
Chapter 2
Some Industrial Systems

2.1 Introduction

Identification of process parameters for control purposes must often be done using
a digital computer, from samples of input–output observations. On the other hand,
the process is usually of continuous-time nature, and its dynamical model is most
aptly described in terms of differential equations. Thus, our problem may be stated
as determining a continuous-time model from samples of input–output data.

During the past few decades, several approaches have been developed [30, 46–
48]. For the sake of simplicity, these can be classified as

• direct methods,
• indirect methods.

Methods belonging to the first type attempt to estimate the parameters of a
continuous-time model directly from the samples of the observations, mostly us-
ing some type of numerical integration. In methods of the latter group, the problem
is conveniently divided into two subproblems:

The first subproblem consists of estimating the parameters of a discrete-time
model from the samples of the input–output observations.

The second subproblem, on the other hand, consists of determining a suitable
continuous-time model that is equivalent to the discrete-time model obtained for a
given sampling interval.

Generally speaking, the problem of system identification may now be stated as
the estimation of the elements of the matrices A, B , C, D associated with the linear
time-invariant system

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t)
(2.1)

from a record of the samples of the input output data
{
u(kT ), y(kT )

}
, for k = 0;1;2; . . . ;N

where N is a suitable large number.
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It may be noted that the matrix D represents direct coupling between the in-
put and the output, and will be zero for strictly proper transfer functions. Without
any loss of generality and unless otherwise stated, this will be assumed to be the
case throughout this book. It should be noted that none of the matrices A, B , C in
(2.1) are unique for a system with a given input–output description. Given a spe-
cial canonical form for the system state equations in either the continuous-time or
the equivalent discrete time models overcomes this problem and also minimizes the
number of parameters to be estimated. It should also be noted that it is tacitly as-
sumed that the order of the linear state space model is known, and that the sampling
interval has been suitably selected. In practice, both of these are important, and have
been subjects of considerable research [24, 25, 48].

In fact, the problem is further complicated by the fact that the available data are
usually contaminated with random noise that are produced either by disturbances or
introduced in data acquisition and measurement. The literature on system identifi-
cation abounds in papers devoted to methods for estimating the parameters in the
presence of noise, see [47] for a detailed list of references.

2.2 Steam Generation Unit

There are two types of configurations in the electricity generation using drum boilers
and steam turbines:

1. A single boiler is used to generate steam that is directly fed to a single turbine.
This configuration is usually referred to as a boiler–turbine unit.

2. A header is used to accommodate all the steam produced from several boilers,
and the steam is then distributed to several turbines through the header. The steam
can be used to generate electricity as well as other purposes. This configuration
is commonly used in industrial utility plants.

Boiler–turbine units are nowadays preferred over header systems, because they can
achieve quick response to electricity demands from a power grid or network. It
is generally accepted that a boiler–turbine unit is a highly nonlinear and strongly
coupled complex system. However, there is no definite quantification of the com-
plexity of a unit. Specifically, how nonlinear is it? Can a linear controller be used to
cover the whole operating range? These are fundamental issues in the control system
design for a boiler–turbine unit. Without a thorough understanding, modeling and
identification of the system, the operating range and performance of a linear con-
troller cannot be guaranteed. Figure 2.1 shows the schematic diagram of the steam
generator model.

2.2.1 System Dynamics

For the system considered here, the input/output experimental data has been ob-
tained from [20] in which the modeling of a steam generator at Abbot power plant
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Fig. 2.1 Steam generating unit

in Champaign IL is considered. The data comes from a model of this steam genera-
tor. The inputs are listed as follows:

• U1: Fuel scaled 0–1,
• U2: Air scaled 0–1,
• U3: Reference level,
• U4: Disturbance defined by the load level.

The outputs are

• Y1: Drum pressure,
• Y2: Excess oxygen in exhaust gases,
• Y3: Level of oxygen in the drum,
• Y4: Steam flow.

