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Chapter 2
The One-Dimensional Case

We now focus on the analysis of the one-dimensional DNLS equation of the form

i u̇n = −ε (un+1 + un−1 − 2un)+ β|un|2un . (2.1)

(In the above form of Eq. (2.1), one of ε and β can be scaled out; e.g., β can be
scaled out up to a sign by u → u

√|β|) Note that in the next few chapters we
will be considering the focusing (attractive interaction in BEC) case of β < 0;
the defocusing nonlinearity of β > 0 will be treated in a separate chapter. Our
analysis in both this and in the following chapters will revolve around fundamental
and excited state solutions of the equation, their stability, and dynamics. Perhaps the
most fundamental among these is the single-pulse solitary wave that we now turn to.

2.1 Single-Pulse Solitary Waves

2.1.1 The Continuum Approach

2.1.1.1 General Properties of the Continuum Problem

We start by considering such pulses in the continuum limit. Given the opportu-
nity, we also present here an interlude with some fundamental features of the one-
dimensional continuum NLS equation of the general form

iut = −uxx − |u|2σu (2.2)

(where the subscript x, t denote partial derivatives with respect to the corresponding
variable). For more details, the interested reader is referred to [1].

Equation (2.2) is a Hamiltonian system, but with infinite degrees of freedom
(i.e., a “field theory”). As such, we expect that it will have a Lagrangian and a
Hamiltonian density. Indeed, the Lagrangian density for the model is

L = i

2

(
u�ut − uu�t

)− |ux |2 + 1

σ + 1
|u|2σ+2. (2.3)
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12 2 The One-Dimensional Case

Then, the corresponding partial differential equation (in particular, Eq. (2.2) in
this case) is derived as the Euler–Lagrange equation of the field theory [1] accord-
ing to

0 = δL

δu
= �L

�u
− �x

(
�L
�ux

)
− �t

(
�L
�ut

)
. (2.4)

where δL/δu symbolizes the Fréchet derivative [2] of the Lagrangian L = ∫ Ldx .
It can also be shown that if the action S = ∫ Ldt = ∫ Ldxdt is invariant under

a transformation x → x + δx , t → t + δt and u → u + δu, then the quantity

I =
∫

dx

[
�L
�ut

(utδt + uxδx − δu)+ C.C.− Lδt
]

(2.5)

is conserved. This is the celebrated Noether theorem. Its proof requires the use of
calculus of variations and we omit it here (the interested reader can find a detailed
derivation in Sect. 2.2 of [1]).

For the particular Hamiltonian system of interest here, we have the following
invariances (and corresponding conservation laws):

� if we use the transformation u → v = ueis where s is space and time inde-
pendent, then the equation for v is the same as the one for u. Hence there is a
phase degeneracy/invariance in the system. The generator of the corresponding
invariance is found as v ≈ u + δu, with δu = i su (the leading order expansion
of the above mentioned exponential phase factor). Hence, using δu = i su and
δx = δt = 0, we obtain that

P = ||u||2L2 =
∫
|u|2dx (2.6)

is conserved. This states that the (squared) L2 norm is conserved by the dynam-
ics of Eq. (2.2). This has a meaningful physical interpretation, e.g., in optics
or BEC since in the former it states that the power of the beam is conserved,
while in the latter it denotes the physically relevant conservation of the number
of atoms in the condensate. This invariance is often referred to as the phase or
gauge invariance of the NLS.

� Spatial translation x → x + δx also leaves Eq. (2.2) invariant. If we use δt =
δu = 0 in Eq. (2.5), we obtain the conservation of linear momentum (just as in
low-dimensional Hamiltonian systems of classical mechanics) of the form

M = i
∫ (

uu�x − u�ux
)

dx . (2.7)

Hence, translational invariance results in momentum conservation.



2.1 Single-Pulse Solitary Waves 13

� Finally, time translation t → t + δt also leaves the dynamical equation invari-
ant, hence using δx = δu = 0 in Eq. (2.5) results in the conservation of the
Hamiltonian (i.e., the energy) of the system

H =
∫ (
|ux |2 − 1

2σ + 2
|u|σ+1

)
dx . (2.8)

The integrand of Eq. (2.8) then represents the Hamiltonian density of the sys-
tem. One can then restate the problem in the Hamiltonian (as opposed to the
Lagrangian) formulation by means of Hamilton’s equations and/or using the
structure of the Poisson brackets, e.g.,

iut = δH

δu�
= {H, u}, (2.9)

where the standard Poisson bracket has been used.

These are general symmetries/invariances that are present for any value of σ . We
now turn to the specific, the so-called integrable case of σ = 1. The integrability
of this particular case means that apart from these three above defined integrals
of motion, there are infinitely many others. The unusual feature of such an inte-
grable nonlinear partial differential equation (PDE) is that once the initial data is
prescribed, we can solve the PDE for all times [3]. The nonlinear wave solutions
to such PDEs are often referred to as solitons, because they are solitary coherent
structures (i.e., nonlinear waves) which emerge unscathed from their interaction
with other such structures.

Here we focus on the standing wave solitons of the σ = 1 case, as the main
solution of the solitary pulse type. Our exposition will highlight the features of this
main “building block” of the NLS equation and will show how it is modified in the
presence of the non-integrable perturbation imposed by discreteness.

Such standing wave solutions can be straightforwardly obtained in an explicit
form

u = (2�)1/2sech(�1/2(x − ct − x0))e
i
(

c
2 x+(�− c2

4 )t
)

, (2.10)

where � is the frequency of the wave, x0 the initial position of its center, and c its
speed. Since, there is an additional Galilean invariance, that allows us to boost a
given solution to any given speed c, we will mostly focus on solutions with c = 0
hereafter. (Note, however, that discreteness does not preserve this invariance, hence
the issue of traveling becomes an especially delicate one in the discrete case, as
discussed in Part II.) These are often referred to as standing waves or occasionally as
breathers (because of their periodicity in time and exponential localization in space).

Naturally, once such solutions are identified, the immediate next question con-
cerns their stability. This can be identified at a first (but still particularly useful) step
by means of linear stability analysis. Using the ansatz
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u = ei�t (u0(x)+ ε(v + iw)) (2.11)

in Eq. (2.2), where u0(x) = (2�)1/2sech(�1/2(x − x0)), one obtains the linear sta-
bility equations by the O(ε) expansion. It can be easily seen that the O(1) equation
is, by construction, identically satisfied (it is the equation satisfied by the solitary
wave). The O(ε) equations read as follows:

vt = L−w =
(−�+ �− u2σ

0

)
w, (2.12)

wt = −L+v = −
(−�+ �− (2σ + 1)u2σ

0

)
v. (2.13)

In Eqs. (2.12) and (2.13), � denotes the second spatial derivative (per its natural
higher dimensional generalization, namely the Laplacian). Note that we give the
general form of the linear stability problem, even though for the time being we are
interested in the particular case of σ = 1. Separating space and time variables for
the solutions of the resulting equations (2.12) and (2.13) as v(x, t) = eλt ṽ(x) and
w(x, t) = eλtw̃(x), we obtain the eigenvalue problem in the form

λ2ṽ = −L−L+ṽ (2.14)

and similarly λ2w̃ = −L+L−w̃.
The invariances of the original equation are now mirrored in the zero eigenvalues

of the linearization problem of Eq. (2.14). In particular, it is easy to check that for
any solution of the form u = ei�t u0(x), the spatial derivative du0/dx corresponds to
an eigenvector with a pair of zero eigenvalues since L+du0/dx = 0. Similarly, the
phase invariance leads to another pair of zero eigenvalues since L−u0 = 0. Hence,
the linearization around the pulse-like soliton solutions of Eq. (2.10) will contain
four eigenvalues at λ = 0. The algebraic multiplicity of the eigenvalues at the origin
is four, but the geometric multiplicity is two. That is, each of the eigenvalues has an
eigenvector and a generalized eigenvector associated with it. For example, the phase
invariance has a generalized eigenvector v = �u0/�� [4, 5], satisfying L+v =
−u0. Similarly, there is a generalized eigenvector of translation proportional to
(x − x0)u0 [4].

Furthermore, the linearization problem of Eqs. (2.12) and (2.13) will contain
continuous spectrum. The latter consists of small amplitude, extended in space,
plane wave eigenfunctions of the form v + iw ∝ ei(kx−ωt) (see [4] for their precise
functional form). These satisfy the linear dispersion relation (upon substitution into
the above equations) of the form

ω2 = −λ2 = ± (�+ k2) . (2.15)

Hence, in this case, the spectral plane (λr , λi ) of the eigenvalues λ = λr + iλi of
the linearization around a soliton of the top panel of Fig. 2.1 will have a form such
as the one given in the bottom panel of Fig. 2.1.
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Fig. 2.1 The top panel shows
the continuum soliton of the
NLS equation for � = 1. The
bottom panel shows the
corresponding spectral plane
of eigenvalues (λr , λi ) in this
integrable case. Four
eigenvalues are at λ = 0 due
to the invariances (see text)
and the rest reside in the
continuous spectrum whose
band edge is at λ = ±�i
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2.1.1.2 From Continuum to Discrete

The most straightforward discretization of the NLS equation

i u̇n = −ε�2un + β|un|2σun, (2.16)

where ε = 1/h2, where h plays the role of the discrete lattice spacing and �2un =
un+1 + un−1 − 2un is the discrete Laplacian with unit spacing. The DNLS model is
also Hamiltonian with

HDN L S = −
∞∑

n=−∞

[
ε|un − un−1|2 + β

σ + 1
|un|2σ+2

]
(2.17)

and can be derived from HDN L S as

u̇n = {HDN L S, un}, (2.18)

using the Poisson brackets

{um, u�n} = iδm,n, {um, un} = {u�m, u�n} = 0. (2.19)

As we indicated above, the case of σ = 1 is integrable in the continuum limit.
In the discrete case, the above-mentioned DNLS is a non-integrable discretization
of the continuum model. On the other hand, however, there does exist an integrable
discretization, namely the so-called Ablowitz–Ladik (AL-NLS) discretization of the
NLS equation [6, 7]

i u̇n = −ε�2un + β
2

(un+1 + un−1)|un|2 (2.20)

with similar notation as used in Eq. (2.16). In the case of the AL-NLS, the Hamil-
tonian is of the form
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HAL-N L S = −
∞∑

n=−∞

[
ε|un − un−1|2 + 1

β
ln
(
1+ β|un|2

)]
. (2.21)

The AL-NLS equation is derived from HAL-N L S using the non-standard Poisson
brackets

{um, u�n} = iδm,n(1+ β|un|2), {um, un} = {u�m, u�n} = 0. (2.22)

Additionally to the Hamiltonian, both the DNLS and the AL-NLS equation con-
serve a quantity that is commonly referred to as the norm or power of the solution

PDN L S =
∞∑

n=−∞
|un|2, (2.23)

while for the AL-NLS equation it is

PAL-N L S =
∞∑

n=−∞

1

β
log
(
1+ β|un|2

)
. (2.24)

This conservation law, analogously to the corresponding conservation law for
the continuum NLS equation, mirrors the U(1) symmetry or gauge invariance of the
discrete model, i.e., its invariance with respect to an overall phase factor.

