic
Dynamics and Control (Kendrick & Meeraus, 1983), and in minimally descriptive
compilations of statistical software by Ivor Francis and others (Francis, 1981).

It is said that the past is a foreign country, but if the detailed, step-by-step record
is now difficult to recover entirely, it is possible to determine the salient character-
istics of these packages during modern times on the basis of an earlier interactive
survey made in 2003. This survey was taken in conjunction with the publication of
a special volume on econometric computing, published in 2004 both as volume 29
of the Journal of Economic and Social Measurement and a separate book (Renfro,
2004a, b, c, d). A number of the more general operational characteristics of the
individual packages are documented there in the form of summary tables (Renfro,
2004a, b, c, d). In addition, the compendium just referred to (Renfro, 2004a, b, c, d)
is included. It is interesting that the transition from desktop calculators to the elec-
tronic computer that began to take place in the early 1960s originally occurred in the
form of a modal transfer: calculations previously made with the calculator began
to be made instead using the computer, but initially without a significant change in
mindset (Desai, 2007; Goldberger, 2004; Slater, 1962). After that first step, came the
process of incorporating into this use both more comprehensive data management
and more than particular parameter estimation methods. As mentioned earlier, the
first recognizable econometric software commonly took the form of separate, single
purpose programs classifiable individually as data management, data transforma-
tion, and regression programs, the latter in their original form not always easily
distinguished from “statistical” programs of that day. To the degree that evident dif-
ferences existed in the middle 1960s, the most obvious characteristic of econometric
software was less of a tendency to include stepwise regression and more to include
simultaneous equation techniques, such as Limited Information Maximum Likeli-
hood and Two Stage Least Squares. It was only in the late 1960s, and even then
only occasionally, that the programs became more than rudimentary in operating
style and econometricians even began to think about something as conceptually
sophisticated as software “design.”

The Characteristics of Econometric Software 71

In contrast, during the past 25 years, reflecting the impact of personal computers,
econometric software packages have become clearly categorically distinguishable,
both from other types of software and from each other. Among themselves, as a gen-
eral property, individual programs have become functionally more self-contained,
combining parameter estimation capabilities with data transformation facilities and
at least a minimal degree of more generalized data management and display capa-
bilities, a number of packages increasingly integrating as well such capabilities as
nonlinear multi-equation model solution facilities. Since 1995, there has also been
a pervasive tendency to adopt the prevailing standards of the so-called “graphical
user interface,” associated with both Microsoft Windows and the Apple operating
systems, although just as noticeable it has also been common for econometric soft-
ware to continue to offer command line control, usually in the form of a scripting or
macro capability. Most programs are today able to operate by manipulating econo-
metric objects using a keyword-based command language, even if many operate
primarily using menus and icons. It is also common to permit users to collect com-
mand elements into a text file, as a macro. The motivation is the repetitive nature of
many of the operations performed during research; for example, requiring the abil-
ity to make data transformations repeatedly as new observations are acquired, or to
rerun regressions. The ability to recycle commands, in order to perform previously
executed tasks easily and repeatedly, is obviously a desirable trait.

The way in which the various specific econometric techniques came to be
embedded in software during the past 50 years can also be outlined and usefully
classified. Certain of these developments represent a widening, or broadening, in
the number of econometric techniques, tests, and other operations implemented in
software. Others represent a capital deepening process, in the sense of more so-
phisticated implementations that, in some cases, take the form of more complete
algorithms that subsume the capability to perform any of a multiplicity of more
elementary operations, including two or more econometric techniques in combi-
nation. In other cases, this deepening involves combining in the same program a
sequence of operations that are mutually integrated, such as permitting parameters
to be estimated as a first stage operation, followed by the very nearly automatic
creation of model equations, and then linking these equations, as a next stage, fi-
nally causing the creation of a functionally complete model capable of being solved
(Renfro, 2004a, b, c, d). Such broadening and deepening can be considered to be
algorithmic in nature, although as also involving stylistic elements.

However, another aspect of this software development took the form of the cre-
ation of progressively more sophisticated interfaces, as discussed earlier. One of
these is the human interface, the means by which the program user both controls the
operations performed and either perceives or comprehends the results, which may
or may not be the same thing. As mentioned before, in the 1960s, sometimes even
in the 1970s, program control was effected by choices made using numbers located
in fixed fields on punched cards or paper tape. This type of control has long since
been replaced by the use of the WIMP graphical interface (Windows, Icons, Menus,
and Pointing methods) and even earlier by the use of free-form, if still stylized com-
mand languages. The results generated may, in turn, be displayed in tabular form, or

72 2 Econometric Software: Characteristics, Users, and Developers

as graphs, or as other perceivable objects, such as an equation or a list of equations.
Comprehension, as opposed to simple perception of the program’s output, obviously
can be aided by interface design, even if there has been considerably less attention
paid by econometric software developers to this aspect of the human interface than
to enabling simple perception.

Another interface type is the machine interface, the way in which a given com-
puter either receives input from or sends output to one or more other machines.
The idea of facilitating and then generalizing this interface, including its hardware
aspects, so as to permit computers to intercommunicate effectively began to be
implemented at the beginning of the 1970s, when it became progressively more
desirable not only to connect individual users to machines remotely from a dumb
terminal via a telecommunications link, either dial-up or dedicated, but also one
computer directly to another. Peer to peer machine linkages were initially difficult
to achieve, for computers in those days were originally designed to operate singly,
not as either intelligent or co-equal correspondents. Connections then generally re-
quired some type of master-slave protocol. More recently, the machine interface has
of course often taken the form either of a Local Area Network (LAN) or a Wide
Area Network (WAN) connection, the latter including both the Internet and other
machine-to-machine linkages. For econometric software developers, these were ini-
tially separated innovations, for ordinarily these developers were not involved in
the establishment of machine interconnection protocols, as this is an operating
system task. However, once these connections began to be possible, remote data
retrieval and data base management, among other facilities, began to become im-
portant as ideas and in practice (Anderson, 2006; Anderson, Greene, McCullough,
& Vinod, 2007; Harrison & Renfro, 2004; Renfro, 1980a, 1997a, b; Ritter, 2000),
even if today it is still usual for econometric software packages to be designed sim-
ply to read in data from some type of text file or an Excel or some other spreadsheet
file, rather than to query a relational or other remote data base system using SQL or
other procedural language.

Aspects of the Evolution of Software Features

Mary Morgan (Morgan, 1990) and Qin Duo (Qin, 1993) have each described the
process of the development of econometric theory and the way in which the ideas
of Frisch, Haavelmo, and Koopmans, among others, and the work of Tinbergen,
Klein, Goldberger and others during the early days of macroeconometric model
building combined to establish both econometric practice and its received theoret-
ical support at the beginning of the 1960s. Qin’s assertion (p. 65) that “estimation
can be seen as the genesis of econometrics, since finding relationships has always
been the central motive and fulfilment of applied modeling activities” expresses well
what can be regarded as a motivating thought behind the beginning efforts to more
generally employ the electronic computer in the first few years of the 1960s. How-
ever, the operative philosophical position of those years was often that expressed in

The Characteristics of Econometric Software 73

1958 by Haavelmo (1958, p. 351), that “the most direct and perhaps most important
purpose of econometrics has been the measurement of economic parameters that
are only loosely specified in general economic theory.” Of course, this measurement
often took place without always sufficiently taking into account his clearly stated
qualification (p. 352) that the quantification of economic phenomena had in the pre-
ceeding 25 years appropriately come to be interpreted to extend “not only to the
measurement of parameters in would be ‘correct’ models, but to the field of testing,
more generally, the acceptability of the form of a model, whether it has the rele-
vant variables, whether it should be linear, and many other similar problems.” The
methodology debates at the end of the 1970s and into the 1980s stand as testimony
to the continued lack of testing as a practice, which, as will be discussed in the
next chapter, at least in part possibly reflected the slowness with which facilitating
statistical tests became embodied in the software.