The data values are presented in Fig. 2.2.
The simulation data constitutes 9600 samples at a sampling rate of 3 s, which

characterizes a MIMO process. In implementation, a set of 4000 samples (5000 :
9000) are used for testing, another set of 4000 samples (2500 : 6500) for validation
purpose. The important statistical parameters of all inputs and outputs are listed in
Table 2.1.
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Fig. 2.2 Statistical data pattern

Table 2.1 Statistical data

Input/output Type Mean Standard deviation Min Max

I1 Fuel scaled 0–1 0.504 0.229 0.000 1.07

I2 Air scaled 0–1 0.528 0.295 0.000 1.07

I3 Reference level 0.554 2.460 −4.00 4.53

I4 Disturbance 0.004 0.010 −0.015 0.023

O1 Drum pressure 329.4 85.94 154 534

O2 Excess oxygen in air 4.544 6.157 −0.069 21

O3 Drum oxygen level 0.552 2.849 −9.55 12.3

O4 Steam flow 14.85 7.571 1.99 34.6
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2.3 Small-Power Wind Turbine

Wind energy is a fast-growing interdisciplinary field that encompasses many dif-
ferent branches of engineering and science. Despite the amazing growth in the in-
stalled capacity of wind turbines in recent years, engineering and science challenges
still exist. Because larger wind turbines have power capture and economical advan-
tages, the typical size of utility-scale wind turbines has grown dramatically over the
last three decades. Modern wind turbines are large, flexible structures operating in
uncertain environments and lend themselves nicely to advanced control solutions.
Advanced controllers can help achieve the overall goal of decreasing the cost of
wind energy by increasing the efficiency, and thus the energy capture, or by reduc-
ing structural loading and increasing the lifetimes of the components and turbine
structures. In what follows, our goal is to introduce control engineers to the techni-
cal challenges that exist in the wind energy industry and to encourage new control
systems research in this area.

2.3.1 Wind Turbine Basics

The main components of a horizontal-axis wind turbine that are visible from the
ground are its tower, nacelle, and rotor. The nacelle houses the generator, which
is driven by the high-speed shaft. The high speed shaft is in turn usually driven
by a gear box, which steps up the rotational speed from the low-speed shaft. The
low-speed shaft is connected to the rotor, which includes the airfoil-shaped blades.
These blades capture the kinetic energy in the wind and transforms it into the rota-
tional kinetic energy of the wind turbine. The description of the wind turbine system
depends on the designs of the wind turbine either horizontal-axis or vertical axis, see
Fig. 2.3.

Vertical-axis wind turbines (VAWTs) are pretty rare and the only one currently in
commercial production is the Darrieus turbine, which looks kind of like an egg fig-
ure. In a VAWT, the shaft is mounted on a vertical axis, perpendicular to the ground.
VAWTs are always aligned with the wind, unlike their horizontal-axis counterparts,
so there’s no adjustment necessary when the wind direction changes. On the other
hand, a VAWT is not normally self starting, it needs energy from its electrical sys-
tem to get started. Instead of a tower, it typically uses wires for support, so the rotor
elevation is lower. Lower elevation means slower wind due to ground interference,
so VAWTs are generally less efficient than horizontal-axis wind turbines (HAWTs).
On the upside, all equipment is at ground level for easy installation and servicing,
but that means a larger footprint for the turbine, which is a big negative in farming
areas. VAWTs may be used for small-scale turbines and for pumping water in rural
areas, but all commercially produced, utility-scale wind turbines are (HAWTs), see
Figs. 2.4–2.5.

From its name, the HAWT shaft is mounted horizontally, parallel to the ground.
HAWT needs to continuously align itself with the wind speed by using a yaw-
adjustment mechanism. The yaw system typically consists of electric motors and
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Fig. 2.3 VAWT and HAWT

Fig. 2.4 The main
components of HAWT

gearboxes which move the whole rotor left or right in small increments to hold the
higher speed. The turbine’s electronic controller reads the position of a wind vane
device either mechanical or electronic and adjusts the position of the rotor to cap-
ture the most wind energy available [26]. HAWTs use a tower to lift the turbine
components to an optimum elevation for wind speed and so the blades can take up
very little ground space since wind velocities increase at higher altitudes due to sur-
face aerodynamic drag and the viscosity of the air. Horizontal-axis wind turbines
have the main rotor shaft and electrical generator at the top of a tower and must be
pointed into the wind. Small turbines are pointed by a simple wind vane, while large
turbines generally use a wind sensor coupled with a servo motor. Most of HAWTs
have a gearbox which turns the slow rotation of the blades into a quicker rotation
that is more appropriate to drive an electrical generator. The main components of
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Fig. 2.5 Parts inside the
wind turbine