One of the fundamental differences between the DNLS and the AL-NLS model
is the existence of a momentum conservation law in the latter which is absent in the
former. In particular, the momentum

M = i
∞∑

n=−∞

(
u�n+1un − un+1u�n

)
(2.25)

is conserved in the case of the AL-NLS model; this, in turn, implies that its localized
solutions can be centered anywhere within the discrete lattice. In fact, in the AL-
NLS case, there exist exact soliton solutions which are of the form (for simplicity,
setting ε = −β/2 = 1)

un = sinh(γ )sech (γ (n − ξ )) exp (iδ(n − ξ )+ ρ) , (2.26)

where ξ̇ = 2 sinh(γ ) sin(δ)/γ and ρ̇ = −2+2 cos(δ) cosh(γ )+2δ sin(δ) sinh(γ )/γ
[8]. Then, the translational invariance is evident in the presence of an undetermined
integration constant in the ordinary differential equation (ODE) for the time evolu-
tion of the position of the soliton center ξ .

In the DNLS case, the absence of translational invariance no longer permits to
the solution to be arbitrarily centered anywhere along the lattice. Instead, there are
only two stationary solutions (modulo the integer shift invariance of the lattice),
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Fig. 2.2 The top panel shows the discrete on-site solitary wave (left) and inter-site solitary wave
(right) for ε = 1. The bottom panels show the corresponding linear stability eigenvalues, illus-
trating the linear stability of the former and linear instability of the latter (due to a real eigenvalue
pair). There is only a single pair of eigenvalues at the origin, due to the phase invariance; note also
the upper bound of the continuous spectrum (a feature absent in the continuum limit, where the
continuous spectrum extends to ±i∞)

one centered on a lattice site (on-site) and one centered between two adjacent lattice
sites (i.e., inter-site or bond-centered solution). These two solutions are shown in the
top panels of Fig. 2.2. Such localized modes were initially proposed in a different
dynamical lattice context in [9] and [10]; a relevant discussion of these modes in
DNLS can be found in [11].

A fundamental level of understanding of this feature (although partially heuristic)
can be obtained by using the continuum soliton solution of Eq. (2.10) as an ansatz
in the formula for the discrete energy of Eq. (2.17). This is a “collective coordinate”
type approach using as the relevant coordinate the position of the pulse center x0.
The resulting expression for the (discrete) Hamiltonian is given by

HDN L S = 16π2

h2

∞∑

m=1

m cos
( 2πmx0

h

)

sinh
(

mπ2√
�h

)
[
ε − �

3

(
1+ m2π2

�h2

)]
, (2.27)

where it should be kept in mind that ε = 1/h2. To derive the above expression
[12], terms independent of x0 have been neglected in the energy (cf. also with the
momentum invariant for the AL lattice and its relevant calculation in [13]), and the
Poisson summation formula [14] has been critically used, according to which

∞∑

n=−∞
f (βn) =

√
2π

β

∞∑

m=−∞
F

(
2mπ

β

)
, (2.28)
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where F is the Fourier transform of f ,

F(k) = 1√
2π

∫ ∞

−∞
f (x)eikxdx . (2.29)

The above calculation yields the so-called Peierls–Nabarro (PN) [15, 16] poten-
tial which is famous from the theory of crystal dislocations representing the energy
landscape that a dislocation faces in a crystal lattice. Of particular importance is the
so-called PN barrier, namely the energy barrier that needs to be overcome in order
for the coherent structure to travel a distance of one lattice site. In the present setting,
the PN barrier can be easily found from the above expression for HDN L S to be

HP N = 32π2

h2

∞∑

m=1

m(1− (−1)m)

sinh
(

mπ2√
�h

)
[
ε − �

3

(
1+ m2π2

�h2

)]
. (2.30)

(We will not attempt to evaluate this expression and compare it with numerical re-
sults for reasons that will be explained in Part II).

However, the expression of Eq. (2.30) bears an additional piece of information.
In the continuum limit of h → 0, the above examined energy is independent of
the position of the pulse center due to the translational invariance of the continuum
model, i.e., H (x0) is a constant function of x0. Therefore, in the case where the sym-
metry is broken (for h 
= 0), the height of the periodic energy barrier represents a
quantitative measure of “how much” the invariance is broken. This amount appears,
in Eq. (2.30), to be exponentially small in the relevant parameter which is the lattice
spacing h (note the dominant hyperbolic sine terms in the denominator proportional
to sinh(mπ2/

√
�h)). It is perhaps interesting to attempt to justify this exponential

smallness in a qualitative way as follows: if we try to expand the operator �2un by
means of a Taylor expansion, we obtain

�2un =
∞∑

j=1

2h2 j

(2 j )!

d2 j u

dx2 j
. (2.31)

However, to all algebraic orders in this power-law expansion of the discrete op-
erator, the right-hand side of Eq. (2.31) contains derivatives. However, derivatives
are translationally invariant objects. Hence, in order to be able to observe the break-
ing of the symmetry, one has to go beyond all algebraic orders in the power-law
expansion and hence has to become exponentially small in h, just as the energy
landscape of Eq. (2.27) suggests.

We are now in a position to discuss the linear stability problem at the discrete
level of the DNLS equation. Starting with the linear stability ansatz through the
discrete analog of Eq. (2.11) (where each term should be thought of as having a
subscript n indexing the lattice sites), we obtain the analog of the eigenvalue equa-
tions (2.12) and (2.13) for Eq. (2.1)
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λvn = L−wn = (−ε�2 + �− βu2
0,n)wn, (2.32)

λwn = −L+vn = −(−ε�2 + �− 3βu2
0,n)vn . (2.33)

In the lattice case, Eqs. (2.32) and (2.33) represent a matrix eigenvalue problem
for the eigenvalues λ and the eigenvectors (vn, wn)T that is subsequently solved
numerically.

A small remark should be added here about eigenvalue notation. In the physics
literature, it is quite common to use the eigenfrequency ω, while in the more math-
ematically oriented texts, λ = iω is used to denote eigenvalues. The two notations
will be used interchangeably, with the understanding that linear instability is implied
by non-zero imaginary part of ω or, equivalently, by the non-zero real part of λ.

The following features are generically observed in spectral plots analogous to the
ones shown in Fig. 2.2 but for different values of the coupling strength ε:

� The continuous spectrum of plane wave eigenfunctions ∼ exp(±i (qn − ωt)),
exists also in the discrete problem and satisfies the following dispersion relations:

ω = �+ 4ε sin2
(q

2

)
, (2.34)

ω = −�− 4ε sin2
(q

2

)
. (2.35)

As seen from Eqs. (2.34) and (2.35), this branch of the spectrum extends over
the interval ±[�,�+ 4ε] (along the imaginary axis of the spectral plane).

� In addition, as indicated above, the preservation of the U(1) invariance under
discretization leads to a pair of eigenvalues λ2 = 0.

� The translational invariance breaking is, as argued above, one of the key features
of the discrete problem in comparison to its continuum sibling. In the case of
a site-centered (linearly stable) solution, as shown in Fig. 2.2 and justified later
in this chapter, the bifurcation of the translational eigenvalues occurs along the
imaginary axis, leading to linear stability. On the contrary, in the case of the
bond-centered solutions, the breaking of the symmetry leads to bifurcation along
the real axis, rendering such inter-site-centered solutions linearly unstable.

� Finally, as was originally illustrated in [17] and subsequently expanded in [5],
as the lattice spacing increases (and the coupling strength ε = 1/h2 decreases),
there is also a pair of eigenmodes that bifurcates from the lower edge of the
continuous spectrum, becoming a point spectrum eigenvalue. This, so-called, in-
ternal mode bifurcation does not affect critically the stability of the fundamental
solution (at least, in the one-dimensional problem – in higher dimensions, as we
will see below in Chap. 3, Sect. 3.3.4, such bifurcations may affect the stability
critically), as will be quantified in what follows.

The above information yields the full spectral information in the case of a fun-
damental solution (single pulse) (we will see below how this picture is modified for
multipulse waveforms). In what follows, we attempt to quantify some of the features
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of the single-pulse linearization spectrum, namely the exponential bifurcation of the
translational eigenvalue and the exponential, as well as power-law bifurcation of the
internal mode from the band edge of the continuous spectrum.

We start by trying to capture the exponential bifurcation of the translational
eigenmode using a more rigorous method. Specifically, we will use the discrete
Evans function method developed in [18]. Here, we will outline the basic features
of the method (we refer the reader to the original work of [18] for more details).

The eigenvalue problem can also be written as a first-order system

Yn+1 = A(λ, n)Yn (2.36)

with λ = iω. Equation (2.36) has solutions, Y+ (Y−) that decay exponentially as
n → +∞ (n → −∞). Forming the wedge product of the two, we obtain an an-
alytic function, the so-called Evans function, whose zeros, by construction, pertain
to eigenvectors that span the subspace of intersection of the two spaces and hence
decay for n →±∞. Hence, if we define

E(λ) = Y+ ∧ Y−, (2.37)

the solutions of the linearization problem, λ, such that E(λ) = 0 form the point
spectrum of eigenvalues with localized eigenfunctions in the linearization problem.

In order to evaluate the Evans function for the DNLS problem, we can use its
analytic properties and Taylor expand it close to the origin of the spectral plane.
To do this for the DNLS equation, we consider it as a perturbation of the AL-NLS
equation. In the calculation below, for reasons of convenience, we will consider the
case of εh2 = −β/2 = 1 in Eq. (2.1); we will also denote the steady-state solution
by vn . Then, the steady-state problem can, upon setting rn = (vn − vn−1)/h, be
rewritten as

vn+1 =
(

1+ h2

1+ h2v2
n

(
�− 2v2

n

))
vn + hrn + ε h2v3

n

1+ h2v2
n

(
�− 2v2

n

)
, (2.38)

rn+1 = h

1+ h2v2
n

(
�− 2v2

n

)
vn + rn + ε hv3

n

1+ h2v2
n

(
�− 2v2

n

)
.

The above equation is written so that the limit of ε = h2 = 0, Eq. (2.38), is the
steady-state problem for the AL-NLS equation.

In the case of ε = 0, the exact (single soliton) solution of the AL-NLS equation
is given by

Qn(ξ ) =
√

� sinh(α)sech(α̃n + ξ ), (2.39)

where

cosh(α̃) = 1+ �h2

2
and sinh(α) = sinh(α̃)√

� h
.
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In that case, it is also true that the steady-state problem has an infinite number of
invariants · · · = In = In+1 = · · · = const. In is given by

In = h2v2
nv

2
n−1 + v2

n + v2
n−1 − 2μvnvn−1 (2.40)

with μ = 1+ �h2/2.
Hence, following Ablowitz and Herbst [19, 20], in the perturbed (DNLS) case of

ε 
= 0, the Melnikov function can be calculated as

εM(ξ, ε) =
∞∑

n=−∞
�n I (ξ, ε) =

∞∑

n=−∞

[
I (xn+1)− I (xn)

]
, (2.41)

where I is as defined above but in the ε 
= 0 case, it is no longer a constant. Equa-
tions (2.38) can be expressed in the form xn+1 = F(xn)+εG(xn). Using this notation
and Taylor expanding H (F(xn)+ εG(xn)), we obtain for M the expression

M(ξ, ε) =
∞∑

n=−∞
∇ I (xn+1)G(xn; ε). (2.42)

This allows us to evaluate the Melnikov function (see [18] for details), up to
corrections of O(e−2π2/α̃), as

M(ξ, h) = C(h)e−π
2/α̃ sin

(
2πξ

α̃

)
,

where

C(h) = 4π
h

α̃

(
2

45

π2

α̃2
+ 2

9

π4

α̃4
+ 8

45

π6

α̃6

)
≈ 2147.8

h6
. (2.43)

In the case of the AL-NLS equation, the “effective” (since ξ in Eq. (2.39)
can take any value) translational invariance ensures that the stable and unstable
manifolds of the homoclinic orbit intersect non-transversely. On the other hand,
in the non-integrable case of the DNLS and generically (for ε 
= 0) this non-
transversality will not persist. In fact, the splitting of the orbits (or effectively the
angle of intersection of the manifolds) is given by the Melnikov function. Hence,
in essence, the Melnikov function is a measure of the breaking of translational
invariance and is expected to be transcendentally small (as in our previous calcu-
lation). This exponentially small splitting is associated with the above discussed PN
barrier.