In the early 1960s, the electronic computer, as it became progressively more
commonly available, represented to economists the potential to perform compu-
tations not feasible previously. Eisenpress’s creation in 1959 of a program that
implemented limited information maximum likelihood was followed in 1962–63
by the efforts of Zellner and Stroud to implement the Two and Three Stage Least
Squares (Zellner, Stroud, & Chau, 1963a, b) and Seemingly Unrelated Regression
Equations (Zellner, 1963a, b) techniques. This work by Zellner and Stroud marks
the first time that particular estimation techniques were contemporaneously intro-
duced in the literature (Zellner, 1962; Zellner & Theil, 1962) and implemented in
software that could be used by others. A short time after that, in 1963–64, Mike
Wickens programmed Full Information Maximum Likelihood, based upon a later-
published formulation by James Durbin (Durbin, 1988) that, among other things,
utilized Newton-Raphson convergence and demonstrated that the second iteration
of the process generated Three Stage Least Squares estimates. Elsewhere, during
this time, other econometricians also implemented estimation techniques in soft-
ware; much of this work took place in Canada, New Zealand, the United Kingdom,
and the United States (Bodkin et al., 1991; Klein, 1960). In most cases, these efforts
can be seen to be motivated by the desire to make these calculations specifically
for the sake of it. Other efforts in the middle to late 1960s – including follow on
work in New Zealand (Bergstrom, 1967a, b; Phillips & Hall, 2004), as well as the
program development that took place in Washington, DC at the Brookings Insti-
tution (Duesenberry et al., 1965, 1969; McCarthy, 1992), and that at the Wharton
School of the University of Pennsylvania (Evans, 1969; Evans & Klein, 1967, 1968;
Preston, 2006; Schink, 2004) – represented much more the need to support the es-
timation, construction, and use of macroeconometric models. However, as this was
the take-off period of econometric software development, being the first dispersed
attempt to create a software infrastructure, in almost all cases the initial effect was
broadening, rather than deepening, as more and more estimation and even model
solution techniques became embodied in software.

A broadening also took place in the 1970s that in many cases and in similar
ways at first represented the efforts of individual econometricians, yet has since
resulted in the general availability of packages such as AutoBox, B34S, BRAP,

74 2 Econometric Software: Characteristics, Users, and Developers

FP, LIMDEP, Microfit, PcGive, RATS, and SHAZAM. Recall that these programs
appear to have originated either as individual reactions to the local unavailability,
or simply the general absence, of appropriate software or else as solutions to one
or more specific, perceived econometric problems, or, indeed, the combination of
these circumstances. Sometimes, as in the case of MicroFit and PcGive especially,
this software development increasingly over the years included the incorporation
of misspecification tests and other evaluative features. But whatever its exact form,
most of this broadening, beginning then and extending to the present day, consti-
tuted the addition of econometric techniques. However, these efforts did not simply
represent an increase in the number of techniques to be applied in a given, pos-
sibly macroeconomic time series context, but, in certain cases, the development
of software to be used instead in a cross-section or panel data, often microeco-
nomic environment. The greater availability of survey data, both cross-section and
panel, as well as econometricians’ advocacy of Bayesian, Time Series Analysis,
and other specific methodologies provided much of the initial broadening stimulus
in the 1970s. In the 1980s and 1990s, the market possibilities provided by the mi-
crocomputer and, in later years, the Internet, added extra stimulus. However, some
of these packages, even in their early days, also supported the applied research of
economics departments and groups of economists at such diverse places as Auck-
land, the Brookings Institution, Chicago, Cambridge, Harvard, the London School
of Economics, Minnesota, MIT, Pennsylvania, Princeton, and Wisconsin, so were
not just being developed in isolation for their developers’ personal research use.

The phenomenon of software deepening is both most evident and easiest to
describe in the case of programs developed for research teams associated with
large-scale econometric model projects. The need to manipulate and display sub-
stantial quantities of data in conjunction with the creation and use of such models,
starting in the middle 1960s, led increasingly during the 1970s to the creation of
large scale economic data base management systems, both separately and as sub-
components of such packages as DAMSEL, EPS, MODLER, Mosaic, and XSIM
(Renfro, 1997a, b). From the 1960s to the later 1980s, data series often needed to be
acquired in hard copy form and then keypunched. The associated expense obviously
provided an incentive to develop ways to move the data, once in machine-readable
form, from one context to another with a minimum of effort, as well as to manipu-
late the observations easily. Models containing 300 or more equations only became
possible because of the computer hardware and software advances that began in
the 1960s, although at first models of this size certainly strained the existing com-
putational capabilities. Even in the early 1970s, to create a 200 equation model
was commonly held to require a year’s effort on the part of a team of 10–12 people
(McCracken & Sonnen, 1972). In 1987, in contrast, one person working alone could
estimate, construct, and successively solve a 300 equation model in a single week
(Cooper, 1987; Renfro, 2004a, b, c, d).

The objects that are associated with macroeconometric models containing hun-
dreds or even thousands of equations obviously include data series, which explains
the development of data base management capabilities. However, somewhat less im-
mediately obvious, they also include equations, multiple tables, graphical displays,

The Characteristics of Econometric Software 75

macros used repeatedly to make transformations and updates, and other such items
that also need to be managed effectively. These objects collectively constitute a
significant data management problem that involves not simply classification and or-
ganization, but also a general problem of information management that includes the
need to be able to search effectively. In addition, from the beginning there was a
requirement to incorporate labor saving features; for example, the manual coding of
individual model equations itself was time consuming, but in addition likely to result
in transcription errors. Otherwise, in common with other types of software, deepen-
ing in this context also took the form of the creation of program components capable
of performing a variety of selected transformative operations on a particular data in-
put stream (Hendry, 1976). As indicated earlier, this intensification process can be
considered both as an internal program phenomenon, as just briefly described, or
else in connection with the development of human command interfaces that make
possible the more sophisticated control of a program’s operation.

The Development of the Human Interface

One of the evolutionary characteristics of econometric software – as discussed
briefly earlier, and in greater detail elsewhere (Renfro, 2004a, b, c, d) – was the
early development of explicit econometric modeling languages, which began in the
late 1960s. The use here of the term “language” refers to the command structure as
a human interface, which permits the user of this type of software to describe to the
software the operations to be performed using an algebraic syntax and vocabulary,
together with keywords and variable names; for example resulting in transformation
commands (possibly simultaneously taking the form of identities) such as:

Y D CC IC GC .X �M/

The variable names (Y, C, I, G, X, M) not only have an obvious mnemonic AQ: The spelling
“Mnemomic” has
been changed to
“mnemonic”.
Please check.

aspect, but as command elements each constitutes also a symbolic reference to a
stored vector of observations. The use of the program’s command language there-
fore not only directly invokes the retrieval of observations from an organized data
base, and perhaps subsequently the storage of results there, but also defines and
causes calculations and other operations to be performed that can be associated with
the construction, maintenance, and use of an econometric model, a model that might
contain even hundreds or a thousand or more equations. However, once created, such
a program can also be used more prosaically to make simple data transformations,
as shown above, as well as to perform regressions, execute a variety of analyti-
cal tasks, display tables, graphs, and the like, all in a relatively user friendly way.
Consequently, as previously described, the development of econometric modeling
languages in the 1970s was often associated with formation of economic consulting
and forecasting firms, which then made available to a wider public both software
services and economic data for analysis (Renfro, 1980a).

76 2 Econometric Software: Characteristics, Users, and Developers

The IBM Personal Computer at its introduction in 1981, with its original DOS
(Disk Operating System) command line user interface, can be seen to be imme-
diately compatible with the type of command line operation associated with the
econometric modeling languages developed for use with time sharing mainframes in
the 1970s. Furthermore the interactive operation of time sharing operating systems,
which normally provided the context of the early development of such modeling
languages, was functionally (if only very locally) mirrored by the single user oper-
ating systems of the microcomputer. Therefore, from the first, the microcomputer
provided a new, yet also quite familiar environment. What this machine in addition
soon made available to each user, beginning in 1982, was a pixel-based screen dis-
play that permitted graphical displays of a superior type that involved a matrix of
points, in the form of pixels, that were individually addressable. Such as screen can
be described as being “all points addressable,” rather than only line by line. Only
rarely available previously to users of mainframe computers, this type of screen
provided the environment for the development of the modern Graphical User Inter-
face (GUI). Incidentally, the particular circumstance that caused the IBM Personal
Computer and compatibles to be selected by almost all econometric software de-
velopers in the early 1980s, rather than the Apple, Tandy, or other microcomputers,
may reflect the early availability for this machine of Fortran and other algebraically
oriented compilers, in addition to the inclusion in its technical specifications of a
numeric coprocessor chip, the 8087, which permitted faster floating point numeric
calculations. For many years, the Apple machines, in particular, provided attractive
frosting but almost no cake; with the exception of its stunning display, only in the
present century has the Apple finally become hardware competitive with the PC.