HAWTs are Rotor blades which capture wind’s energy and convert it to rotational
energy of low speed shaft and Shaft that transfers rotational energy into generator.
Also, Nacelle casing that holds Gearbox which increases speed of shaft between
rotor hub and generator, Generator that uses rotational energy of shaft to generate
electricity using electromagnetism and usually an induction generator that produces
AC electricity is used. Moreover, Electronic control unit that monitors system and
starts up the machine at wind speeds of about 3–8 m/s and shuts down the machine
at about 20 m/s which turbines do not operate at wind speeds above about 20 m/s
because they might be damaged by the high winds, Yaw controller is used to keep
the rotor facing into the wind as the wind direction changes, and Brakes that stop
rotation of shaft in case of power overload or system failure.

In addition to these components, the tower that used to support rotor and nacelle
and lifts entire setup to higher elevation where blades can safely clear the ground
and towers are made from tubular steel, concrete, or steel lattice. Wind speed in-
creases with height and this mean, taller tower enable turbines to capture more en-
ergy and generate more electricity. The electrical equipment that is used to transmit
electricity from generator down through tower and controls many safety elements
of turbine, and anemometer that measures the wind speed and transmits these read-
ings to the controller. The most commonly activated safety system in a turbine is the
braking system, which is triggered by above-threshold wind speeds. These setups
use a power-control system that essentially hits the brakes when wind speeds get
too high and then release the brakes when the wind is coming back.

2.4 Unmanned Surface Marine Vehicle

The Atlantis is assumed to be traveling upon a straight line, conveniently assumed
to be coincident with the x-axis, through water at a constant velocity, Vx . The dis-
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Fig. 2.6 A schematic model
of the assumed path of the
Atlantis

tance along that line is X (meters), the perpendicular distance to the line is Y (me-
ters), the cross-track error, and the angle that the center-line of the Atlantis makes
with the x-axis is Ψ , the angular error (radians). Figure 2.6 illustrates a schematic
model of the assumed path of the Atlantis. The coordinate frame can always be
rotated to have the x-axis aligned to the desired path of the Atlantis, and so the
assumption that the Atlantis travels down the x-axis is a good one. The assump-
tion of constant velocity, however, is not appropriate since velocity is a function
of the wind speed. Wind speed, of course, cannot be controlled and is highly vari-
able.

2.4.1 Dynamic Model

The continuous-time state-space equations for the kinematic model can be repre-
sented as
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where δ is the angle of the rudders with respect to the hull center-line (radians). The
distance L is from the boat center of mass to the center of pressure of the rudders
(in meters), and the input, u, is the slew rate of the rudders (in radians/second). This
kinematic model assumes that the boat is running on constant Vx . This assumption
is known to be poor, since unless the wind can be controlled, the velocity will always
be dependent on the speed of the wind. Azimuth and cross-track error in fact do not
integrate with time, but rather with distance traveled upon the line. This has great
implications, since this is exactly the cause of instability with increasing velocity
present in the simple kinematic model. By introducing two new variable,

Ỹ ≡ Y

Vx

, Ψ̃ ≡ Ψ

Vx

. (2.3)
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Substituting (2.3) back into (2.2), the kinematic model can be rewritten in the fol-
lowing velocity-invariant form:
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2.5 Industrial Evaporation Unit

An identification experiment is performed by exciting the system with appropriate
signals and observing its input and output over a time interval. These signals are
normally recorded in a computer mass storage for subsequent information process-
ing. Then one proceeds to fit a parametric model of the process from the recorded
input and output sequences. The first step is to determine an appropriate form of
the model (typically a linear difference equation of a certain order). As a second
step some statistically based method is used to estimate the unknown parameters
of the model (such as the coefficients in the difference equation). In practice, the
estimations of structure and parameters are often done iteratively. This means that
a tentative structure is chosen and the corresponding parameters are estimated. The
model obtained is then tested to see whether it is an appropriate representation of the
system. If this is not the case, some more complex model structure must be consid-
ered, its parameters estimated, the new model validated, etc. Note that the ‘restart’
after the model validation gives an iterative scheme.