Having evaluated the Melnikov function, we can now proceed to the Taylor ex-
pansion of the Evans function of the DNLS equation, as a perturbation to the AL-
NLS problem. In particular, the Evans function E is a function of the eigenvalue λ
and the perturbation strength ε. Since for the AL-NLS equation E(λ = 0; ε = 0)
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= 0, we need to find the leading order derivatives with respect to ε and λ. As λ
is an eigenvalue of algebraic multiplicity four in the AL lattice, the first derivative
that will yield a non-zero contribution is �4

λE(0; 0), which will generically be con-
stant. The tools developed by Kapitula and co-workers [21–23] can then be used
to obtain this constant. Furthermore, the preservation of the phase invariance and
the bifurcation of merely the translational pair of eigenvalues in the DNLS case
implies that the leading order derivative with respect to ε of non-zero contribution
will be �ε�

2
λE(0; 0). However, due to its relation with the splitting of the orbits of the

perturbed problem, this derivative will generically be∼ �ξM(ξ ; ε), as can be shown
on general grounds (see, e.g., [18]). The Taylor expansion of the Evans function will
therefore read

E(λ; ε) = ελ2�ε�
2
λE(0; 0)+ λ4�4

λE(0; 0) (2.44)

and the calculation of the details specific to the DNLS equation yields

E(λ; h2) ∼ λ2(h2�ξM(ξ ; h2)+ 2Bλ2), (2.45)

where B is a constant. Substituting the expression for the Melnikov function, we
conclude that for the site-centered mode (that was numerically found to be stable
previously)

λ±s ∼ ±i

√
πh2C(h)

B1α̃
e−π

2/2α̃ , (2.46)

while for the inter-site-centered mode (that was previously found numerically to be
unstable due to a real eigenvalue pair)

λ±u ∼ ±
√
πh2C(h)

B1α̃
e−π

2/2α̃ . (2.47)

The results of Eqs. (2.46) and (2.47) confirm the validity of the numerical find-
ings. Furthermore, the Evans function method naturally demonstrates how the expo-
nentially small transversality effects of (translational invariance) symmetry breaking
are mirrored in the bifurcation of the translational eigenmodes away from the origin
of the spectral plane. The predictions of the Evans method are compared with the
results of the linear stability analysis in Fig. 2.3.

Having analyzed the bifurcation of the translational mode (note that for the inter-
site-centered solution, we will discuss a different limit later in this chapter), we
now turn our attention to the other interesting feature caused by discreteness as a
perturbation to the continuum problem. As was first observed for kinks in a modified
sine-Gordon potential [24] and later elaborated for kinks in nonlinear Klein–Gordon
lattices and for standing waves in DNLS lattices in [5, 17, 18, 25–27], localized
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Fig. 2.3 The Evans function prediction for the imaginary eigenvalue of the site-centered mode (top
panel) and for the real eigenvalue of the inter-site-centered mode (bottom panel). The theoretical
results given by Eqs. (2.46) and (2.47), respectively, capture the functional dependence but not the
exact prefactor. The result of Eqs. (2.46) and (2.47) without the corrected prefactor is shown by the
dashed line. The result with the corrected prefactor is the solid line and it is in excellent agreement
with the numerical results for the bifurcation of the corresponding translational eigenvalue given
by the circles. The prefactors need to be corrected since, as explained in [18], the Evans function
method captures the leading order functional dependence (on h) but higher order contributions to
the prefactor are not accounted for by this method. Reprinted from [18] with permission

eigenmodes may bifurcate from the bottom edge of the continuous spectrum (ωp =
±� for the DNLS equation) and subsequently be present in the gap between the
band edge and the origin of the spectral plane as a point spectrum eigenvalue.

This phenomenon was first tackled theoretically in the framework of intrinsic
localized modes (ILMs) in [17]. In this work, discreteness was considered as a
leading order power-law perturbation to the continuum problem, using the Taylor
expansion of Eq. (2.31):

iψt + ψxx + 2|ψ|2u + h2

12
ψxxxx = 0. (2.48)
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Considering the last term in Eq. (2.48) as a perturbation (of strength δ = h2/12)
and using leading order perturbation theory, a corrected solution can be obtained for
the perturbed problem ψ = exp(i t)(v0(x)+ δv1(x)), with

v1(x) = 1

2

(
x sinh(x)

cosh2(x)
− 7

cosh(x)
+ 8

cosh3(x)

)
. (2.49)

Then, the perturbed linearization problem of Eqs. (2.12) and (2.13) can be writ-
ten as

U ′′ +
(

6

cosh2 x
− 1

)
U + ωW + (�4

x + 12v0v1)δU = 0, (2.50)

W ′′ +
(

2

cosh2 x
− 1

)
W + ωU + (�4

x + 4v0v1)δW = 0. (2.51)

Assuming now the eigenvalue bifurcating from the bottom of the continuous
band edge to have a frequencyω = 1−δ2κ2 (where δ = h2/12 is the measure of the
perturbation), the authors of [17] project the new basis of continuous eigenfunctions
[U,W ]T onto the known old one [4]. Assuming that the eigenvalue bifurcating from
the band edge is given by the above expression, the integral equation resulting from
the projection, in the case of wave number k = 0 yields a solvability condition that
allows to determine κ as (in the case of the DNLS equation)

|κ | = sgn(δ)

4

∫
U (x, 0) f1(x)U (x, 0)+W (x, 0) f2(x)W (x, 0)dx, (2.52)

where f1,2 correspond to the perturbative operator prefactors of δU and δW in
Eqs. (2.50) and (2.51), respectively. This method yields κ = 4/3 in the case of
DNLS and hence

ω = 1− h4

81
. (2.53)

However, as can be seen from the above methodology, only the leading order
power-law correction is recovered in this way. One of the major disadvantages of
this result is that it does not distinguish between the bifurcation of the eigenvalue
pair (the “breathing” mode according to [5]), of the stable site-centered and the
unstable inter-site-centered wave. Such differences, obvious in Fig. 2.4, can only be
attributed to exponentially small differences between the two waves.

For this reason, in [18, 27], the Evans function methodology was developed in the
vicinity of the branch point ω = 1 (λ = i ). However, in this case both exponential
and power-law terms were present in the derivative of E with respect to the O(ε)
perturbation in Eqs. (2.38). Evaluation of the relevant partial derivatives and Taylor
expansion of E(λ; ε) near λ = i ; ε = 0, performed in detail in [18], yields
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Fig. 2.4 Bifurcation of the
eigenvalue λ of the breathing
mode of the stable and
unstable wave from the edge
of the continuous spectrum
(λ = i) as a function of the
lattice spacing h; the dashed
line shows the theory of [17],
the solid line the theory of
[18, 27], and the stars the
results of numerical
experiments on a 400-site
lattice with periodic boundary
conditions. In the bottom
panel, circles indicate results
on 200-site and plus symbols
on a 300-site lattice.
Reprinted from [18] with
permission

0 0.4 0.8 1.2 1.6
0

0.04

0.08

0.12

0.16

0.2

Im
(i 

−
   

   
λ

   
   

 )

h

0.2 0.3 0.4 0.5 0.6 0.7
0

0.4

0.8

1.2

1.6

2
× 10−3

Im
(i 

−
   

   
λ

   
   

 )

h

E(γ, h) = 4h−1

[
γ − h3

9

{
1+ 9

4
C(h)e−π

2/α̃ cos

(
2πξ

α̃

)}]
, (2.54)

where

γ 2 = (1+ iλ)h2

(
1+ 1

4d2

)
. (2.55)

Setting E = 0, we obtain an expression for the eigenvalue bifurcation

λ(ξ ) = i

[
1− h4

81

{
1+ 9

2
C(h)e−π

2/α̃ cos

(
2πξ

α̃

)}]
. (2.56)

Since ξ can take the values nα̃ or (n + 1/2)α̃, we obtain different eigen-
value bifurcations for the site-centered and the inter-site-centered modes. C(h) =
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(256π)/(45)(π/α̃)7 ≈ 53979.2 h−7. It should be noted, however, that to leading
(power law) order this result is the same as the one of [17]. On the other hand, as
can be observed in the numerical results of Fig. 2.4, there is a significant difference
between the bifurcation of the stable and the unstable wave. In fact, the numerical
experiment shows that the maximal bifurcation for the former is≈ 0.155, while for
the latter it is only≈ 0.0019. Hence, the difference between the two waves, which is
discernible only at an exponentially small level of description, turns out to be impor-
tant. Equation (2.56) renders this distinction clear, as it suggests that for h > 0.45
the exponential effects become important. This distinction has also been observed in
nonlinear Klein–Gordon lattices. For instance, in the discrete sine-Gordon model,
the bifurcation of the edge or breathing mode of the unstable wave is completely
suppressed by the exponential contributions, while the bifurcation does take place
for the stable wave [25].

So far, we have clarified the questions pertaining to linear stability of the site-
centered and inter-site-centered modes. However, it is also important to know
whether information about linear stability can be generalized to nonlinear stabil-
ity of the relevant waves. This is often not possible, however, in the case of the
fundamental solutions and in the vicinity of the continuum limit h → 0, the work of
[28] can be used to obtain nonlinear stability conclusions. Suppose that the operator
L+, defined in Eq. (2.13) has only one eigenvalue λ ≤ 0, and suppose that the only
eigenvalue of L−, given in Eq. (2.12), that has the property λ ≤ 0 is exactly at
λ = 0. Furthermore, suppose that

d

dω
P > 0. (2.57)

Then it can be shown using the work of [28] that the wave is nonlinearly stable.
As h → 0+ the wave is approximately given by

√
ω sech(

√
ω x). Hence,

lim
h→0+

P =
∫ +∞

−∞

(√
ω sech(

√
ω x)

)2
dx = 2

√
ω

so that

lim
h→0+

d

dω
P > 0.

