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Chapter 2
Force-Free Approximation—The
Magnetosphere of Radio Pulsars

Abstract The general view of the radio pulsar activity seems to have been estab-
lished over many years. On the other hand, some fundamental problems are still to
be solved. It is, first of all, the problem of the physical nature of the coherent radio
emission of pulsars. In particular, as in the 1970s, there is no common view of the
problem of the coherent radio emission mechanism of a maser or an antenna type.
Moreover, there is no common view of the pulsar magnetosphere structure. The
point is that the initial hypothesis for the magnetodipole energy loss mechanism is,
undoubtedly, unrealistic. Therefore, the problem of the slowing-down mechanism
can be solved only if the magnetosphere structure of neutron stars is established.
However, a consistent theory of radio pulsar magnetospheres has not yet been devel-
oped. Thus, the structure of longitudinal currents circulating in the magnetosphere
has not been specified and, hence, the problems of neutron star braking, particle
acceleration, and energy transport beyond the light cylinder have not been solved
either. The theory of the inner structure of neutron stars is also far from completion.
Naturally, it is impossible to dwell on all these problems here and, therefore, we dis-
cuss in detail only the problems directly associated with the main theme of this book,
viz., the theory of radio pulsar magnetospheres. The first two sections consider the
basic physical processes in neutron star magnetospheres and the secondary plasma
generation mechanism. Then we formulate a pulsar equation, i.e., the force-free
Grad–Shafranov equation in flat space providing the correct determination of the
energy losses of radio pulsars. Further, the exact analytical solutions obtained for
radio pulsar magnetospheres are also discussed in detail. It is demonstrated that,
within the force-free approximation, a self-consistent theory cannot be formulated.
Finally, the current pulsar magnetosphere models are analyzed.

2.1 Astrophysical Introduction

It would be no exaggeration to say that the discovery of radio pulsars at the end
of the 1960s—sources of cosmic pulse radio emission with characteristic period
P ∼ 1 s (Hewish et al., 1968)—can be called one of the most important events in
astrophysics in the 20th century. Indeed, the new class of space sources connected
with neutron stars was first discovered, the existence of which was even predicted

V.S. Beskin, MHD Flows in Compact Astrophysical Objects, Astronomy and
Astrophysics Library, DOI 10.1007/978-3-642-01290-7 3,
C© Springer-Verlag Berlin Heidelberg 2010

89



90 2 Force-Free Approximation—The Magnetosphere of Radio Pulsars

in the 1930s (Baade and Zwicky, 1934; Landau, 1932). Most of the other compact
objects discovered later [X-ray pulsars, X-ray novae (Giacconi et al., 1971)] showed
that neutron stars, even if they are not the richest ones, are really one of the most
active populations in Galaxy. It is not surprising, therefore, that A. Hewish was
awarded the Noble Prize for this discovery in 1974.

Neutron stars (mass M of the order of solar mass M� = 2 × 1033 g with the
radius R of only 10–15 km) are to evolve from the catastrophic compression (col-
lapse) of ordinary massive stars at the later stage of their evolution or, for example,
from white dwarves that exceeded, due to the accretion, the Chandrasekhar limit
of mass 1.4 M�. The simplest interpretation of both the small rotation periods P
(the smallest known period P = 1.39 ms) and the superstrong magnetic fields
B0 ∼ 1012 G is based on exactly this generation mechanism (Kardashev, 1964;
Pacini, 1967). Indeed, if the neutron star is supposed to evolve from a normal star
(radius Rs ∼ 1011 cm, the rotation period Ps ∼ 10–100 years) with the magnetic
field Bs ∼ 1 G, from the laws of angular momentum and magnetic flux conservation

M R2
sΩs = M R2Ω, (2.1)

R2
s Bs = R2 B0, (2.2)

it follows that, when compressed to the sizes R, the rotation period P and the mag-
netic field B0 of the neutron star are of order

P ∼
(

R

Rs

)2

Ps ∼ (0.01 − 1) s (2.3)

and

B0 ∼
(

Rs

R

)2

Bs ∼ 1012 G. (2.4)