2.5.1 Mathematical Models

Models and/or systems can be roughly divided into classes such as linear and non-
linear time invariant or time varying discrete time or continuous time with lumped
or with distributed parameters etc. While at first sight the class of linear time in-
variant models with lumped parameters seems to be rather restricted it turns out in
practice that many real life input output behaviors of practical industrial processes
can be approximated very well by such a model.

Mathematical models of dynamical systems are used for analysis simulation pre-
diction optimization monitoring fault detection training and control. There are sev-
eral approaches to generate a model of a system. One could for instance start from
first principles such as writing down the basic physical or chemical laws that gener-
ate the behavior of the system. This so called white box approach works for simple
examples but its complexity increases rapidly for real world systems. In some cases
the systems equations are known up to within some unknown parameters, which are
estimated using some parameter estimation method gray-box modeling.

Another approach is provided by system identification in which first measure-
ments or observations are collected from the system which are then modeled using



20 2 Some Industrial Systems

a so-called black-box identification approach. Such an approach basically consists
of first defining a parameterization of the model, and then determining the model
parameters in such a way that the measurements are explained as accurately as pos-
sible by the model. Typically, this is done by formulating the identification problem
as an optimization problem in which the variables are the unknown parameters of
the model the constraints are the model equations and the objective function a mea-
sure of the deviation between the observations and the predictions or simulations
obtained from the model.

The field of linear system identification is certainly not new although we can
safely say that it only started to blossom in the 1970s. Yet, 20-years of research
have generated a lot of results and practical hands on experience. Among the key
references of identification are [6, 20, 31, 49].

In what follows, we use data for industrial evaporator from [27].

2.5.2 Multistage Evaporator System

The selected evaporator system is the first step in the liquor burning process as-
sociated with the Bayer process for alumina production at the Wager up alumina
refinery in western Australia. It consists of one falling film, three forced-circulation
and a super-concentration evaporators in series [44].

The main components of each stage are a flash tank (FT), a flash pot and a
heater (HT). A simplified schematic of the evaporator system is depicted in Fig. 2.7.
Flash pots are not shown in this figure for simplicity of the schematic. Spent liquor,
which is recovered after precipitation of the alumina from its solution, is fed to the

Fig. 2.7 A simplified schematic of the evaporator system
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falling film stage (FT #1). The volatile component, water in this case, is removed
under high recycle rate and the product is further concentrated through the three
forced-circulation stages (FT #2–4). The super-concentration stage (FT #5) is used
to remove the residual ‘flashing’ of the concentrated liquor without recycle. In each
of the forced-circulation and super-concentration stages, the spent liquor is heated
through a shell and tube heat exchanger (heater) and water is removed as vapor at
lower pressure in the FT. The vapor given off is used as the heating medium in the
heaters upstream. The flashed vapor from FT #3 and 4 are combined and used in HT
#2 while the vapor from FT #2 is used in HT #1. The flashed vapor from FT #5 is
sent directly to the condenser, C in Fig. 2.6. The steam condensates from the heaters
are collected in the flash pots. Live steam is used as the heating medium for HT #3,
4 and 5. Live steam to HT #3 is set in ratio to the amount of live steam entering
HT #4, while the amount of live steam to HT #5 is set depending on the amount of
residual ‘flashing’ to be removed. The cooling water flow to the contact condenser,
C is set such that all remaining flashed vapor is condensed. The evaporator system
is crucial in the aluminum refinery operation and is difficult to control due to recycle
streams, strong process interactions and nonlinearities.

2.6 Distillation Tower

Distillation towers are widely used in the chemical process industries where large
quantities of liquids have to be distilled. Industrial distillation towers are usually
operated at a continuous steady state. From a practical viewpoint, the most important
manipulated variables are the bottom supply energy, the top energy removal, the
reflux ratio, which influence the tower operating pressure, the tray load and degree
of separation. Concerning the system outputs, a distinction must be made between
the controlled and the uncontrolled variables. If the underlying task is to produce a
required product quality, then the top and bottom qualities are the most important
controlled variables. At a tray only the temperature can be continuously measured
and this yields a good indication of the condition of the tower.

There are several assumptions that are commonly made in order not to complicate
matters unnecessarily. These assumptions include that the vapor mass at a tray is
negligible compared to the liquid mass and the energy content of the vapor mass at
a tray is neglected.