Hence, the condition of Eq. (2.57), is satisfied for small h.
It is clear that L−(vn) = 0 so that λ = 0 is an eigenvalue of L−. Since vn is

a positive solution, Sturm–Louiville theory states that λ = 0 is the minimal eigen-
value. At small h, the operator L+ is a perturbation of the corresponding operator for
the AL-NLS equation. For the AL-NLS equation the operator is such that �ξ vn is an
eigenfunction at λ = 0. Thus, by another application of Sturm–Liouville theory, one
has that there exists one negative eigenvalue which is of O(1). Upon perturbation,
both of the eigenvalues will move by an exponentially small amount. Hence, it is
enough to track the eigenvalue near zero in order to determine whether the first
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condition above is met. However, according to the theory of [28, 29], the wave is
linearly unstable if the operator L+ has two strictly negative eigenvalues. One can
conclude (by contradiction) that for the linearly unstable wave (inter-site-centered
solution) the zero eigenvalue of the AL-NLS equation must move to the left in the
case of the DNLS equation, while for the linearly stable wave (site-centered solu-
tion) the zero eigenvalue of the AL-NLS equation must move to the right. Thus,
we have shown that if h > 0 is sufficiently small, for the linearly stable on-site
wave, the first condition is also met and consequently the wave is also nonlinearly
stable.

2.1.2 The Anti-Continuum Approach

We now approach the same problem, namely the existence and stability of single
pulses in the DNLS equation from an entirely different perspective, that was orig-
inally proposed by MacKay and Aubry [30] and has been extensively used in the
literature since. This is the initially referred to as anti-integrable, and later more
appropriately termed the anti-continuum (AC) limit of ε = 0. In this limit, the sites
are uncoupled and it is straightforward to solve the ensuing ordinary differential
equations for un . The key question then becomes which ones of the possible com-
binations of the different un’s will persist, as soon as the coupling between the sites
is turned on (i.e., ε 
= 0). To present the relevant analysis, let us use Eq. (2.1) with
β = −1 (i.e., in the focusing case) and having made a transformation of the field
un → un exp(−2iεt), as is always possible due to the gauge invariance. Then (2.1)
acquires the form

i u̇n = −ε(un+1 + un−1)− |un|2un . (2.58)

As before, we look for standing waves of the form: un = exp(iμt)vn which, in
turn, satisfy the steady-state equation

(
μ− |vn|2

)
vn = ε (vn+1 + vn−1) . (2.59)

In the AC limit, it is easy to see that Eq. (2.59) is completely solvable vn =
0,±√μ exp(iθn), where θn is a free phase parameter for each site. However, as
indicated above, out of this huge freedom of phase selection for each site in the
uncoupled limit, the important consideration is how much of it remains as soon as
the cross-talking between sites is allowed. A simple way to address this question in
an explicit way in the one-dimensional case of Eq. (2.58) is to multiply Eq. (2.59)
by v�n and subtract the complex conjugate of the resulting equation, which in turn
leads to

v�nvn+1 − vnv
�
n+1 = const⇒ 2arg(vn+1) = 2arg(vn), (2.60)
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where we have used the fact that the constant should be equal to 0 since we are
considering solutions vanishing as n → ±∞. The scaling freedom of the equation
allows us to select μ = 1 without loss of generality. Then, this yields the important
conclusion that the only states that will persist for finite ε are ones containing se-
quences with combinations of vn = ±1 and 0. A systematic computational clas-
sification of the simplest ones among these sequences and of their bifurcations is
provided in [31]. It should be mentioned also in passing that although we consid-
ered here the focusing case of β = −1, the defocusing case of β = 1 can also
be addressed based on the same considerations and using the so-called staggering
transformation wn = (−1)nun (which converts the defocusing nonlinearity into a
focusing one).

Although we will use the above considerations later in this chapter, when consid-
ering the case of multipulses, in the present subsection, we focus on the single-pulse
case. It turns out that the single pulse exists in the DNLS “all the way” between
the continuum and the AC limit (a very rare feature, as can be inferred, e.g., from
Fig. 14 of [31]). In fact, there are two waveforms at the AC limit that will both
result to the continuum pulse as ε →∞ (h → 0). One of them is the configuration
with vn = δn,n0 , i.e., the single-site excitation. The other is the configuration with
vn = δn,n0 + δn,n0+1, i.e., a two-site, bond-centered, in-phase excitation. Since the
latter is a multisite structure, it will be examined in more detail later in this chapter
(where the general theory of multisite excitations will be developed). Incidentally,
these two are the only configurations that persist throughout the continuation from
the AC to the continuum limit.

We also briefly discuss the stability near the AC limit. Once again, the L+ and
L− operators emerge when linearizing around the standing wave solutions of Eqs.
(2.58) and (2.59) in the linearization problem of the form

(
1− 3v2

n

)
an − ε (an+1 + an−1) = L+an = −λbn, (2.61)

(
1− v2

n

)
bn − ε (bn+1 + bn−1) = L−bn = λan . (2.62)

It is perhaps relevant to note here that the eigenvalue problem has the general
symplectic form J Lw = λw where the J matrix has the standard symplectic struc-
ture (J 2 = −I ), i.e.,

J =
(

0 I

−I 0

)
(2.63)

and the operator L is defined as

L =
(

L+ 0

0 L−

)
. (2.64)
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In the case of the AC limit of ε = 0, the operators L− and L+ simplify enor-
mously, becoming simply multiplicative operators. It is then straightforward to solve
the ensuing eigenvalue problem for each site of the AC limit. Assume a sequence for
vn with N “excited” (i.e., 
= 0) sites; then, it is easy to see that for ε = 0 these sites
correspond to eigenvalues λL+ = −2 for L+ and to eigenvalues λL− = 0 for L−,
and they result in N eigenvalue pairs with λ2 = 0 for the full Hamiltonian problem.
On the other hand, all the remaining, infinitely many (non-excited) sites in the chain
with vn = 0 satisfy an = −λbn and bn = λan. This yields a pair of eigenvalues
λ2 = −1, i.e., λ = ±i (more generally for a frequency � of the solution, these will
be λ = ±i�), with infinite multiplicity.

In the case we are currently considering, namely that of a single-site excitation
that will eventually give rise to the single pulse of the continuum limit, there is only
a single pair of zero eigenvalues, corresponding to the excited site. There are also
infinitely many pairs, corresponding to the non-excited sites, at λ = ±i (or ±i�
more generally). As soon as ε becomes non-zero, the former zero eigenvalue pair
will have to remain at 0, because of the gauge (i.e., U(1)) invariance of the equation.
On the other hand, the infinitely many sites with identical eigenvalues will “expand”
in accordance with Eqs. (2.34) and (2.35). As ε is increased, the two eigenvalues of
the top panels of Figs. 2.3 and 2.4 will bifurcate from the bottom edge of the contin-
uous spectrum. One of these eigenvalues will approach the origin exponentially as
h → 0, while the other, upon a maximal excursion from the continuous spectrum’s
lower band edge, it will return to it as h → 0. This is the full spectral picture joining
the results of the continuum to those of the AC limit. While we have described
analytically both the h → 0 limit in the previous subsection, and the h →∞ limit
in this subsection, the intermediate region can only be quantified numerically, as is
done in Figs. 2.3 and 2.4, as well as in Fig. 2.5 in a more conclusive way, giving
information about all the point spectrum eigenvalues of the DNLS problem, as a
function of the lattice spacing h.

Fig. 2.5 The figure shows the
(non-zero) point spectrum
eigenvalues as a function of
the spacing h, as they are
numerically obtained (in a
400-site computation) for the
linearization around a single
pulse of the DNLS equation.
The solid line shows the
internal mode that bifurcates
from the bottom edge of the
continuous spectrum and
returns to it, while the dashed
line shows the translational
mode that exponentially
approaches λ2 = 0 as h → 0
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2.1.3 The Variational Approach

Another approach that yields quantitative semi-analytical information about the
single-pulse case even in the intermediate regime is the so-called variational ap-
proach (VA). In the case of the DNLS, this was originally developed in [32] and
was systematically tested recently in [33]. The VA (a detailed review of which
can be found in [34]) consists of selecting an a priori ansatz for the form of
the solution (in the case of the DNLS a typical, quantitatively tractable choice is
un = A exp(−a|n|)). It should be understood that this is a dramatic oversimplifi-
cation of the solution. It reduces the original infinite dimensional dynamical system
into a two-dimensional one, in the space of “adjustable parameters” A and a (rep-
resenting measures of the amplitude and the inverse width of the pulse solution,
respectively). This type of ansatz is not substituted in the steady-state (or dynami-
cal) equation, which it cannot, by default, satisfy, since it is typically impossible to
satisfy infinitely many equations with just two free parameters, unless, fortuitously,
our ansatz represents an exact solution. It is, instead, substituted in the Lagrangian
(either time-dependent, or when looking for steady states, time-independent). Sub-
sequent derivation of the Euler–Lagrange equations (i.e., extremization of the action
on the restricted subspace of the adjustable parameters) is performed in the expecta-
tion of obtaining a good fit to the corresponding infinite-dimensional extremization
problem. This is a reasonable expectation provided that the waveform remains close
to the ansatz, but may fail considerably when that is not the case. More importantly,
it is not a priori obvious when the method will fail, although recent efforts are
starting to aim toward systematically computing the relevant error and accordingly
improving the approximation, when needed [35].

As an example, we now give the steady-state version of the variational approx-
imation for a generalized DNLS problem in line with the original presentation of
[32]. Consider the steady-state problem for the discrete waveform vn

�vn = ε (vn+1 + vn−1 − 2vn)+ v2σ+1
n , (2.65)

which is the standing wave problem for a general power nonlinearity (as discussed
in the beginning of this chapter). The case of σ = 1 corresponds to our familiar
cubic DNLS. Equation (2.65) can be derived from the Lagrangian

L =
+∞∑

n=−∞

[
ε(vn+1 + vn−1)vn − (�+ 2ε)v2

n +
1

σ + 1
v2(σ+1)

n

]
. (2.66)

Substituting the above-mentioned simple exponential ansatz in the Lagrangian,
one can perform the summation explicitly, which yields the effective Lagrangian,

Leff = 2εP sech a − (�+ 2ε)P + Pσ+1

σ + 1

coth ((σ + 1)a)

cothσ+1 a
. (2.67)
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The (squared l2) norm of the ansatz, which appears in Eq. (2.67), is given by

P ≡
+∞∑

n=−∞
v2

n = A2 coth a. (2.68)

The Lagrangian (2.67) gives rise to the variational equations, �Leff/�P =
�Leff/�a = 0, which constitute the basis of the VA toward the computation of
stationary waveforms [34]. They predict relations between the norm, frequency, and
width of the fundamental pulses within the framework of the VA, namely

Pσ = 4ε coshσ a sinh2(σ + 1)a

sinhσ−1 a(sinh 2(σ + 1)a − sinh 2a)
, (2.69)

� = 2ε(sech a − 1)+ Pσ coth(σ + 1)a

cothσ+1 a
. (2.70)

These ensuing transcendental equations connect the power of the pulse solution
to its width (these are the two unknowns in these algebraic equations) and express
these features as a function of the system parameters (such as the frequency �, the
coupling strength ε, or the nonlinearity exponent σ ). The equations can be solved
with a standard computational mathematics package (i.e., such as the FindRoot
routine in Mathematica) and compared to direct numerical computations, as is done
in Fig. 2.6 (for � = σ = 1).