Of course, the Personal Computer and modeling languages were independent
developments, even if the microcomputer environment, taken together with the sub-
sequent widespread use of this computer, caused a fundamental change in the degree
of computer use worldwide. Considered alone, these modeling languages repre-
sent a logical extension of the development of high level programming languages
that began in the middle 1950s. Both the parsed evaluation of alphanumeric com-
mands and the translation of arithmetic/algebraic expressions, usually involving the
conversion of infix notation (for example, aC b) into reverse polish (for example,
abC) or some other operative syntax that permits stack-based processing, constitute
operations that are – or can be seen to be – common to both compiler design and
econometric modeling languages. In turn, linker operation and the functional inte-
gration of a sequence of operations so as to marry the output of an earlier one to the
input requirements of a later one are logically generally analogous in their essential
characteristics.

During the 1970s, there was almost always a noticeable difference between
the human interface of the econometric software packages typically used by aca-
demic economists and that experienced mainly by business and other nonacademic
economists, who used the econometric modeling language type of interface just
described. This difference in part reflects that, during the 1970s, batch processing
mainframes and minicomputers were much more commonly available in academic
environments than were computers with time sharing operating systems. The typical

The Characteristics of Econometric Software 77

self-programming academic econometrician in the 1970s might, in any case, have
had little incentive to develop a sophisticated language interface for a program,
compared to the incentive to focus upon econometrically interesting algorithms,
but in a card (or paper tape) oriented batch environment there was even less rea-
son. AUTOREG, B34S, LIMDEP, and most other such programs were originally
developed with an algorithmic focus, rather than on the interface. Programs such as
DAMSEL, EPS, MODLER, and XSIM were more human interface-biased in their
development. The combination of differences in developer incentives and their envi-
ronments explain the particular diverse characteristics and almost bipolar orientation
of econometric software development during the 1970s.

However, it is also pertinent that, until about 1978, much of the design and de-
velopment of econometric software occurred under relatively isolated conditions.
There was a time in the early 1970s that journals, in particular Econometrica,
appeared ready to publish articles and notes about software, but for whatever rea-
son this was a short-lived, Prague Spring. With certain exceptions (Belsley, 1974;
Eisner, 1972; Eisner & Pindyck, 1973), it was only at the end of this decade
that program descriptions and algorithmic details noticeably began to appear in
the disciplinary literature (Dent, 1980; Hendry & Srba, 1980; Kendrick & Meer-
aus, 1983; Kirsch, 1979; Lane, 1979; Pesaran & Slater, 1980; Society for Economic
Dynamics and Control, 1981). Otherwise, econometric software and its docu-
mentation ordinarily passed from hand to hand, even if user guides to statistical
programs had begun to appear in university bookstores. Of course, in the days be-
fore microcomputers, software purchases were commonly made organizationally,
usually by people who worked in computer centers and spoke of “statistical,” rather
than “econometric” software; in addition, it was decidedly uncommon for soft-
ware of any type to be prominently marketed at the annual economic association
and society meetings. Furthermore, even as late as 1983, computational methods
were ordinarily investigated separately from any explicit consideration of their al-
gorithmic computer implementation, and the citations that appeared in the formal
economics and econometrics literature were often not directly related to any such
implementation (Quandt, 1983), a practice not unknown today.

These circumstances of econometric software development before 1985 are rel-
evant to the consideration of particular developments since. Furthermore, at the risk
of stereotyping, it is useful to consider certain of the resulting properties of econo-
metric software as the microcomputer began to be used widely, starting in about
1985. In particular, whatever the specific differences between programs in the 1970s,
at that time it was almost universally characteristic of econometric software pack-
ages that they each offered specific, program dependent user choices. In the case of
the econometric modeling languages, the user might be able to choose to create a
possible variety of models, but the parameter estimation facilities were for the most
part given. Some degree of flexibility might exist that would allow distinguishable
techniques to be combined, such as Two Stage Least Squares and autoregressive
corrections. Such packages also might offer greater capabilities to the degree an
economist was willing to program, but essentially the typical user made his or her
choices as if from a menu.

78 2 Econometric Software: Characteristics, Users, and Developers

However, in 1985, a new type of software began to become available, the earliest
example familiar to economists being Gauss (Hill, 1989). It is possible to argue that
too sharp a distinction has just been made, that the econometric modeling languages
already offered capabilities similar to those of these new packages, albeit described
in the depths of thick manuals, but it is useful to ignore this particular fine point
in order to focus on the difference in orientation of these two types of economet-
ric software package. Packages such as EPS, MODLER, and XSIM are examples
of econometric modeling languages (EML) (Renfro, 2004a, b, c, d), as has been
discussed, but Gauss, Ox, and possibly other similar packages are effectively econo-
metric programming languages (EPL). The critical difference is the object the user
works with: an econometric modeling language characteristically has as its objects
specific, well-defined econometric techniques, to include estimators with explicit
names. Other objects take the form of time series variables, model equations, and
models, but also a range of variable transformations, defined in terms of algebraic
and arithmetic operators, and, as well, also implicit functions.

In contrast, an econometric programming language is defined by its mathemat-
ical and, in some cases, statistical objects. These objects include matrices, vectors,
operators, implicit functions, a looping syntax, and a particular grammar, among
other characteristics. As its name implies, an econometric programming language is
a programming language, and one that is specifically oriented to the use of econo-
metricians and economists. Generally, it is also a higher-level language than Fortran,
C++, and other commonly recognized computer programming languages. An aspect
of its high level nature is that the user is ordinarily not expected to be familiar with
computer operating systems and other aspects of the particular use of a computer
programming language. However, it is difficult to make hard and fast distinctions.
Clearly, there is a potential classification question that could be raised concerning
exactly how to distinguish an econometric programming language from any other
programming language of a sufficiently high level. Similarly, as indicated earlier, an
econometric modeling language can contain an econometric programming language
as a sub category.

Suffice it to say that these are fuzzy sets. However, ignoring such categorical
complexities, econometric software can today be classified into standard estima-
tion packages that provide an economist with the ability to perform a given set of
econometrically defined operations, operations that are specifically determined by
the software developer. Notice that the operational characteristic in this case con-
sists of the user selecting from a set of options, possibly using a menu. There is next
a mid-range, which most obviously includes the econometric modeling languages,
with the characteristic that the economist is required not only to make certain selec-
tions but also to determine how particular operations are performed: he or she must
form equations, combining variables and operators and possibly implicit functions,
and thereby build a model. These models can be solved or simulated. The results can
be plotted or produced as tabular displays. Advanced Estimation Packages (AEP)
or Generalized Estimation Packages (GEP) that both offer a selection of choices
and incorporate a macro language capability should also be included in this classi-
fication, as offering a subset of capabilities and features. Finally, the econometric

The Characteristics of Econometric Software 79

programming language in turn offers less in the way of prefabricated statistical and
mathematical objects, but more scope to create new econometric, statistical, and
mathematical forms. It also might be possible to infer that an econometric program-
ming language is most suited to use by econometricians, as creators of emerging
techniques, as opposed to applied economists, who are more likely to use established
methodologies, hence another type of package. Obviously, these sharp distinctions
are most meaningful when considering polar examples of these package types.

Considering the human interface aspects of the modern econometric software
packages, the classifications just described can be considered to imply substantial
progress, inasmuch as the ideal might be to present economists with the capabil-
ity to perform their research in the most immediately intuitively obvious way. For
certain analysts, interested only in the use of standard econometric techniques, it is
clearly beneficial for econometric software packages to be available that are easy
to learn to use and involve little effort to apply. For others, the capability to learn
an econometric language that is language compatible with the material presented
in textbooks and journal articles would appear to offer much, even if this capacity
might also imply the need to specify explicitly the calculations made in each case.