2.6.1 A Particular Tower

In this section, we focus our study on a class of distillation towers commonly used in
natural gas plants, an example of which is in Aramco-Saudi Arabia. It must be noted
for this class that unless disturbed by changes in feed, heat, ambient temperature, or
condensing, the amount of feed being added normally equals the amount of product
being removed. A typical physical layout of distillation tower (DT) is portrayed in
Fig. 2.8.
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Fig. 2.8 Distillation unit

For simplicity in exposition, the identification studies carried out in the subse-
quent chapter are based on one input and one output data set each of 10080 samples
with a sampling period of 60 s:

• Input: Feed inlet temperature in F°.
• Output: Tower outlet compound of C2 in mol %.

2.7 Falling Film Evaporator

The most common used evaporator in the dairy industry is the falling film evapo-
rator, for the concentration of products like milk, skimmed milk and whey. A four
stage evaporator is used to reduce the water content of the product, that is, milk. The
data was taken from [21]. The identification scheme used for the data is the N4SID
subspace based identification. The data consists of 6305 samples with three inputs,
feed flow, vapor flow to the first evaporator stage and cooling water flow and three
outputs, dry matter content, the flow and the temperature of the out coming product.

The solution containing the desired product is fed to the evaporator and passes a
heat source. The applied heat converts the water in the solution to vapor. The vapor
is removed from the rest of the solution and is condensed while the now concen-
trated solution is either fed into the second evaporator is removed. The evaporator
generally as a machine consists of four sections. The heating section consists of the
heating medium. Steam is fed into this section. The concentrating and separating
section removes the vapor being produced from the solution. The condenser con-
densates the separated vapor, then the vacuum or pump provides pressure to increase
the circulation.

Evaporation is used basically in the dairy industry for the concentration of prod-
ucts like milk, skimmed milk etc. Concentration involves the removal of water from
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the product. To minimize the cost, evaporation is usually performed in multiple ef-
fect evaporators where two or more effects operate at progressively lower boiling
points. In this type of arrangement, the vapor produced in the previous effect can
be used as the heating medium in the next. The evaporator considered here is a four
falling film effects and has a water evaporation capacity of 800 kg/h. The evapora-
tors most commonly are used in the split effect mode, where only the third effect
and the finishing effect are used.

2.7.1 A Single Effect Evaporator

In what follows, for simplicity, we will consider a single effect falling film evapora-
tor to outline the operating principles.

A single effect evaporator consists of a balance tank, a condenser, a preheater, an
evaporator calandria, a separator and a vacuum pump, see Fig. 2.9. The process can

Fig. 2.9 Schematic diagram of evaporator in split effect
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Fig. 2.10 Block diagram of
single effect falling film
evaporator

be decomposed into a product route (steps Pa–Pf), a steam route (steps Sa–Sc) and
a product vapor route (steps Va–Vd). Firstly, we will consider the path the product
takes through the evaporator, see Fig. 2.10.

Pa From the balance tank, the concentrate flows through the condenser where it
gets its first injection of heat—see (Vc) overleaf.

Pb The product then flows through the preheater where it gets a second injection of
heat (see Sc).

Pc The product is then pasteurized via the Direct Steam Injection (DSI) pasteuriza-
tion unit and passes through the holding tubes.

Pd From the DSI, the product enters the evaporator calandria. A nozzle and
spreader plate form a distribution system at the top of the evaporator that en-
sures a uniform product distribution.

Pe Upon leaving the distribution plate, the product flows through stainless steel
tubes. The product forms a thin film on the inside of the tube while the outside
of the tube is surrounded by steam.

Pf The product from the tubes reaches the bottom of the calandria where it is col-
lected along with product from the separator (see Va).

Next, consider the steam’s path through the process, see Fig. 2.11.

Sa Typically, but not always, the steam enters the calandria at the bottom and sur-
rounds the tubes through which the product is flowing.

Sb Heat is then transferred from the steam to the product. This transfer of heat
causes the water in the product to boil and produce vapor inside the tubes.
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Fig. 2.11 Four-effect falling film evaporator

Sc Some steam from the calandria shell enters the preheater and is used as the
heating medium in the preheater (see Pb).

Finally, consider the route of the product vapor through the process.

Va The product vapor exits the bottom of the calandria and enters the separator
where product is removed from the vapor and returned to the product stream.