Figure 2.6 shows the continuum analog of the power of the pulse as a function of
the lattice spacing h (the continuum limit of this quantity for the model considered
herein can be easily seen to be 4, which is also confirmed by the relevant computa-
tions). It also shows the amplitude A of the discrete pulse as a function of the lattice
spacing (the continuum limit for this quantity is

√
2), as well as the inverse width a

as a function of h. One can easily note that for h > 0.8, the agreement between the
variational solution of the greatly simplified 2× 2 system of Eqs. (2.69) and (2.70)
is truly remarkable. On the other hand, however, one has no a priori way to explain
why the agreement starts becoming considerably worse for h < 0.8, other than
to say that the oversimplified ansatz does not accurately describe the continuum,
hyperbolic secant limit. However, a further quantification of the relevant statement
cannot be a priori made. A deeper understanding of this discrepancy can, however,
be partially obtained by considering the a→ 0 limit of the above equations (scaling
out ε from � and Pσ ), since we can see that Pσ ≈ (4 + 2σ + 2/σ )a2−σ , while
� ≈ (1 + 2/σ )a2, as a → 0. From these equations and Eq. (2.68), one can infer
the dependence of the amplitude A on a as A ≈ (4 + 2σ + 2/σ )1/(2σ )a1/σ . In the
case of σ = 1, this yields A ≈ √8a ≈ (2/

√
3)
√

2� = (2/
√

3)Acont , where Acont

denotes the amplitude of the continuum soliton. This indicates that in that limit the
VA fails in capturing the amplitude by a factor of 2/

√
3 ≈ 1.15. Nevertheless, the

VA is often a useful tool in acquiring some insight on the nature of the full solution
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Fig. 2.6 Results of the
variational approximation:
the top panel shows the
analog of the continuum
squared L2 norm as a
function of the lattice spacing
h. The solid line represents
the full numerical result,
while the dashed line shows
the result of the VA. The
bottom panel curves have the
same symbolism for the
amplitude A of the solution
(for which the fully
numerical and variational
results are again compared)
and for the inverse width a of
the pulse (for which only the
variational result is given). It
is worthwhile to note how
efficient the VA is in
capturing the full numerical
result for h > 0.8
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of the system and an understanding of its fundamental properties. Our argument
here is that it should be used with the appropriate caution; furthermore, it has been
our experience that it is a method that is considerably more likely to work with
fundamental solutions (given a reasonable ansatz) than with higher order excited
state solutions, whose (existence and stability) properties it is often unable to track.

Before closing this discussion about single-pulse solitary waves in this gener-
alized DNLS model, it is interesting to refer to a particular effect that this model
possesses for values of σ ranging between a lower and an upper critical one, namely
bistability [32]. In particular, within this range of values of σ , for a given ε, the
dependence of the l2 norm as a function of � is not monotonic as it would be
for σ = 1, but possesses a range of powers for which two stable solutions (with
d P/d� > 0 and an unstable solution (with d P/d� < 0) coexist; see Fig. 2.7. The
variational prediction captures this feature of the single-pulse state fairly accurately
as is shown in the figure. Equivalently, this phenomenon also arises for fixed �
as a function of the coupling ε. As a measure of the accuracy of the variational
prediction, we give in Fig. 2.8 the full numerical result and how it compares with
the semi-analytical prediction for the lower and upper critical σ for which bistability
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Fig. 2.7 The (squared l2)
norm of the fundamental
soliton family versus � for
σ = 1.5. Solid lines display
numerical results, while the
dashed curves correspond to
the predictions of the
variational approximation
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Fig. 2.8 Locations of the two
bifurcations that account for
the exponential
destabilization and
subsequent restabilization
(the top and bottom panels,
respectively) of the
fundamental solitons (subject
to the normalization � ≡ 1)
in the plane of (σ, ε). The line
and dots represent predictions
of the variational
approximation and numerical
results, respectively. The
restabilization corresponding
to the bottom panel does not
occur for σ ≥ 2

1.5 2 2.5 3
0.5

1

1.5

2

2.5

σ

ε

1.4 1.5 1.6 1.7 1.8 1.9 2

5

10

15

20

25

30

35

σ

ε



34 2 The One-Dimensional Case

occurs as concerns their dependence on the coupling ε (or equivalently for a fixed
σ , the lower and upper couplings between which the solution is unstable). It can be
seen that the variational analysis captures the general trends of the relevant behavior
but the partial inaccuracy of the relevant ansatz may not allow a good quantitative
comparison between the two. We should also add in passing that beyond σ = 2,
for dimension d = 1, equivalently to the case of σ = 1 for dimension d = 2, the
continuum version of the model is subject to catastrophic collapse-type instabilities.
This issue will be discussed, along with the discrete analog of such instabilities, in
more detail in the two-dimensional (cubic) setting in Chap. 3.

2.2 Multipulse Solitary Waves

2.2.1 Multipulses Near the Anti-Continuum Limit

We now turn to the consideration of multipulse solitary waves, which we are going
to examine chiefly starting from the AC limit of ε = 0. In particular, in the latter
case, instead of exciting a single site (which will result, as we saw above, in a single
pulse), we excite N sites in the general case. In that case, considerations similar
to the ones we presented above for the case of ε 
= 0 indicate that in the one-
dimensional setting, without loss of generality, we may concern ourselves only with
excitations of each site which are either un = 1 or −1 (for frequency μ = 1)
while the rest of the (non-excited) sites have un = 0. Then, it is straightforward to
see from the structure of the L+ and L− operators that for ε = 0 the N excited
sites correspond to eigenvalues λL+ = −2 for L+ and to eigenvalues λL− = 0 for
L−, and they result in N eigenvalue pairs with λ2 = 0 for the full Hamiltonian
problem. Hence, these eigenvalues are potential sources of instability, since for ε 
=
0, N−1 of those will become non-zero (there is only one symmetry, namely the U(1)
invariance, persisting for ε 
= 0, retaining one pair of eigenvalues at the origin). The
key question for stability purposes is to identify the location of these N − 1 small
eigenvalue pairs.

To address the location of these eigenvalues in the presence of the perturbation
induced by the inter-site coupling, one can manipulate Eqs. (2.61) and (2.62) into
the form

L−bn = −λ2L−1
+ bn ⇒ λ2 = − (bn,L−bn)

(bn,L−1
+ bn)

. (2.71)

Near the AC limit, the effect of L+ is a multiplicative one (by −2). Hence,

lim
ε→0

(bn,L−1
+ bn) = −1

2
⇒ λ2 = 2γ = 2(bn,L−bn). (2.72)
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Therefore the problem translates into the determination of the spectrum of L−.1

However, using the fact that the standing wave solution vn is an eigenfunction of
L− with λL− = 0 and the Sturm comparison theorem for difference operators [36],
one infers that if the number of sign changes in the solution at the AC limit is m
(i.e., the number of times that adjacent to a+1 is a−1 or next to a−1 is a+1), then
the number of negative eigenvalues n(L−) = m and therefore from Eq. (2.72), the
number of imaginary eigenvalue pairs of L is m, while that of real eigenvalue pairs
is consequently (N −1)−m. An immediate conclusion is that unless m = N −1, or
practically unless adjacent sites are out-of-phase with each other, the solution will
be immediately unstable for ε 
= 0. This eigenvalue count was presented in [37]
although its stability consequences had been observed in numerous earlier works
(see, e.g., [38] and references therein). It is also interesting to point out that a related
count was originally presented in [39], although purely as an instability condition
(rather than as a definitive count). In particular, it was recognized in that work that
n(L−) = m and that that in the vicinity of the continuum limit (rather than the
AC limit as here) each of the N pulses would have at least one negative eigenvalue
associated with them, hence n(L+) ≥ N . Then, an important criterion was used that
was originally developed in the work of Jones [29], namely that when |n(L+) −
n(L−)| > 1, then a real eigenvalue pair will exist in the linearization. Hence, in the
present case if m < N − 1, this criterion could be used to yield an instability, in
agreement with the result presented above (but established in the vicinity of the AC
limit).

An important additional realization both in the work of [37] and in that of [39]
was that the m negative eigenvalues of L−, corresponding to the m imaginary pairs
of the full linearization operator J L, have negative Krein signature. The Krein sig-
nature is a fundamental topological concept in the context of nonlinear Schrödinger
equations (and Hamiltonian systems more generally); the interested reader should
examine [40–45] for details and examples. These eigenvalues are often also men-
tioned in the physical literature as negative energy modes, see, e.g., [46–48]. For
our present considerations, it suffices to say that this signature is essentially the
signature of the energy surface and can be found to be equivalent to the sign of
(w, L−w). Hence, all of the m eigenvalue pairs bifurcating along the imaginary
axis in our present calculation will be negative Krein signature (or negative energy)
eigenvalues. The eigenvalues of negative Krein sign are well known to be struc-
turally unstable. This means that small perturbations of the vector field can eject
them off of the imaginary axis, leading to an unstable eigenvalue with a positive
real part. Moreover, if eigenvalues of opposite sign collide, then they will generically
form a complex conjugate pair after the collision, whereas if eigenvalues of the same
sign collide, then they will pass through each other.

1 It should be pointed out here that although Eq. (2.72) is particular to the cubic model, Eq. (2.71)
is not and can straightforwardly be applied to any nonlinearity that depends on the field and its
complex conjugate. The denominator of its right-hand side will in such cases typically provide a
constant prefactor, while the spectrum of L−, through considerations similar to those presented
here, will determine the fate of small eigenvalues.
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It is important to conclude from the above considerations that the only standing
wave configuration of the discrete problem (starting from the AC limit) that will
be structurally and nonlinearly stable is the single-site excitation. Not only did we
establish nonlinear stability for that configuration above (near the continuum limit),
but furthermore it is the only configuration (near the AC limit) that has neither a
real eigenvalue pair (in which case it would be directly unstable) or an imaginary
pair with negative Krein sign since m = 0 = N − 1. An additional remark worth
making here concerns the case of the second solution of the AC limit reported in the
previous section to eventually asymptote to the single-pulse configuration, namely
the two-site, in phase excitation. In that case, m = 0, while N = 2, hence one can
immediately see that for this waveform there will be N −1−m = 1 real eigenvalue
pair, as soon as ε 
= 0, indicating the instability of the relevant wave.

So far, we have used the above Eq. (2.72) in a qualitative way to obtain the rele-
vant eigenvalue counts. In what follows, we also show how to use this equation in a
quantitative manner, in order to obtain the dependence of the relevant eigenvalues on
the model parameters (and, hence, wherever relevant, quantify the growth rate of the
instability). To do so, we need to obtain a handle on the eigenvalues of the operator
L−. Considering the relevant eigenvalue problem L−φ = γφ, we can expand it in
the vicinity of the AC limit, according to

L− = L (0)
− + εL (1)

− + O(ε2), (2.73)

φn = φ(0)
n + εφ(1)

n + O(ε2), (2.74)

γ = εγ1 + O(ε2). (2.75)

In this expansion,

L (0)
− φn = (1− (v(0)

n )2)φn, (2.76)

L (1)
− φn = −(φn+1 + φn−1)− 2v(0)

n v
(1)
n φn, (2.77)

where v(0)
n and v(1)

n correspond to the expansion vn = v(0)
n +εv(1)

n of the solution in the
vicinity of the AC limit. The leading order correction v(1)

n will need to be computed
from Eq. (2.59). It is straightforward to apply the expansion of the solution to the
relevant equation (keeping in mind that μ = 1 and the phases θn of the excited sites
are 0, π , corresponding to ±1 field values). If we have the N excited sites adjacent
to each other, then it is straightforward to find the leading order correction as

v(1)
n = −

1

2
(cos(θn−1 − θn)+ cos(θn+1 − θn)) eiθn , 2 ≤ n ≤ N − 1, (2.78)

v
(1)
1 = −

1

2
cos(θ2 − θ1)eiθ1, v

(1)
N = −

1

2
cos(θN − θN−1)eiθN , (2.79)

v
(1)
0 = eiθ1 , v

(1)
N+1 = eiθN , (2.80)
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while all other elements of v(1)
n are zero. Similarly, one can find the leading order

corrections if the N adjacent sites are next nearest neighbor to each other (in that
case, the leading order correction to the excited sites will be v(2)

n ), or for more distant
initially excited sites (see [37] for such a calculation in the next-nearest-neighbor
case).