More generally, it might seem possible to infer from this description that this
apparent movement towards a complete econometric programming language rep-
resents for economists what the development of CAD/CAM (Computer Aided
Design/Computer Aided Manufacturing) has meant for architects, designers,
engineers, and others, namely the creation of a productive environment in which
it is possible to both design a new entity and at the same time constructively es-
tablish its specific characteristics. In an engineering context, the CAD component
can be interpreted to permit the production of a design for a particular object; the
CAM component ideally then permits the design itself to control the machine, or
machines, that then produce this object. Alternatively, it might be possible to see
these econometric software developments as implying potentially much the same
type of near term functional improvement in econometric practice as modern word
processing software has brought to document production, namely, in this case, a
screen representation that is effectively the same visually as the final printed docu-
ment, a characteristic that usually goes by the name what-you-see-is-what-you-get,
or WYSIWYG.

All this sounds good at the outset, but there are certain aspects of economet-
ric software that make these concepts less than immediately applicable. In the first
place, in the case of econometric software, there is no necessity for there to be a
direct correspondence between what appears on the screen and the computations
that are made. Users of this software generally do not and will not know the algo-
rithmic details of the computations performed, for the simple reason that individual
developers do not ordinarily publish these details. Furthermore, whatever the user
specifies in the form of a command, there is no necessary relationship between this
command and the specific calculations algorithmically performed by the software.
At issue here is not only the user’s ability to specify the characteristics of a par-
ticular arithmetic or algebraic operation, but also the specific way in which various
conditions are evaluated, such as, for instance, the manner of convergence in the

80 2 Econometric Software: Characteristics, Users, and Developers

context of an iterative nonlinear process, or the user’s freedom to set initial values
and other control parameters (McCullough & Renfro, 1998, 2000).

Fundamentally, whatever set of commands the user provides will be interpreted
by the software package, acting as an intermediating agent. The actual calculations
then performed are determined and controlled in advance by the software developer.
Obviously a choice that the developer can make is to permit the user’s commands –
whenever appropriate – to be implemented exactly as stated, but even this possibility
is the developer’s choice and therefore constitutes intermediation. The choice to
allow the user algorithmic control is by no means necessarily the best. In at least
certain cases, perhaps even most cases, it can be argued that it is desirable that the
user of the package not be allowed to control precisely how the program does what
it does inasmuch as that user cannot be presumed to be a knowledgeable numerical
analyst, nor necessarily an experienced programmer who will also take the time to
evaluate qualitatively the results obtained.

Directives Versus Constructive Commands

In certain respects, the discussion has come full circle since the introductory section
of Chap. 1. Recall the argument made there that, over the past 30–40 years,
specialization has occurred, with the majority of economists effectively ceding re-
sponsibility for the design and development of econometric software to a minority
of econometricians. In contrast, one of the implications of an aspect of the modern
development of this software, namely the creation of econometric programming lan-
guages, would appear on the face of it to provide any enterprising economist with
the effective capability (once again?) to design and develop his or her own software,
but now in a way that avoids many complexities, yet achieves the goal of allowing
that person to determine the constructive characteristics of whatever applied econo-
metric research project he or she might wish to undertake. An objection that has
been made to this idea is the argument just posed that, in any case, the designer and
developer of any econometric programming language actually remains in control as
an intermediating agent, whether this control is exercised or not. A normative ques-
tion that naturally arises is, to what degree and how should this designer/developer
actually exercise this control given the inevitable complexities of the computational
process?

In order to address this question properly, a certain amount of background infor-
mation is necessary. It is useful to begin by considering exactly what distinguishes
a directive from a constructive command. A directive command, or simply a direc-
tive, as this term will be used here, can take any of a number of forms. For example,
in order to direct a program to perform an Ordinary Least Squares regression of a
named dependent variable, such as CE, on one or more other named regressors, the
user might in one case issue the commands:

Dependent: CE
Regressors: YPD, CELAG1

Directives Versus Constructive Commands 81

in another:

CE = F(YPD, CE(�1))

or, in a third:

Reg Command: CE D c1�YPDC c2�CE.�1/C c3

Each of these types of directives are found in the command languages of one or
more econometric software packages. It is also true that in some cases, pull down or
drop down menus will instead be used in order to identify progressively the depen-
dent and regressor variables.

All these directives are constructively equivalent, inasmuch as none do more than
direct that a certain type of operation be performed. In all cases, the command’s
meaning and the particular corresponding default operations will have been estab-
lished by the program’s designer. That is, the meaning of the directive is completely
established by the syntax and vocabulary of the program used. However, as illus-
trated, a directive can in some cases seemingly or even actually have constructive
features; for example, notice that in the second command above, the term CE(–1)
itself constitutes the directive that the variable named CE is to be retrieved from the
program’s data storage component and then lagged by one period before the obser-
vations on this variable are used as one of the regressors in the implied regression.
In the third case, a linear-in-parameters regression specification also appears to be
explicitly indicated. Nevertheless, notice also that none of the directives considered
are, except by default, linked to a particular regression method.

In contrast, a textbook consideration of the general linear model and Ordinary
Least Squares regression will commonly begin with a statement like:

Consider the linear regression equation:

y D XβC u

where:

y – a vector of T observations on a variable Y
X – a matrix of T observations on k regressor variables
“ – a vector of k unobserved constant parameters
u – a vector of T unobserved disturbances

This opening set of definitions will be followed, by and by, with the statement
that the ordinary least squares estimator is defined as:

b D .X0X/�1X0y

If this operation were actually to be carried out constructively using pencil
and paper, given an understanding of linear algebra and the availability of a par-
ticular data set, the most direct way to proceed is to compute first the sums of
squares and cross products of all the relevant variables and then load these into
a matrix. As is shown in almost any modern econometrics textbook (Davidson,

82 2 Econometric Software: Characteristics, Users, and Developers

2000; Greene, 2003a; Johnston & DiNardo, 1997), and even in many older ones
(Goldberger, 1964; Johnston, 1963; Theil, 1971), if this matrix is formed so that the
cross-products of the dependent variable with the regressor variables border those
of the regressor variables alone, a result is obtained that can be characterized as:

X0X X0y
y0X y0y

Constructively, the next step is simply to invert the interior matrix, X0X. Following
this inversion, the estimated value b can then be computed by carrying out the matrix
multiplications indicated by its above apparently constructive definition. Some-
where, in individual textbooks, at least historically, Cramer’s Rule may be provided
as a constructive definition of matrix inversion.

In contrast, if this estimation process were to be considered as a computer
programming task, using some combination of a programming language such as
Fortran or CCC and possibly Assembly language, the process of computing the
estimates can instead be programmed so that, as the computation occurs, the right-
most column of the original bordered matrix simultaneously becomes the location
of the estimated values of the parameters (Goodnight, 1979), denoted by b:

.X0X/�1 b
y0X y0y

where b is the set of estimated parameter values. The reason to make the calculations
in this way, rather than to compute:

b D .X0X/�1 X0y

by making the implied matrix multiplications, once given (X0X)�1, is that such ma-
trix operations, if carried out explicitly are in fact not efficient and may in addition
result in greater rounding error, compared to the simultaneous generation of the in-
verse and the parameter estimates. However, as a matter of interface design, the
program’s developer is in no way constrained not to allow the program user to spec-
ify (X0X)�1 X0y as a directive. Neither is the developer constrained to compute b in
any particular way, whatever the user’s directive. But does it therefore follow that
the developer should always act as a “correcting” intermediary?

In the beginning, specifically in the mid 1960s, it was common to find regres-
sion programs that replicated textbook calculations, as indicated in chap. 1. In those
days, existing programs were commonly shared in the form of source code and an
economist might therefore begin a research project by obtaining a deck of Hol-
lerith cards onto which had been punched this source code. At first, because of time
and effort constraints, it was natural in such cases to make only changes that had
to be made and otherwise to leave well enough alone. However, in 1967, James
Longley (Longley, 1967) evaluated a number of the existing statistical regression
programs and discovered that, for at least certain data sets, they could be disastrously

Directives Versus Constructive Commands 83

numerically inaccurate, essentially because of the problem of ill conditioning and
the use of single precision values during calculations. The possibility of this type of
computational problem occurring had, in fact, been known to human computers at
least as early as 1943 (Hotelling, 1943; Rushton, 1951), if not well before, but it had
been forgotten. It is not actually particular to electronic computers, but there is no
point now in considering it any more generally.