Vb The vapor then enters the condenser.
Vc In the condenser, the vapor acts as a heating medium for the product (see Pa).
Vd The vapor then passes the cold water pipes and condenses.

2.8 Vapor Compression Cycle Systems

In vapor compression cycle systems, it is desirable to effectively control the thermo-
dynamic cycle by controlling the thermodynamic states of the refrigerant. By con-
trolling the thermodynamic states with an inner loop, supervisory algorithms can
manage critical functions and objectives such as maintaining superheat and maxi-
mizing the coefficient of performance.

The primary goal of any air-conditioning or refrigeration system is to move en-
ergy from one location to another. An idealized vapor compression cycle (VCC) sys-
tem, as shown in Fig. 2.12, is a thermodynamic system driven by the phase charac-
teristics of the refrigerant that is flowing through it. Therefore, it is useful to describe
the system in terms of the state of its refrigerant, as shown on a pressure-enthalpy
(P –H ) diagram, see Fig. 2.13.
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Fig. 2.12 Schematic diagram
of VCC system

Fig. 2.13 P –H cycle
diagram

2.8.1 A Typical System

An ideal VCC system assumes isentropic compression, isenthalpic expansion, and
isobaric condensation and evaporation. The basic control objectives of a VCC sys-
tem can be conceptualized visually via Fig. 2.13. For example, the difference be-
tween and represents the increase in enthalpy across the evaporator, that is, the
amount of energy removed from the cooled space. This is a measure of evapora-
tor capacity. The difference between and represents the increase in enthalpy across
the compressor, that is, the amount of work done by the compressor to increase the
pressure of the refrigerant vapor. The system coefficient of performance (COP), a
measure of system efficiency, is defined as the ratio between these two changes in
enthalpy.

The focus of this study is to present a comprehensive controller design approach,
that is, one that covers displacement and velocity control, addresses the nonlineari-
ties present in the vapor compression system and considers practical issues such as
transient response and real-time implementation.



2.9 Flutter of an Aircraft F-18 27

Fig. 2.14 F-18 sensor
configuration

2.9 Flutter of an Aircraft F-18

The Flutter is a self-feeding and potentially destructive vibration where aerody-
namic forces on an object couple with a structure’s natural mode of vibration to
produce rapid periodic motion [14]. Flutter can occur in any object within a strong
fluid flow, under the conditions that a positive feedback occurs between the struc-
ture’s natural vibration and the aerodynamic forces, see Fig. 2.14. That is, that the
vibration movement of the object increases an aerodynamic loads which in turn
drives the object to move further [17, 34]. If the energy during the period of aero-
dynamic excitation is larger than the natural damping of the system, the level of vi-
bration will increase, resulting in self-exciting oscillation. The vibration levels can
thus build up and are only limited when the aerodynamic or mechanical damping
of the object match the energy input, this often results in large amplitudes and can
lead to rapid failure. Because of this, structures exposed to aerodynamic forces—
including wings, aerofoil, but also chimneys and bridges—are designed carefully
within known parameters to avoid flutter. It is however not always a destructive
force; recent progress has been made in small-scale wind generators for under
served communities in developing countries, designed specifically to take advan-
tage of this effect.

2.9.1 Flutter Input and Output Data

The data comprises of one input and one output which has a sampling time of 1 s,
the number of samples in the data are 1024, see Fig. 2.15. In this section, the date
in subdivided into the estimation and validation data parts, each part is comprised
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Fig. 2.15 Flutter input and
output data

of 512 samples. As we shall see in later chapters, applications of the identification
techniques are employed on the estimation data and then the estimated models are
evaluated on the validation data.

2.10 A Hydraulic Pumping System

It is often desirable to find parsimonious models with good static and dynamical
responses [32]. The estimation of nonlinear models with such features is quite hard
mainly because static and dynamic information are not equally weighed in a single
set of data. In this respect, static and dynamic information can be thought of as be-
ing conflicting. Flexible black-box structures are able to accurately fit a single piece
of data. However, there are two main drawbacks with most of such structures. First,
once such models are estimated, the static information (e.g., static nonlinearity) is
not readily available analytically. Second, not all such model structures and algo-
rithms have been adapted to permit the effective use of static information during
training (parameter estimation). It should be noticed that black-box identification
does not necessarily guarantee correct steady-state performance when the model is
nonlinear [3].