If we have N excited sites at the AC limit, the relevant zero eigenvalue of the
L− operator as indicated above will have a multiplicity of N at the AC limit of
ε = 0. The corresponding linearly independent eigenvectors fn can be conveniently
selected to be (0, . . . ,±1, . . . , 0) where the . . . indicate zeros and the±1 is located
at the kth excited site for the kth eigenvector. Then the zero-order eigenvector φ(0)

can be expressed as a linear combination of the fn’s according to φ(0) =∑N
k=1 ck fk ,

for appropriate choice of the coefficients ck .
Our aim in this exercise is to perturbatively compute γ1, the leading order correc-

tion to the zero eigenvalue of L−, so that through the appropriate substitution to Eq.
(2.72), we can obtain the corresponding eigenvalue of the original system. Through
the above expansions, we obtain

L(0)
− φ

(1)
n = γ1φ

(0)
n − L(1)

− φ
(0)
n . (2.81)

Projecting the system of Eq. (2.81) onto the kernel of L (0)
− eliminates the left-hand

side contribution, and yields a matrix eigenvalue problem with γ1 as its eigenvalue,
namely

M1c = γ1c, (2.82)

where c = (c1, . . . , cN ) and M1 is a tri-diagonal N × N matrix given by

(M1)m,n = ( fm, L (1)
− fn). (2.83)

Note that this matrix will only give non-trivial contributions if the excited sites
are adjacent to each other (otherwise the relevant contributions will be vanishing).
In the case of nearest-neighbor initially excited sites, based on the solution for v(1)

n
above, the relevant matrix elements will be

(M1)n,n = cos(θn+1 − θn)+ cos(θn−1 − θn), 1 < n < N,

(M1)n,n+1 = (M1)n+1,n = − cos(θn+1 − θn), 1 ≤ n < N,

(M1)1,1 = cos(θ2 − θ1),

(M1)N,N = cos(θN − θN−1). (2.84)

Equation (2.83) more generally (or e.g. the more specific Eq. (2.84) in the sim-
plest case of adjacent site excitations), in conjunction with Eq. (2.72) allows us
to obtain definitive estimates on the eigenvalues of the linearization for multisite
configurations which we can subsequently directly compare with numerical results.
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Fig. 2.9 The top row shows the solution profiles for the two-site in-phase mode (first panel) and
out-of-phase mode (third panel) and their corresponding spectral planes (λr , λi ) (second and fourth
panels). The bottom row shows the relevant eigenvalue pair bifurcating from the origin. In the left
panel it is becoming real for the in-phase mode (solid line: numerics, dashed line: theoretical
prediction λ = 2

√
ε). In the right panel, it becomes imaginary (solid line: numerics, dashed line:

theoretical prediction λ = 2
√
εi). It eventually collides with the band edge of the continuous

spectrum for ε > 0.146, giving rise to a complex eigenvalue quartet (its real part is shown in the
rightmost panel). Reprinted from [37] with permission

Such comparisons are illustrated in Fig. 2.9, for the case of two-site excitations.
Fig. 2.9 presents both the case where the two excited sites are in phase (this cor-
responds to the unstable version of the fundamental soliton), as well as that where
they are out of phase, which corresponds to the well-known example of the so-called
twisted mode (see, e.g., [49–52] and references therein). In this simplest multisite
case of two adjacent site excitations, the relevant matrix M1 becomes

M1 =
(

cos(θ1 − θ2) − cos(θ1 − θ2)

− cos(θ1 − θ2) cos(θ1 − θ2)

)
, (2.85)

whose straightforward calculation of eigenvalues leads to λ2 = 0 (as is expected
from the U(1) invariance, one eigenvalue pair should remain at zero) and λ2 =
2ε cos(θ1 − θ2). Note that this result is consonant with our qualitative theory above
since for same phase excitations (θ1 = θ2), the configuration is unstable, while
the opposite is true if θ1 = θ2 ± π . The top subplots of the figure show typical
mode profiles (first and third panel) and the spectral plane λ = λr + iλi of the
corresponding linear eigenvalue problem (second and fourth panel) for ε = 0.15.
The bottom subplots indicate the corresponding real (for the in-phase mode) and
imaginary (for the twisted anti-phase mode) eigenvalues from the theory (dashed
line) versus the full numerical result (solid line). We find the agreement between
the theory and the numerical computation to be excellent in the case of the in-phase
excitation. For the twisted out-of-phase excitation, the agreement is within the 5%-
error for ε < 0.0258. For larger values of ε, the difference between the theory and
numerics grows. The imaginary eigenvalues collide at ε ≈ 0.146 with the band
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edge of the continuous spectrum, such that the real part λr becomes non-zero for
ε > 0.146 (recall that these eigenvalues have negative Krein signature, hence, their
collision with eigenvalues of the band edge of the continuous spectrum or ones
bifurcating therefrom leads to complex quartets [40, 41] due to a Hamiltonian–Hopf
bifurcation [53]).

In the case N = 3, the discrete three-pulse solitons consist of the three modes as
follows:

(a) θ1 = θ2 = θ3 = 0,

(b) θ1 = θ2 = 0, θ3 = π,
(c) θ1 = 0, θ2 = π, θ3 = 0.

(2.86)

The eigenvalues of matrix M1 are given explicitly as γ1 = 0 and

γ2,3 = cos(θ2 − θ1)+ cos(θ3 − θ2)

±
√

cos2(θ2 − θ1)− cos(θ2 − θ1) cos(θ3 − θ2)+ cos2(θ3 − θ2).

The in-phase mode (a), which can be symbolically denoted + + + has two
real unstable eigenvalues λ ≈ √6ε and

√
2ε in the stability problem for small

ε > 0. The mode (b), symbolically represented as + + −, has one real unstable

eigenvalue pair λ ≈ ±
√

2
√

3ε and a simple pair of purely imaginary eigenval-

ues λ ≈ ±i
√

2
√

3ε with negative Krein signature. This pair may bifurcate to the
complex plane as a result of the Hamiltonian–Hopf bifurcation. Finally mode (c)
(+−+) has no unstable eigenvalues but two pairs of purely imaginary eigenvalues
λ ≈ ±i

√
6ε and λ ≈ ±i

√
2ε with negative Krein signature. The two pairs may

bifurcate to the complex plane as a result of the two successive Hamiltonian–Hopf
bifurcations.

Figure 2.10 summarizes the results for the three modes (a–c), given in (2.86), in
a presentation similar to that of Fig. 2.9. For the in-phase mode (a), two real positive
eigenvalues give rise to instability for any ε 
= 0. The error between theoretical
and numerical results is within 5% for ε < 0.15 for one real eigenvalue and for
ε < 0.0865 for the other eigenvalue. Similar results are observed for the mode (b),
where the real positive eigenvalue and a pair of imaginary eigenvalues with negative
Krein signature are generated for ε > 0. The imaginary eigenvalue collides with
the band edge of the continuous spectrum at ε ≈ 0.169, which results in a complex
eigenvalue quartet. Finally, in the case of the out-of-phase mode (c), two pairs of
imaginary eigenvalues with negative Krein signature exist for ε > 0 and lead to
the emergence of two complex quartets of eigenvalues. The first one occurs for
ε ≈ 0.108, while the second one occurs for much larger values of ε ≈ 0.223.

One can do a similar calculation for the case in which the excited sites are not
adjacent to each other, but are rather, e.g., one site apart. This is detailed in [37].
In that case, some of the logistic details change, most notably that we have to get
to the second-order correction ε2φ(2), since the leading order correction does not
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Fig. 2.10 Same as Fig. 2.9, but for the three-site branches+++ (left panels),++− (right panels),
and +−+ (bottom panels). Reprinted from [37] with permission

contribute to the excited sites. Furthermore, accordingly, the leading order in the ex-
pansion of the eigenvalue of L− should be γ = ε2γ2. Then, the relevant perturbation
equation becomes

L (0)
− φ

(2)
n = γ2φ

(0)
n − L (1)

− φ
(1)
n − L (2)

− φ
(0)
n . (2.87)

Subsequent projection to the kernel of L (0)
− yields an equation entirely analogous

to Eq. (2.82) with the only difference that γ1 and M1 are replaced by γ2 and M2,
with the latter being defined as per Eq. (2.84) but with the relevant angles being the
next-nearest-neighbor excited ones. It is then straightforward to extract the analo-
gous predictions as for the nearest-neighbor sites, but now the relevant eigenvalues,
while having the same prefactors, they will be ∝ ε, rather than to

√
ε. Note that

this feature can be appropriately generalized for excitations that are k sites apart.
These will “cross-talk” to each other at the kth order (and above), and the corre-
sponding eigenvalues bifurcating from the origin will be to leading order O(εk/2) (or
higher).

The corresponding numerical results are shown in Fig. 2.11 for two sites and
Fig. 2.12 for three sites, which are entirely analogous to Figs. 2.9 and 2.10, respec-
tively. In the in-phase, two-site case, the agreement with the theory is excellent for
ε < 0.2. For the twisted mode, we also have very good agreement for ε < 0.415;
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Fig. 2.11 A direct analog to Fig. 2.9, but now for the case of next-nearest-neighbor two-site exci-
tations. The resulting eigenvalues are (approximately) linear in ε in this case. Reprinted from [37]
with permission
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Fig. 2.12 A direct analog to Fig. 2.10, but now for the case of next-nearest-neighbor three-site
excitations. The resulting eigenvalues are (approximately) linear in ε in this case. Reprinted from
[37] with permission

the Hamiltonian–Hopf bifurcation occurs at ε ≈ 0.431 (in this case, the collision
occurs with an eigenvalue that has bifurcated from the band edge of the continuous
spectrum). Similarly, for the three-site excitations, we observe excellent agreement
in the examined range between the numerical results and the corresponding theo-
retical predictions. Here, the quartets emerge at ε ≈ 0.328 for the + + − mode,
while for + − +, there are two such bifurcations arising at ε ≈ 0.375 and 0.548,
respectively.

2.2.2 A Different Approach: Perturbed Hamiltonian Systems

We now take a detour to provide a different (and more general) approach to the
stability problem of the one-dimensional DNLS system, while discussing some
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recent general results for this class of systems developed in [54, 55, 57]. These
recent results were obtained on the basis of Lyapunov–Schmidt reductions, as well
as through the earlier, important functional analytic work of [28, 42].