When the matter considered is the calculation of linear Ordinary Least Squares
parameter estimates, or linear-in-parameter estimates more generally, it is possible
to regard the fundamental threat to be the degree to which the data used are collinear.
As discussed towards the end of Chap. 1, the problem in this case is essentially due
to the ease with which the calculations can result in intermediate values that have no
precision whatsoever, possibly implying the need at the very least to compute and
provide the X0X matrix condition number as a potential warning (Belsley, 1991;
Belsley et al., 1980). More generally, an aspect of the use of finitely precise num-
bers is that number comparisons can only discriminate between those that differ by
a certain minimum amount. It is not meaningful to ask if x = y, but rather only if
jx � yj� ", where " is some suitably chosen small number and x and y are floating
point real values. One of the implications is that, even in the linear case, compu-
tations such as matrix inversion must be carried out with due regard for the effect
of the data used, as a matter of conditioning, as well as the fact that in the end
the solution is always approximate rather than exact (Higham, 2002; Stoer & Bu-
lirsch, 1993).

This inexactness has a number of practical consequences. For example, to the
mathematical economist, there is a sharp conceptual difference between a linear
and a nonlinear problem. In contrast, to the econometrician in the guise of a nu-
merical analyst, the environmental computational difference between a linear and a
nonlinear problem can be fuzzy. It can be that the latter involves the need to make
additional, more open-ended calculations in a context in which each successive cal-
culation could progressively involve additional rounding and approximation error,
although it is also true that nonlinear problems can involve specific computational
issues, some of which arise from such things as the need to compute derivatives as
finite approximations, local versus global maxima, initial conditions, and stopping
rules (McCullough & Renfro, 2000). Recall that error propagation is not necessarily
particularly serious in the case of multiplication, division, or taking square roots, but
simply adding operands of different sign can, in extreme cases, lead to catastrophic
cancellation (Stoer & Bulirsch, 1993, p. 11–12). In addition, rounding error can be
local to a given iteration sequence in the case of convergent iterative calculations
(Ralston & Rabinowitz, 2001, p. 334). The relevant issues and aspects are varied,
but in the end what fundamentally needs to be understood is that infinitely precise
calculations do not occur within an electronic computer, and that the name of the
game is the minimization of calculation error, not its absolute elimination.

When considering these matters, notice also that the devil is in the details. For
instance, when considering the textbook expression

b D .X0X/�1 X0y

84 2 Econometric Software: Characteristics, Users, and Developers

it is tempting to interpret it initially as being essentially constructive in nature – in
part because of its familiarity to econometricians – but if the sequence of elemen-
tary calculation steps are set out carefully certain inherent ambiguities can become
evident along the way, especially to the degree that k regressor variables are con-
sidered, rather than 1,2, or even 3. For instance, there is the issue of the best way
to invert X0X, as well as the precise way in which other calculations are made, not
excluding the construction of the matrix X0X itself. The precision with which each
of the numbers are calculated needs to be considered – and also the precision with
which they are stored at each stage of the computational process. There are numer-
ous opportunities to make serious errors in the calculations that might not be noticed
at first, some of which can be due to the order in which the individual calculations
are made. And if the final results are presented without the clear identification of
the specific numbers used as original inputs to this computational process, it may
be difficult for someone else to validate the results later, even given knowledge of
each computational step. This example of course represents a relatively simple case
in this day and age.

The original consideration of the numerical accuracy of regression programs by
Longley (1967) brought to the attention of econometric software developers, among
others, the problem of rounding error in the context of single precision floating
point numbers. During the intervening years, there has been a significant amount of
work done concerning the numerical methods that should be adopted, most recently
considered by Stokes (2005), who also addresses data storage precision, as well as
alternative matrix inversion techniques. The particular methods of matrix inversion
that should be employed, generally speaking, are determined by the characteristics
of the data: in particular, near singular matrices imply the need to dispense with the
usual Cholesky factorization of X0X and to use QR decomposition applied directly
to the data matrix. However, before performing a regression, it is commonly not ev-
ident just how collinear the data are, which once upon a time created a conundrum:
in earlier years, in the 1960s – in the case of mainframes – and the 1980s – in the
case of the microcomputer – there was an issue concerning the demands accurate
matrix inversion techniques placed upon the capabilities of existing CPUs as well as
computer memory. Today, it is generally no longer necessary to worry about this as
a matter of computer resource cost: few techniques likely to be employed will today
require more than a literal fraction of a second, given the use of a modern computer,
and high speed memory has become comparatively abundant. But even if the stakes
associated with “capital intensive” methods of calculation are no longer what they
once were, it is still true both that a design decision must be made and, if the wrong
decision is made, that it may not be obvious to the computer user whenever the
calculations involve excessive errors. A classic consideration of the computational
problem of error accumulation is that by Harold Hotelling (Hotelling, 1943), but see
also Wilkinson (1961), Belsley et al. (1980), and most recently McCullough (2004)
and Stokes (2005). For a consideration of the algorithmic properties of certain simul-
taneous equation estimators, see for example Kontoghiorghes et al. (Foschi, Belsley,
& Kontoghiorghes, 2003; Kontoghiorghes, 2000; Kontoghiorghes & Dinenis, 1997).

Directives Versus Constructive Commands 85

At present, it is not necessary to consider in further detail the particular numerical
analysis issues associated with econometric computation, for the purpose of this ex-
position is not to identify and catalogue the specific provisions that need to be made
for numerical accuracy in each case. The aim is rather to make clear that how cal-
culations are performed does matter and that the provisions made are relevant to the
way econometric theory is practiced – or should be. Numerical analysis issues need
to be addressed not only behind the scenes, when the design and development of
econometric software is specifically considered, but also in the mainstream literature
when the putative properties of estimators, diagnostic tests, and other econometric
topics are discussed. The reason is simply that the characteristics of the computa-
tions made can affect the validity of the inferences that are drawn by those who
apply theory to the real world.

However, in addition to the operational need to produce sufficiently accurate
results, there is also the matter of computational completeness, briefly discussed
earlier. Textbook and journal presentations, jointly and severally, inevitably provide
only partial coverage of the range of formulae and calculations that are pertinent.
Implementing Ordinary Least Squares, or any other parameter estimation method,
so as to produce a program that is generally reliable in its operation requires in-
formation that is sometimes difficult to discover: for example, what calculations
to permit in a variety of special cases, such as when the program user chooses to
suppress the constant term, which among other things affects the supplementary
statistics that are ordinarily displayed next to, above, or below the parameter esti-
mates? Alternatively, how should the program react if the user chooses to regress a
variable on itself, or omits entirely all regressor variables? Or, what if the data set
used exhibits missing values, either at the extremes or for observations in the inte-
rior of its range? The relevant consideration here is not that these events are each
necessarily the result of sensible actions on the part of the program user, but rather
that particular actions, if not dealt with properly, can cause the program to crash, or
perhaps to produce (possibly without warning) results that are neither correct nor
appropriate under the circumstances. Ideally, any action that the user is both per-
mitted and chooses to make should result in a meaningful and graceful response on
the part of the program, taking the form either of an intelligible error message or a
sensibly determined result.

Still other aspects of the econometric computational problem could be consid-
ered. However, it is already self-evident, from the perspective of software design,
that many (most?) of the seemingly constructive formulae that populate the econo-
metrics textbooks and the general econometrics literature should in fact be consid-
ered to be simply directives. Furthermore, it is clearly quite justifiable to argue that,
ideally, those econometricians who create the software used by economists gener-
ally – both in the case of standard packages, that involve user selection of options,
and in the case of econometric programming languages and other contexts in which
seemingly constructive commands might appear – should carefully take into ac-
count what the translation from the mainstream econometrics literature to software
embodiment implies. However, it is not always immediately evident how this trans-
lation should be effected. Giving the typical economist what might be appear to

86 2 Econometric Software: Characteristics, Users, and Developers

be full control of the operations performed, in the case of an easy-to-use econo-
metric programming language, yet monitoring carefully every command – so as to
insure numerical accuracy, among other considerations, as well as to permit pro-
gram control errors to be trapped and then dealt with gracefully – would seem to
place the econometric software developer in a courtesan’s role, not only assuming,
in the famous phrase, “power without responsibility,” but also flattering the user into
thinking of him or herself as having accomplished something dangerously difficult
or at least deeply satisfying, yet all the while with the training wheels still firmly
attached.