When the data sets are conflicting in some way, it is advisable to use multi-
objective approaches which yield a set of optimal solutions called the Pareto set.
Bi-objective algorithms have proved to be quite useful in combining both static and
dynamic data during model identification [10].

In what follows, we aim to identify models of a 15 kW hydraulic pumping sys-
tem. There has been a clear increase of variable frequency drives as the final control
element for such systems. This has enabled the implementation of fast and automatic
control systems. Models of such systems are highly desirable for characterization
and control. Such models should, ideally, represent the system accurately both in
transient and steady-state regimes over a wide range of operating conditions. This
requires, more often than not, the use of nonlinear models.
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We focus in this book to obtain models that perform well both in transient
and steady-state regimes, different identification approaches were implemented to
“guarantee” a good balance between such features. In order to improve the model
steady-state performance, the measured static curve of the pumping system was
used as auxiliary information. Such information was used in different intensities,
depending on the model representation used. An improved bi-objective identifica-
tion approach is presented and a new decision-maker is defined. In this brief, we
used and compared polynomial and neural nonlinear autoregressive with moving
average and exogenous variables (NARMAX) models.

2.10.1 Hydraulic Process and the Data

In a full-scale hydroelectric power plant (over 80% of Brazilian electrical energy
is produced in such plants), the water head can be considered constant over rea-
sonably long periods of time. At testing plants, however, the turbines are fed by
powerful hydraulic systems and not by a water head. Because of the characteristics
of the centrifugal pumps used in such plants, the pressure on the turbine decreases
as the water flow increases. Therefore, in realistic testing plants, pressure must be
controlled over a wide range of operating conditions. Mathematical models are de-
sired to simulate and to design the closed-loop control of the real pumping system,
where the models output is the system pressure and the models input is the pumps
reference speed.

The hydraulic plant described in this section is composed by two centrifugal
pumps that feed a hydraulic turbine. The hydraulic plant should be seen by the
turbine as a water head. The static and dynamic data used in this brief were measured
from this plant, composed by two centrifugal pumps coupled to induction motors of
7.5 kW and variable speed drive systems (see Fig. 2.16). The pumps can be operated
alone, in parallel or in a series configuration, always at the same speed. In this work,
the pumps were set in a parallel configuration working at the same instantaneous
speed with a Francis turbine as load [9].

Fig. 2.16 Hydraulic
pumping system
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Fig. 2.17 Static curve of the
hydraulic pumping system
and its approximation

The modeling data presented in this work were collected from a data acquisition
system. The piezo-resistive pressure transmitter error is ±0.175 mlc (meter of liquid
column).

2.10.2 Static Behavior

The static curve of the system was measured by:

1. Setting the turbine distributor blade to 50% and
2. Maintaining the pumps speed fixed at the chosen values—the speed references

of both pumps were maintained the same during this procedure. After transients
died out, the output pressure was recorded for each reference speed.

During this test, the pumps speed was varied from 750 to 1650 r/min. The static
curve is shown in Fig. 2.17 as well as the second-order polynomial approxima-
tion

H(ū) = βū2 + αū + κ (2.5)

with β = 7.2652 × 10−6, α = 1.4933 × 10−3, κ = −1.3312, and where is the pres-
sure in the output pipe and is the steady-state pump speed. This static curve will be
useful during the gray-box modeling and will also be used to evaluate the identified
models.

In Chap. 4, we will perform identification methods to generate appropriate mod-
els.

2.11 Notes and References

In this introductory chapter, some representative system applications were presented
to help in motivating the readers to the upcoming topics. It must be emphasized that
the target goal is to launch an information-based approach to control system design.
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Being an applied design approach, we start by examining some industrial systems
and shed light into their input/output variables. Indeed, there are many similar sys-
tems in practice and hence we encourage the readers to look at these systems and
apply the methods of this book. We will make every effort to produce the subsequent
chapters as a self-contained examination of the background and methods of indus-
trial dynamical systems. For a good introduction to the subject matter, the reader is
referred to [1, 2, 4, 5, 7, 8, 11–13, 15–19, 22, 23, 28, 29, 33–41]. For a MATLAB
tool box, it is advisable to consult [40, 42, 43].
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