Our starting point will be a perturbed system of the general form

du

dt
= J E ′(u), (2.88)

where J is the usual invertible skew-symmetric operator with bounded inverse and
E(u) = E0(u) + εE1(u), with 0 < ε << 1. Here E(u) represents the total energy
of the system. The underlying assumption is that the perturbation breaks some of
the symmetries of the unperturbed problem. The aim of these results is to relate the
spectrum (denoted henceforth by σ ) σ (E ′′(�)) to σ (J E ′′(�)), where � represents a
solution to the steady-state problem E ′(u) = 0. The operator E ′′(�) is self-adjoint;
hence, σ (E ′′(�)) ⊂ R. Since J E ′′(�) is the composition of a skew-symmetric op-
erator with a self-adjoint operator, if λ ∈ σ (J E ′′(�)), then −λ,±λ∗ ∈ σ (J E ′′(�)).
Thus, eigenvalues for J E ′′(�) come in quartets. Below one sees the manner in
which the negative directions for E ′′(�) influence the unstable spectrum of J E ′′(�).
It is of particular relevance to note that negative directions for E ′′(�) do not nec-
essarily lead to an exponential instability of the wave. A detailed discussion of the
proof of these results can be found in [55]. The more epigrammatic discussion of
these results below follows the work of [57].

2.2.2.1 The Unperturbed Problem

Let H be a Hilbert space with inner product 〈·, ·〉; also denote by G a finite-
dimensional Abelian connected Lie group with Lie algebra g, setting dim(g) = n.
We use eω:= exp(ω) to denote the exponential map from g to G. Let T be a
unitary representation of G on H , so that T ′(e) maps g into the space of closed
skew-symmetric operators. Denote Tω:=T ′(e)ω as the generator of the semigroup
T (eωt ), and note that Tω is linear in ω ∈ g. The group orbit Gu is defined by
Gu:={T (g)u : g ∈ G}. It is assumed that E is invariant under a group or-
bit, i.e., E(T (g)u) = E(u) for all g ∈ G and u ∈ H . Define the functional
Qω(u):= 1

2 〈J−1Tωu, u〉, and note that Q′′ω = J−1Tω is a symmetric linear operator.
Furthermore, Qω is invariant under a group orbit.

The Hamiltonian system of interest is given by

dv

dt
= J E ′(v).

We are interested in relative equilibria of this system, i.e., stationary solu-
tions which satisfy u(t) ∈ Gu(0) for all t . A relative equilibrium satisfies u(t) =
T (eωt )u(0) for some ω ∈ g. Changing variables via

v(t) = T (exp(ωt))u(t),
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leads to the system

du

dt
= J E ′0(u;ω), (2.89)

where

E ′0(u;ω):=E ′(u)− J−1Tωu.

We are therefore seeking critical points of the functional E0(u;ω):=E(u) −
Qω(u) for some ω ∈ g.

The steady-state equation is

E ′0(u;ω) = 0

and we assume that it has a smooth family �(ω) of solutions, where ω varies in g.
Furthermore, we assume that the isotropy subgroups {g ∈ G : T (g)�(ω) = �(ω)}
are discrete. This assumption implies that the group orbits G�(ω) have dimension
n for each fixed ω ∈ g. Since G is Abelian, for each fixed ω ∈ g the entire group
orbit T (g)�(ω) consists of relative equilibria with time evolution T (eωt ).

We denote the linearization operator around the wave by J E ′′0 . Fix a basis
{ω1, . . . , ωn} that satisfies the property that the set {Tω1�, . . . , Tωn �} is orthogonal.
One has that E ′′0 Tω j � = 0 for j = 1, . . . , n; see Section 2 of [55]. Since G is
Abelian, under the non-degeneracy condition that D0 is non-singular, where D0 is
defined in (2.91), it is known that the operator J E ′′0 will have a non-trivial kernel

J E ′′0 (�)Tωi � = 0, J E ′′0 (�)�ωi � = Tωi � (2.90)

for i = 1, . . . , n, with �ω:=�/�ω. Furthermore, this set is a basis for the kernel.
Note that solutions to the above linear system yield not only a basis for the tangent
space to the group orbit, but also a basis for the tangent space of the manifold of
relative equilibria. We will assume that the linear operator E ′′0 is Fredholm of index
zero. If one sets

Z = Span{Tω1 �, . . . , Tωn �},

then H = N ⊕ Z ⊕ P , where N is the finite-dimensional subspace

N = {u ∈ H : 〈u, E ′′0 u〉 < 0}

and P ⊂ H is a closed subspace such that

〈u, E ′′0 u〉 > δ〈u, u〉, u ∈ P

for some constant δ > 0.
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We set

H1 :={u ∈ H :
〈
u, E ′′0 �ωi �

〉 = 0, i = 1, . . . , n}.

It is shown in [58] that when solving the linear eigenvalue problem J E ′′0 (�)u =
λu, it is sufficient to consider only those u ∈ H1. This also follows from standard
solvability theory, as J−1Tωi � = E ′′0 �ωi � are solutions to the adjoint eigenvalue
problem at λ = 0 for i = 1, . . . , n. We now define the symmetric matrix D0 ∈
R

n×n by

(D0)i j =
〈
�ω j �, E ′′0 �ωi �

〉
. (2.91)

For a given self-adjoint operator A, we denote the number of negative eigenvalues
by n(A), while p(A) will be the number of positive eigenvalues, and z(A) the number
of zero eigenvalues.

The following was proved in [8]. Suppose that z(D0) = 0. The operator E ′′0
restricted to the space H1 has the negative index

n
(
E ′′0 |H1

) = n
(
E ′′0
)− n(D0).

If n(E ′′0 |H1) = 0, then the wave is a local minimizer for the energy E0(u), and is
therefore stable. The interpretation of this statement can be made as follows. Sup-
pose that the operator E ′′0 satisfies n(E ′′0 ) = k ≥ 1. One then has that the wave is not a
local minimizer for E0. However, there are conserved quantities associated with the
evolution equation, and it is possible that these quantities may “prohibit” accessing
some or all of the unstable eigendirections. The dim(g) conserved quantities are
given by

Qi (u) :=1

2
〈J−1Tωi u, u〉, i = 1, . . . , n.

The quantity n(D0) precisely determines the number of directions which are ren-
dered inaccessible by the conserved quantities. Hence, n(E ′′0 )−n(D0) determines the
number of unstable directions for the energy after the constraints have been taken
into account.

2.2.2.2 The Perturbed Problem

We now turn to the perturbed problem, where the energy is of the form E0(u) +
εE1(u), with 0 < ε � 1. It is assumed that the perturbation breaks 1 ≤ ks ≤ n of
the original symmetries, so that the perturbed system will have n − ks symmetries.
Furthermore, it is assumed that the problem is well-understood for ε = 0, as per the
above discussion. The existence question is settled by the work of [54], through the
following condition, based on Lyapunov–Schmidt reductions: a necessary condition
for persistence of the wave is
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〈E ′1(�(ω)), Tω j �〉 = 0, j = 1, . . . , n (2.92)

for some ω ∈ g. The condition is sufficient if z(M) = n − ks, where the symmetric
matrix M satisfies

Mi j :=〈Tωi �, E ′′1 (�(ω)) Tω j �〉.

Since the perturbation breaks ks symmetries, and the system is Hamiltonian, 2ks

eigenvalues will leave the origin. The following lemma, which tracks these small
eigenvalues, was proven in [55] via a Lyapunov–Schmidt reduction: the O(

√
ε)

eigenvalues and associated eigenfunctions for the perturbed problem are given by

λ = √ε λ1 + O(ε), u =
n∑

i=1

vi
(
Tωi �+

√
ε λ1�ωi �

)+ O(ε),

where λ1 is the eigenvalue and v is the associated eigenvector for the generalized
eigenvalue problem

(
D0λ

2
1 + M

)
v = 0.

It should be noted that the above eigenvalue problem will have 2(n − ks) zero
eigenvalues, due to the fact that this many symmetries are assumed to be preserved
under the perturbation.

If an eigenvalue has non-zero real part, the Krein signature is zero [46, 59]. The
Krein signature of a purely imaginary O(

√
ε) eigenvalue given above is

K = sign
(
vT Mv

) = sign(vT D0v), (2.93)

where v is the associated eigenvector [55]. It may also be possible for eigenvalues to
emerge out of the continuous spectrum, creating internal modes, as discussed above.
Since these eigenvalues will be of O(1), they will not be captured by the perturbation
expansion given in the above lemma. However, this is not problematic (at least in
models of the DNLS type) since any O(1) eigenvalues will be purely imaginary with
positive Krein sign, and hence for small ε do not contribute to an instability.

In the statement of the theorem below, the symmetric matrix Dε is defined by

(Dε)i j :=wT
i D0w j , (2.94)

where the set {w1, . . . ,wn−ks } is a basis for ker(M). The following is proved in [55]
regarding σ (J (E ′′0 + εE ′′1 )) for 0 < ε � 1.

Theorem 1. Suppose that the unperturbed wave is stable, i.e., n(E ′′0 ) = n(D0).
Let kr represent the number of real negative eigenvalues, 2kc the number of com-
plex eigenvalues with negative real part, and 2ki the number of purely imaginary
eigenvalues with negative Krein signature for the perturbed problem (counting mul-
tiplicity). Assume that z(Dε) = 0. Then
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kr + 2kc + 2ki = n(E ′′0 )+ n(M)− n(Dε). (2.95)

Furthermore, all of these eigenvalues are of O(
√
ε), and

ks ≥ kr ≥ |n(M)− (n(D0)− n(Dε))|.

Any eigenvalues arising from an edge bifurcation will be purely imaginary with
positive Krein signature.

The following remarks can be made about the count of eigenvalues:

1. The upper bound on kr arises from the facts that there are only 2ks eigenvalues
of O(

√
ε) and the system is Hamiltonian.

2. Since n(Dε) ≤ n(D0) = n(E ′′0 ), the perturbed wave cannot be a minimizer unless
n(M) = 0 and that n(Dε) = n(D0).

One possible interpretation of 1 is as follows. As previously mentioned, for the
unperturbed problem each unstable direction associated with E ′′0 is neutralized by
an invariance, which in turn are each generated by a symmetry. Now, Dε is the
representation of D0 when restricted to the symmetry group which persists upon the
perturbation. The quantity

n(E ′′0 )− n(Dε) = n(D0)− n(Dε)

then precisely details the number of unstable directions associated with E ′′0 which
are no longer neutralized by the invariances. The quantity n(M) is the number of
additional unstable directions generated by the symmetry-breaking perturbation E1.
The theorem essentially illustrates that the number of potentially unstable eigen-
value pairs in the system is obtained by keeping track of these eigendirections.