But is it reasonable to suppose that econometric software of any type, including
econometric programming languages, can be created so as to be quite so foolproof to
use? An obvious aspect of the matter being considered here is the question whether
the programming of econometric computations can ever be simplified in a way that
easily permits any type of relevant calculation to be performed and insures the accu-
racy and completeness of the results? Very early in the historical development of the
electronic computer it became apparent that the availability of labor saving “build-
ing blocks” would be helpful as programming aides, which lead to the development
of subroutine and function libraries (Wilkes et al., 1951). It was evident that, ide-
ally, the creation of such libraries as collections of elemental computational “tools”
might both simplify the programmer’s task and simultaneously provide algorithmic
components that would presumably meet appropriate qualitative standards. One of
the beneficial effects might be to permit programs to be created using prefabricated
“parts,” more or less in assembly fashion. The development of econometric pro-
gramming languages can be viewed as simply a further evolution of the idea of
providing any person wishing to perform calculations with a reliable set of tools
from which a selection can easily be made. However, the collective programming
experience of now nearly 60 years has shown that the assembly of computer pro-
grams can only be simplified to a certain degree, still requires the assembler to
acquire skills, and implies the need for an information transfer to occur – in both
directions – between the tool builders and the tool users. It also true that even if
the programming process itself can be simplified to the point that each individual
“tool” is separately easy to learn to use, the inevitable multiplicity of them is likely
to make the learning process time consuming. Furthermore, the subsequent applica-
tion of these “tools” to the applied economic research process involves complexity
on this score as well.

Developers, Users, and Use

Certain implications are obvious and particular questions have been posed. It is now
time to consider directly the $64,000 question: what then is there about economic
or econometric computation that permits the argument to be entertained that, after
many years of neglect, the production and use of econometric software are activi-
ties that should be consciously regarded as being fundamentally within-discipline,

Developers, Users, and Use 87

not only that, but as calling for open discussion in a disciplinarily central place?
Is it not enough that economists should be content to use this software? Have its
properties not already been evaluated enough? It is, of course, true that software
reviews have appeared in the econometrics journals, actually more than 120, based
upon the count by McCullough and Vinod, which they report in a recent issue of
the Journal of Economic Literature (McCullough & Vinod, 1999). Unfortunately,
almost all these have tended to superficiality in their treatment (McCullough &
Vinod, 1999). In particular, among the defects of these reviews, only four considered
the numerical accuracy of the software (Lovell & Selover, 1994; McCullough, 1997;
McKenzie, 1998; Veall, 1991), just a few attempted to address the comparative suit-
ability of different programs for particular applications (Mackie-Mason, 1992), and
some fell short of being independent evaluations. Otherwise, as intimated earlier, to
the degree that economists or econometricians have overtly considered the subject
of econometric software, there has been a pronounced tendency to treat its character-
istics as being at best of very limited disciplinary relevance. Except in exceedingly
rare cases, econometric journal articles and textbooks noticeably have not discussed,
indeed have seldom ever referred to, any substantive software design or algorithmic
issues. Furthermore, as will be demonstrated, when applied research results have
been presented, involving computational aspects, the particular software that may
have been used to generate those results has seldom even been mentioned.

Use and Users

What can in fact be discovered fairly quickly about the revealed software prefer-
ences and use characteristics of the typical economist? The answer is, a few things,
which derives from the existence of JSTOR, which has been developed as a full-text-
searchable online archive of journals and is of course Internet-based. Among other
things, JSTOR permits at least a portion of the economics literature to be keyword
searched for such terms as “software package,” “computer program,” “econometric
software,” or even for the names of particular software packages, in order to ex-
amine the degree to which economists describe their software use in the context
of published articles, including for example possibly the extent to which evaluative
tests are carefully and knowledgeably used. Welcome to Bibliometrics 101; how-
ever, notwithstanding any appearance to the contrary, it is here being taught by a
novice.

To start, there are certain important caveats. The first relates to the fact that
JSTOR is made available to research libraries not just as a complete archive, but
also as separable groupings, including economics journals, business journals, statis-
tics journals, biological sciences journals, and so on. Although a large library might
subscribe to all the groups, smaller libraries or specialist libraries can instead pur-
chase selective access. One of the JSTOR characteristics is that these groups are not
mutually exclusive, but instead, in certain cases, intersecting sets – as is in fact the
case for the ostensibly separate economics and business journals groups. Therefore,

88 2 Econometric Software: Characteristics, Users, and Developers

it is not necessarily meaningful simply to contrast search results obtained from the
business group with those from the economics. Another limitation is that the pub-
lishers of most journals impose a multi-year moratorium on the inclusion of their
most recent volumes in this archive, thus establishing a “moving wall” that year-by-
year inches forward and may vary from journal to journal and group to group; for
a group, the results for the most recent years, going back as much as 5 years, may
exclude volumes for particular journals. In addition, as an operational characteris-
tic, as everyone knows from Internet search experience, keyword searches involve
potential inferential pitfalls. For example, taken at face value, approximately 26,000
articles published during the mainframe period from 1960 to 1984 appear to include
at least one mention of the program “GIVE” (or at least words consisting of various
mixed cases of this specific sequence of letters, being the name of the predecessor
of PcGive). This is no doubt a heart-warming thought for David Hendry, especially
as, in contrast, other programs, such as EViews, MicroFit, MODLER, and TROLL,
either individually or collectively, seem to be mentioned in only 330 articles during
the entire period from 1960 through 2003, notwithstanding the possible appearance
of rEViews. Finally, the particular results obtained in each case can also be affected
by specific settings of the “Advanced Search” criteria, including “search full text
content only” and limitations of the search to “articles” only, versus the alternatives.
In addition, the number of journals included in JSTOR is increasing, so that the re-
sults reported here might not, even now, be able to be exactly duplicated. However,
the good news is that anyone with access to JSTOR can play.

If due allowance is made for the effect of the use of common words, and for the
fact that one person’s “package” is another’s “program,” what is easily discovered is
that searches using the terms “software package,” “computer package,” “computer
program” and “econometric software” together yield a total of less than 2,400 arti-
cles in which any of these terms appear during the 64 years from 1950 to 2003 – for
this specific collection of terms, a total of 2,395 “hits” are obtained, the first in 1958.
This number is reasonably large, but a subsequent article-by-article examination of
a reasonable sample of the “hits” obtained reveals that this number represents a sub-
stantial overstatement of the degree to which economists have either identified any
software used or revealingly discussed their use of the computer during the years
since 1960 – especially if only marginally evaluative software reviews that appear
as “articles” are excluded (McCullough & Vinod, 1999). Restricting the search to
“Articles” alone reduces the total to 1641. Adding “Reviews” increases the total to
1851. The further addition of “Editorials” brings the total to 1853. The number of
mentions in the “Other” category alone is 542. It is easily, if tediously, determined
that the vast majority of the articles discovered by the search discuss economically
relevant aspects of the use of the computer by economic agents or else aspects of
the economic role of the computer during these 50 + years, but – for the most part –
not how economists use the computer.

But if dreams have been shattered, there are still some interesting results. Con-
sidering the JSTOR findings in more detail, in the 52 journals identified there as
“economic journals,” it appears that from 1960 to the end of 2003, a total of 2,176 ar-
ticles were published in which the word “software” occurs at least once. The choice

Developers, Users, and Use 89

of this particular ending date is made because of the “moving wall.” The first article
in which the word “software” is used was published in 1962 and the second in 1965
(Diebold, 1962; Levy, 1965). The first 109 of these articles were published before
1979, with 122 of them published in the next 6 years; hence, all but 231 have been
published since the beginning of 1985 – the first to be published in 1985 (January)
happens to be a review entitled Econometric Software for Microcomputers that with
the exception of MicroTSP (now EViews) and SORITEC focused entirely on statis-
tical software packages. Looking further back, the first use of the term “computer
program” occurred in 1958 (Moore, 1958), although the first related use of both
“computer” and “program” in the context of an article occurred in 1955, appro-
priately enough one written by Herbert Simon (Simon, 1955). In the 1,098 times
“computer program” appears at least once in an article before 1 January 2005, the
first 446 occurred before 1981; the last time it appeared was in October 2003. The
alternative term “computer package” scores 76 “hits”, the first in 1976 and the last
in 2003. Only 182 articles contain the more specific phrase “econometric software,”
arguably the most widely used category of “economic software,” although this seem-
ingly more global term itself actually receives a total of only 1 hit. “Econometric
software” is of relatively recent coinage: of the articles mentioning it only 14 were
published prior to 1987, the first one by Robert Shiller in 1973 (Shiller, 1973). In
contrast, 94 have been published since 1995. Perhaps surprisingly, inasmuch as it is
commonly considered to be a broader category, “statistical software” receives fewer
hits, only 100, with the first article containing this term appearing in 1982.