2.2.2.3 Case Example: DNLS from the Anti-Continuum Limit

One can consider the DNLS equation near the AC limit as such a perturbed problem.
In fact, one can do this even for a general interaction matrix between sites (that is
not restricted to nearest-neighbor interactions) as follows:

i u̇n + un − |un|2un = −ε
N∑

m=1

knmum . (2.96)

Then, one can label the unperturbed energy at the AC limit as

E0(u) =
∑

n

|un|2 − 1

2
|un|4, (2.97)

while the relevant perturbation will be of the form
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E1(u) = −ε
N∑

n,m=1

knm
(
u�num + unu�m

)
. (2.98)

At the AC limit, the solutions for the excited sites will be un = eiθn , where the θn

are free arbitrary phase parameters.
To determine the persistence of the waves, one has to evaluate the perturbed

energy at the unperturbed limit solution, in which case, we can straightforwardly
evaluate it to be

E1 = −
N∑

n,m=1

2knm cos(θn − θm). (2.99)

Based on the discussion of the previous subsection, the persistence conditions
then read �θn E1 = 0, which leads to an equivalent condition as Eq. (2.60) derived
previously, namely

∑

m 
=n

knm sin(θn − θm) = 0. (2.100)

One can subsequently based on the above theory evaluate the relevant matrices
D0 and Mi j that enter the stability calculation, in order to obtain information for the
relevant eigenvalues that will leave the origin of the spectral plane, upon deviation
from the AC limit of ε = 0. One can thus find that

D0 = −IN , (2.101)

Mi j = �2
θiθ j

E1. (2.102)

IN is the unit matrix of size N (the number of excited sites). Then the correction
λ1 to the eigenvalues will be obtained from the reduced eigenvalue problem (D0λ

2
1+

M)v = 0 which leads in our case to

(−INλ
2
1 + 2M1

)
v = 0, (2.103)

since M = 2M1, where M1 is defined by the Eq. (2.84) above (in the nearest-
neighbor case; in fact the result obtained here is also true for a more general inter-
action matrix). This confirms the validity of the direct calculation given above, but
also places these results in a broader context of perturbed Hamiltonian dynamics.

Before closing this subsection, we should also note that the eigenvalue count
given above confirms the closure relation of [55] (see also [60]), since n(E ′′0 ) =
N + m (where N is the number of excited sites and m the number of sign changes
between them), kr = N−m−1, kc = 0, and ki = m, with the imaginary eigenvalues
bearing negative Krein signature. A direct calculation shows that n(M) − n(Dε) =
−1 and therefore the relevant relation is satisfied.
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2.2.3 Multipulses Close to the Continuum Limit

We close the discussion of the one-dimensional problem by briefly considering the
case of multipulses in the vicinity of the continuum limit, following closely the
discussion of [39] (for this reason, we also use ε = 1/(2h2), with h → 0 and
β = −1 in Eq. (2.1)). In the quasi-continuum approximation, it can be obtained that
the interaction between two solitons is given by the potential energy

Uint (ξi − ξ2,�φ) = −8η3 exp(−η|ξ1 − ξ2|) cos(�φ). (2.104)

In this expression �ξ = ξ1 − ξ2 is the relative separation between the wave
centers and �φ is the relative phase which also plays an important role in their
interaction. In particular, note that the interaction is attractive for in-phase solitons,
while exactly the opposite (i.e., repulsion) is true for out-of-phase solitary waves.
Although this result can be derived using the perturbation technique of Karpman
and Solov’ev [61] or the variational approximation [34], here we present a different
and fairly direct approach of obtaining it, due to Manton [63] (who pioneered it
in Klein–Gordon-type equations). Here, we are following the relevant discussion
of [64].

In the case of the NLS equation, we have defined previously the mass (whose
role is played by the squared L2 norm, given by Eq. (2.6), while the momentum
is defined in Eq. (2.7) (although, in the present setting a factor of 1/2 would be
multiplying the right-hand side). Assuming then that we have a soliton centered at
ξ = 0 and one at ξ = �ξ , we can find the derivative of the momentum (the “force”)
evaluated between a � 0 and 0 � b � �ξ . (This brings in the assumption of
sufficiently large separation between the waves for this approach to work.) We thus
obtain

d M

dt
= 1

4

[
uu�xx + uxx u� − 2|ux |2

]b
a
. (2.105)

Note that if integrating between −∞ and∞, Eq. (2.105) would yield a vanish-
ing right-hand side, due to the total conservation of the momentum. However, in
the present setting, it yields a non-vanishing contribution to the solitary wave in
this interval (a non-vanishing force) due to the solitary wave outside of the inter-
val. Hence, we can use this approach to infer the force exerted from one soliton
to the other (and also their respective equations of motion). We use the standard
two-soliton decomposition, u = u(1) + u(2) where u(1) = ηsech(ηx) exp(iη2t/2),
u(2) = ηsech(η(x−�ξ )) exp(iη2t/2) exp(iφ) are the standing waves, and the relative
phase φ between them has been incorporated in u2. Then, one obtains

d M

dt
= 8η4 exp (−η�ξ ) , (2.106)

which results in the dynamical equation for the separation (using the mass of the
soliton; see also the details of the discussion of [64]) of the form
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�̈ξ = −8η3 exp (−η�ξ ) cosφ . (2.107)

The anti-derivative of the right-hand side of Eq. (2.106) yields the potential of
interaction between the solitary waves, coinciding with the result of Eq. (2.104).

In the continuum, this interaction does not allow for the formation of (stationary)
bound states between the solitary waves. However, in the realm of the lattice (near
the continuum limit), the idea of [39] was that each of the solitary waves will face
the energetic contributions of two distinct factors: on the one hand, there will be
the interaction with the second solitary wave. On the other hand, each of the waves
will be subject to the PN potential due to the existence of the lattice. The latter
energetic contribution has been described previously. An asymptotic lowest order
approximation of the relevant formula was used in [39] in the form

HP N(ξ ) ≈ −8π4

3h3
exp

(
−π

2

ηh

)
cos

(
2π

h
ξ

)
. (2.108)

Then, the full energy landscape can be described as

H ≈ HP N (ξ1)+ HP N (ξ2)+Uint (ξ1 − ξ2,�φ) (2.109)

and it is expected that the locations of the centers of the relevant solitary waves can
be obtained from extremization of the energy of Eq. (2.109).

While the expression of Eq. (2.109) gives a nice intuitive way to understand the
balance of interactions for multipulses in the lattice setting (see also the relevant
sketch of Fig. 2.13), for practical purposes, it is perhaps less useful. This is because
if h is small, the HP N terms are exponentially weak and hence are practically neg-
ligible in comparison to the interaction energy, while for h large so that these terms
are sizeable, the pulse deviates from its continuous form and the calculation of HP N

is less accurate based on the quasi-continuum expression. Hence, given the nature
of the approximations in the calculation, we do not attempt to test it quantitatively
herein, although we acknowledge its qualitative usefulness in elucidating the rele-
vant energy landscape (see also the relevant discussions in [65]).

It is interesting to compare/contrast this picture with the integrable analog of the
DNLS, namely the AL-NLS model, where the above-mentioned Manton calculation
can be carried through [66]. In the latter case, as discussed in the beginning of the
chapter, the conserved momentum is given by Eq. (2.25). As in the continuum case,
we now consider two solitons, one centered at 0 and one centered at s � 0, i.e.,
widely separated. We compute d M/dt by performing the summation over n not for
the infinite lattice (when the result would be zero due to the relevant conservation
law), but rather from n = L to n = N , with L � 0, and 0 � N � �ξ . The
idea behind this calculation is that, in fact, the force in this interval is not going to
be zero, but rather would be finite due to the soliton–soliton interaction. For a finite
interval encompassing only one soliton, the amount of momentum gain is finite, due
to the fact that the one soliton experiences the pull (or push) of the other soliton at
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Fig. 2.13 The energy landscape of Eq. (2.109), as it is given for the interaction of two identical
solitary waves with η = 1, for h = 2. The first wave is located at ξ1 = 0 and the contributions
to the energy landscape affecting the second solitary wave are shown as a function of its center
location ξ2.The top panel shows the case of attractive interaction for �φ = 0, while the bottom
panel shows the case of repulsive interaction for �φ = π

the boundary of the interval where we perform the calculation. Specifically, we can
evaluate

d M

dt
= −2

N∑

n=L

(|un+1|2 − |un|2
)

+
N∑

n=L

(
unu�n+2 + u�nun+2

) (
1+ |un+1|2

)

−
N∑

n=L

(
un−1u�n+1 + u�n−1un+1

) (
1+ |un|2

)
. (2.110)

However, observing the telescopic nature of the sums in the right-hand side of
Eq. (2.110), we infer that

d M

dt
= −2

(|uN+1|2 − |uL |2
)

+ (uN u�N+2 + u�N uN+2
) (

1+ |uN+1|2
)

− (uL−1u�L+1 + u�L−1uL+1
) (

1+ |uL |2
)
. (2.111)

As usual in Manton’s method, and based on intuitive physical arguments, the
main contribution in this asymptotic calculation stems from the boundary between
the two solitons. Hence, we drop the terms with subscript L and only consider the
contributions with subscript N in what follows.



2.2 Multipulse Solitary Waves 51

We then select a two-soliton ansatz

un = u(1)
n + u(2)

n (2.112)

with u(1)
n = sinh(γ )sech(γ n) exp(iσ ) and u(2)

n = sinh(γ )sech(γ (n − �ξ )) exp(iσ )
(i.e., two in-phase solitons). Since 0 � N � �ξ , we can use the asymptotic form
of the soliton tail at n = N , according to

u(1)
n = 2 sinh(γ ) exp(−γ N) exp(iσ ) , (2.113)

u(2)
n = 2 sinh(γ ) exp(γ (N − �ξ )) exp(iσ ) . (2.114)

Through direct substitution of Eq. (2.112) and the expressions in Eqs. (2.113)
and (2.114) into Eq. (2.111), we obtain that

d M

dt
≈ 32 sinh4(γ ) exp(−γ�ξ ) . (2.115)

Using Newton’s equation of motion for the solitons we obtain

Ps �̈ξ = −2
d M

dt
, (2.116)

where Ms is the mass (power) of the soliton; the factor “2” comes from the fact that
there is an equal and opposite pull (or push) on the second soliton, and hence their
relative distance decreases by twice the contribution of d M/dt to each of them; and
finally the “–” sign originates from the fact that a positive boundary contribution
to d M/dt decreases the soliton distance, while the opposite is true for a negative
d M/dt . In this case,

Ps =
∞∑

n=−∞
ln
(
1+ |ψn|2

) = 2γ. (2.117)

Thus, the equation for the s(t) becomes

�̈ξ = −32

γ
sinh4(γ ) exp(−γ�ξ ) , (2.118)

while the relevant effective soliton interaction potential (for a unit mass particle) is

V (�ξ ) = − 32

γ 2
sinh4(γ ) exp(−γ�ξ ) . (2.119)

If the solitons additionally possess a phase difference φ, the above calculations
gives a factor of cos(φ) in Eqs. (2.118) and (2.119). Relevant results illustrating the
attraction of in-phase and repulsion of out-of-phase solitons are shown in Fig. 2.14.
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Fig. 2.14 Example of an in-phase (left) and an out-of-phase (right) collision of two discrete bright
solitons of the AL-NLS model. The top panels show the distance s(t) ≡ �ξ numerically and
from the ODE of Eq. (2.118), while the bottom shows the space-time contour plot of the AL-NLS
evolution. The quality of the agreement of the ODE result with the full numerical computation
is such that the two lines of the top panels can not be distinguished. Reprinted from [66] with
permission

It should be pointed out that, as expected, the AL-NLS solitons do not face a PN
barrier when traveling through the lattice. For this reason, the only contribution to
their potential energy stems from the exponential tail–tail interactions, contrary to
what we saw is the case in the DNLS model. Finally, accounting for a factor of 1/2
in the equation (and also another such factor in the definition of the momentum),
as well as taking the limit of sinh(γ ) → γ , we can derive the continuum analog
(2.107) of Eq. (2.118).
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