Anyone who wishes to luxuriate in the innate practicality of economists can take
heart from the fact that the composite phrase “theoretical software” is absent from
the JSTOR economics database – or does this instead indicate something else? From
1960 through 2003, a total of 60,202 articles are found in which the word “theoret-
ical” or “theory” (or both) appear least once, 55,234 in which “theory” appears,
31,709 for “theoretical,” and 26,741 in which both these words appear. In contrast,
“software” appears without “theoretical” or “theory” in only 1,136 articles. In order
to determine the population of all English language articles published from 1960
through 2003 in economics JSTOR journals, a search for all the articles that contain
the word “the” (which can be given the acronym ACTWT) results in 83,659 hits,
which essentially provides a database population count, since surely no article can
be written in English without using this word. This finding suggests that essentially
72% of all articles may have some theoretical content. On the other hand, the word
“data” appears in 52,085, which is 62% of all articles. Unless this finding implies
only that data is something economists like to theorize about – from 1960 through
2003, 39,136 articles were published in which “data” and either “theory” or “the-
oretical” appear – it is seemingly something of a mystery what exactly was being
done with all that data.

The combination of these findings with other, independent use-evidence lends
support to the idea that economists have often employed econometric software with-
out much mention of that use. Given that people ordinarily use what they pay for, an
indication of a significant degree of actual use is the reasonably substantial revenues
collectively generated by econometric software programs such as EViews, MicroFit,
MODLER, PcGive, and TROLL, in contrast to the approximately 190 combined

90 2 Econometric Software: Characteristics, Users, and Developers

hits obtained searching these names. This hit count is at least a slight overestimate,
inasmuch as it might include such obviously noisy results as would be implied by
articles on such things as collective bargaining in Pacific coast fisheries, because
of the verb “to troll;” furthermore, none of these programs existed prior to 1968
and the names of certain programs date only to the 1980s or later. Restricting the
time period to 1986 through 2003 results in a hit count of 130. Even TSP, which
is apparently the individually most mentioned econometric software program (with
397 hits for the period between 1965 and 2003) and one of the longest existing, is
subject to false positives, despite being a made-up name, inasmuch as, for instance,
a 1967 article on the Theory of the Second Best attracts a hit, possibly because of a
misprinted TSP for TSB.

However, economists do not live by econometric software alone. Examining the
hit rate for the statistical software packages SAS and SPSS yields 632 hits for SAS
and 132 for SPSS for the period from 1975 through 2003. The group that includes
EViews, MicroFit, MODLER, PcGive, SAS, SPSS, TROLL, and TSP yields a total
of 1,273 hits for the same period, which may imply a tendency for economists to
use SAS or SPSS rather than any of the econometric software programs. It has pre-
viously been suggested (Renfro, 2004a, b, c, d) that SAS, SPSS and other statistical
software packages were used disproportionately by economists during the main-
frame era, in part because computer centers often leased software likely to be used
by a broad range of disciplines. The fact that beginning in or about 1985, economists
for the first time potentially could choose their own software, makes it interesting to
consider whether any differences can be discovered between the time before 1985
and since. As it happens, if the search time period is limited to the period from 1985
through 2003, the econometric software packages on their own achieve 430 hits.
Adding SAS and SPSS to the collection raises the number of hits to 1,034. Either
SAS or SPSS (or both) are mentioned in 630 articles published from 1985 through
2003. Without trying to be too precise, it appears that economists were as likely to
mention SAS or SPSS in their articles in the post 1985 period as before that time.
From 1975 through 1985, SAS or SPSS achieved 148 hits; from 1986 through 2003
a total of 601 hits. What this finding implies about relative usage, and why it is that
economists may have continued to use SAS and SPSS (dis)proportionately just as
often since 1985 as before, are potentially interesting questions.

It is additionally potentially informative to combine in the searched population
for the period from 1960 through 2003 the articles in the 23 journals currently iden-
tified by JSTOR as “statistics” journals. In this case, the number of articles found
containing the word “software” increases to 5,619, and those containing “computer
program” to 3,023. The term “econometric software,” in contrast appears in only
196 articles in the combined population, obviously implying that only 14 articles in
this particular “statistics” literature sample contain a mention of this term. On the
other hand, “statistical software” achieved 748 hits in the combined sample, nearly
eight times the number in the economics journals alone; the first affected article in
the statistics literature was published in 1970, in the form of an article on statisti-
cal training and research (Patil, Box, & Widen, 1970). In the combined sample,
12 articles mentioned “useful software,” but these were mainly in statistical
journals; in economics journals articles, only Zvi Griliches and Paul Romer felt

Developers, Users, and Use 91

this usefulness strongly enough to mention it, other than those economists who
apparently used this phrase in connection with the use of computers by Ohio
commercial farmers or when dealing with the use of simulation models in the class-
room. Anyone with access to JSTOR can easily generate additional results in order
to examine the implications of other word combinations and to probe other sample
configurations.

Of course, it is also true that even if economists had always been particularly
careful to document their computer use in their published articles, the JSTOR re-
sults would still only provide a partial result, for the simple reason that the journals
included are those that ordinarily publish the work of academic and academically
oriented economists, who may also work in government and other research-focused
contexts, but generally not that of business economists and others less likely to
publish in these journals. Those less likely to publish in such journals neverthe-
less constitute a significant part of the market for econometric software. Packages
like LIMDEP, MicroFit, PcGive, and SHAZAM, on the one side, and AREMOS,
AutoBox, FP, MODLER, Stata, and TROLL, on the other, both categorically and in-
dividually appeal to distinct user groups and types among economists. For instance,
academic economists probably use programs in the first group disproportionately.
Some of these users may also have particular geographic characteristics: MicroFit
and PcGive, for example, may be more likely to be used in the UK and Europe than
in North America. In contrast, AutoBox, with ARIMA as a specialty focus, tends
to be most used by business economists and others who would describe themselves
as forecasters. AREMOS, FP, MODLER, and TROLL are most likely to be used by
those interested in working with macroeconometric models, with FP and TROLL
of perhaps greatest interest to those interested in simulations that incorporate the
phenomenon of model-consistent expectations. Stata appeals to both academic and
business economists, but within the latter grouping not those who primarily consider
themselves forecasters.

Actually, remember that JSTOR has a category of business journals, in addition
to economics journals, but as discussed earlier these are not mutually exclusive cat-
egories, nor is the journal selection in each category such that it would be possible to
separate the academic from business economists by journal without making individ-
ual selections. For example, taking a simple minded approach, adding the business
journals to the economics obtains the result that “econometric software” receives
a total of 222 hits. Among the business journals alone, this phrase receives 217.
Searching for a mention of any of the terms “EViews, MicroFit, MODLER, PcGive,
TROLL” receives 221 hits among the business journals, and 226 when the business
and economics journals are combined.

It is also possible to consider the research practices of others. What provides both
an interesting and perhaps telling contrast to all the results just described is that if
the 83 biological sciences journals in JSTOR are searched just for “SAS” for all its
history, 1975 through 2003, there are 11,519 hits. If “SAS” and “SPSS” are jointly
searched, for the period from 1975, the number of hits is 14,626. The ACTWT
population count is 326,747. Most importantly, once these searches are made, al-
though an article-by-article inspection reveals some false positives, it also reveals

92 2 Econometric Software: Characteristics, Users, and Developers

that a vastly higher percentage of the time an empirical research article is “hit,” the
software package being used in the reported research is explicitly identified within
it, as compared to the case of econometric software packages and the economics
literature. What an article-by-article inspection also reveals is that authors often re-
port not only the software package used but also the specific procedures employed,
the software version, and other significant details. Obviously, this quick comparison
“test” has its flaws. For instance, it does not reveal how often those who contribute
articles to these biological sciences journals omit any identification of the software
used in their empirical research, particularly once adjustment is made for this type
of article versus any other, or the effect if the full range of packages that potentially
could have been used were to be included. Furthermore, no comparison has been
made of the number of empirical research articles published in each case. Neverthe-
less, there is a possible object lesson here for economists.

The implication would seem to be that, among economists, econometric soft-
ware design is commonly held to lack interest or relevance as a disciplinary topic
and, furthermore, that it is generally thought that the use of a particular economet-
ric software package or a particular version, rather than another, is of no material
consequence. The conventionally accepted role of econometric software appears to
be, as asserted in the introduction to Chap. 1, simply that this software makes oper-
ational, in an essentially slavish fashion, the formulae and related results that are to
be found in the existing printed literature. As a consequence, certainly throughout
the twentieth century, a reader of the economics and econometrics literature might
well conclude that the development of this software has had no perceptible effect
on the development of economics or econometrics other than to make faster calcu-
lation possible, essentially as a result of the speed of the computer as compared to
alternative methods.

A possibly revealing sidelight on this particular conception of this software is
provided by a short comparative description of a recent version of an econometric
software package written by an economics graduate student and teaching assistant.
The description was intended to be an evaluation of the salient econometric features
of two quite different programs and in its entirety took the form:

To be honest, I found Y’s interface to be very 1990s (and early 1990s at that) and 16-bit
retro. The browse features with files in 8.3 with tildes in a land of long file names is pretty
old fashioned. Compared to X, the product is very clunky. No right click context menus
and a very non-intuitive interface. I really only spent a few hours playing with the software
before I went back to X. So I really did not explore very deeply as I found the browsing and
non-drag and drop environment a real handicap compared to other products. In my opinion,
the product really needs a complete overhaul to make it competitive in today’s environment.

The writer exhibits no awareness that it was only the mid 1990s before Win-
dows even began to be the common interface for econometric programs, and that it
was only with the introduction of Windows 98 that right-click context menus first
arrived as a standard feature – and that, because of its operating system origin, con-
text menus are actually a feature of both programs X and Y, but perhaps not for all
program features. This review makes no reference to numerical accuracy or other
substantive issues. It is obviously concerned entirely with only certain aspects of

Developers, Users, and Use 93

the human interface, including an apparently requisite drag and drop environment,
in a way that suggests that the earlier discussion in this chapter of macros and other
algebraic language matters would be quite a foreign idea to this resident of the “land
of long filenames.” However, fundamentally, the question that this review raises is
why the writer omitted altogether to analyze what each of the programs do, in com-
parison with each other. Perhaps the assumption the writer made is that below the
surface they would be the same functionally, implying a consequent belief that the
focus of any econometric software review should simply be the immediate intuitive-
ness of the interface.

The formation of this type of mindset during the late second half of the twentieth
century and the first few years of the next appears to be a consequence of the cir-
cumstance that during the earlier years of this 50 C period those econometricians
who developed econometric software did so in the context of their own applied
research, or perhaps when acting in a research assistant role, using the electronic
computer simply as a replacement for earlier computational technologies, hand or
electromechanical. At that time, as discussed earlier, what first tended to occur was
simply the application of well-known formulae in an essentially straightforward
fashion, at least until it became known, essentially beginning in the later 1960s
(Longley, 1967), that such an approach can result in highly inaccurate results. Of
course, inasmuch as at this point in time the applied economist or econometrician
characteristically self-programmed, the modifications required to ensure numerical
accuracy could be made silently, with little need to communicate to others either
how the particular algorithms used differed in their numeric analytic characteristics
from econometric textbook formulae or the nature of any particular modifications.
At that stage economists also hardly needed to tell themselves whenever they dis-
covered that previous versions of their software exhibited specific computational
faults.

However, by the middle 1980s, because of the widespread adoption of the mi-
crocomputer by people who had never programmed, most computer users became
instead computationally vicarious, therefore ordinarily not particularly conscious
of the specific computational techniques employed and seemingly all too ready to
accept at face value whatever their chosen software provided. To be sure, there
has always been some level of background recognition that it was possible for
programming mistakes to be made, and economists have certainly been aware
that such things could happen, but, except in the context of specialist works read
almost exclusively by the computationally committed (Belsley, 1991; Belsley, &
Kuh, 1986; Belsley et al., 1980), to date there has been a distinct reticence to con-
sider openly this possibility and its implications (McCullough, 1997; McCullough
& Vinod, 1999; Renfro, 1997a, b). A willingness to tolerate operational secrecy
has long been characteristic of applied economic practice and, notwithstanding
certain disquieting revelations from time to time (Dewald, Thursby, & Anderson,
1986; McCullough, Renfro, & Stokes, 2006; McCullough & Vinod, 1999), or oc-
casional avuncular public scoldings (Griliches, 1985, 1994; Leontief, 1971), only
recently have the most prestigious economics and econometrics journals, in their
article submission requirements, noticeably begun to mandate the more careful

94 2 Econometric Software: Characteristics, Users, and Developers

reporting of the data used and of relevant computational details (Anderson et al.,
2007; Bernanke, 2004; Renfro, 2006). But only a few have yet implemented such
policies and even fewer have taken the necessary steps to insure their effectiveness
(Anderson, 2006).

Each of the circumstances just mentioned – the possibility of software “bugs,”
that the formulae that appear in the econometrics literature may not exactly corre-
spond to the specific computations performed by econometric software packages,
and that software users and developers are normally different people – are each
individually sufficient to establish the need for more public discussion of the char-
acteristics of this software. In combination, they overwhelmingly establish this
need. However, it is also true that various, somewhat more general, software de-
sign characteristics can also be shown to affect the success with which economists
conduct their applied research, as well as the specific numerical results obtained
(Renfro, 2004a, b, c, d). But what may have curtailed discussion among economists
of the design implications is, as much as anything else, likely to be a general per-
ception of the lack of any feedback effect from the process of software development
to the development of either economic or econometric theory. Notice the specific
wording here. It is not suggested that there has been no feedback, nor that this has
been minimal, but rather that it has not generally been perceived, which may well
be the result of the necessity to comprehend first how the design and development
of econometric software can affect both applied economic research and the devel-
opment of economic and econometric theory, before it is possible to perceive either
the existence of that effect or its particular magnitude. Omitting to look can itself
diminish perception. The Pollyanna problem that such indifference poses is that it
is usually folly both to fail to encourage the development of those things that affect
well being, yet still to depend upon and expect a successful outcome.

However, the winds of change are picking up. For example, quite recently, an
article has been published in Econometric Theory (Kristensen & Linton, 2006) that
proposes a particular closed form estimator, the need for which is there declared
to be a direct consequence of reported, possibly inherent, computational problems
encountered by econometric software developers when using standard numerical
optimization procedures. This is a potentially interesting example of the type of
coordinated investigation that could and should occur as a matter of course. How-
ever this degree of recognized symbiosis between the development of econometric
theory and econometric software is nonetheless still exceedingly rare, with the de-
velopment of theoretical econometrics so far seemingly only minimally inspired by
workaday computational experience and, in addition, with little attention being paid
by theorists to how best to implement their work computationally.

Econometric Software Developers

In all the preceeding discussion one actor has so far appeared in what might be
perceived to be a shadowey, if not furtive role, namely the econometric software

Developers, Users, and Use 95

developer. Actually, this is not a dishonorable calling, nor does it require anonymity.
There may be little need at this stage to proclaim the names of the culprits, one by
one, for these are available in the published compendium and in the manuals and
references cited there (Renfro, 2004a, b, c, d), but something about them should be
said. The activity is interesting for the types of econometricians it attracts and now
includes. It includes economic and econometric journal editors and associate editors.
It includes textbook writers, theoreticians, and applied econometricians. Many of its
members are academic economists. Others are employed professionally to design
and develop econometric software. By motivation, it may be an avocation, an addic-
tion, or even a hobby. But there is also the question, should this group be regarded as
including only those who happen to be active today, and not those who have played
a part in the past? If its ranks are expanded retrospectively, to include those who
during their careers have spent a reasonable amount of time programming, using
dyed-in-the-wool computer programming languages, the category of econometric
software developer is arguably even quite distinguished in its membership, a secret
army consisting of hundreds, perhaps thousands of economists, notwithstanding that
most may have given it up upon receipt of their last earned degree. However, as a
active grouping, it may not be numerically self-sustaining. This is potentially a trou-
bling idea. But hold this thought for a while, for there is yet more to consider.

http://www.springer.com/978-3-540-75570-8