It is interesting to note that the basic physical processes specifying the observed
radio pulsar activity were actually identified immediately after their discovery. Thus,
it was clear that the extremely regular pulsations of the observed radio emission
are connected with the neutron star rotation (Gold, 1968). In some pulsars, the
frequency stability on the scale of a few years is even larger than that of the
atomic standards; therefore, work is underway on the development of a new pulsar
timescale (Ilyasov et al., 1998). Further, the energy source of radio pulsars is due
to the rotational energy, and the energy release mechanism is connected with their
superstrong magnetic field B0 ∼ 1012 G. Indeed, when estimated by the simple
magnetodipole formula (Pacini, 1967), the energy losses

Wtot = −IrΩΩ̇ ≈ 1

6

B2
0Ω

4 R6

c3
sin2 χ, (2.5)
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where Ir ∼ M R2 is the moment of inertia of the star, χ is the inclination angle of
the magnetic dipole axis to the rotation axis, and Ω = 2π/P is the angular velocity,
amount to 1031–1034 erg/s for most pulsars.

This energy release is just responsible for the observed slowdown Ṗ ∼ 10−15,
which corresponds to the dynamical age τD = P/2Ṗ ∼ 1–10 mln years. The radio
pulsars are thus the only space objects whose evolution is fully specified by the
electrodynamic forces. Recall that the intrinsic radio emission is only 10−4–10−6 of
the total energy losses. For most pulsars, this corresponds to 1026–1028 erg/s, which
is 5–7 orders less than the luminosity of the Sun. Moreover, the extremely high
brightness temperature Tbr ∼ 1025–1028 K uniquely shows that the radio emission
of pulsars is generated by a coherent mechanism (Ginzburg et al., 1969; Ginzburg,
1971).

As was noted, the possibility for existence of these objects has already been the
subject for study since the 1930s. Moreover, since the early 1960s, the possibility
of superfluidity and superconductivity in the interior regions of neutron stars has
been actively discussed (see, e.g., Ginzburg and Kirzhniz 1968). Nevertheless, it
was believed that because of their small size, neutron stars were actually impossible
to detect. Accordingly, in spite of a number of papers (Kardashev, 1964; Pacini,
1967), before the discovery of radio pulsars it was not understood that neutron stars
must rotate so fast that the main source of radiated energy is their kinetic rotational
energy. As a result, no attempts were actually made to detect the pulsating radiation
of the known objects. This was in spite of the fact that by that time an unusual
optical star coinciding with an unusual radio source had already been detected in
the Crab Nebula. The activity of this star was exactly responsible for the energy
release Wtot ≈ 5 × 1038 erg/s needed to supply the Crab Nebula with relativistic
electrons (Rees and Gunn, 1974). Otherwise, the Crab Nebula would have ceased to
glow long ago.

Only when it was clear that this unusual source is really connected with a rotating
neutron star, the analysis of variability of its optical flux was made (Wampler et al.,
1969). It turned out that the optical radiation also reaches us in the form of separate
pulses, the period of which (P ≈ 0.033 s) exactly coincides with the period speci-
fied by the data in the radio band. The truth was found after the rotational slowdown
Ṗ of the pulsar in the Crab Nebula was measured, and it was clear that

1. the rate of the energy loss of the rotating neutron star, which was determined by
the slowdown of the angular rotational velocity W = −IrΩΩ̇ , coincides with
Wtot ≈ 5 × 1038 erg/s;

2. the dynamical age of the radio pulsar τD = Ω/2|Ω̇| ≈ 1000 years coincides
with that of the Crab Nebula that came into existence, as is known, during the
explosion of the historical supernova AD 1054.

Most radio pulsars are single neutron stars. Of over 1800 pulsars discovered
by mid-2008, only about 100 of them belong to binary systems. However, in all
these cases, it is known with certainty that in these binary systems there is not any
substantial flux of matter from a star-companion onto the neutron star. Since, as
we noted, the radio luminosity of pulsars is not high, the present-day receivers’
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accuracy allows one to observe pulsars only up to distances of order 3–5 kpc, which
is less than the distance to the center of Galaxy. Therefore, we have the possibility
to observe only a small part of all “working” radio pulsars. The total number of
neutron stars in our Galaxy is 108–109. This large number of extinct neutron stars is
naturally connected with their short lifetime mentioned above.

The discovery of neutron stars was, undoubtedly, an upheaval in astrophysics.
Besides the emergence of new purely theoretical problems [magnetosphere struc-
ture and the coherent radio emission mechanism (Michel, 1991; Beskin et al., 1993;
Lyubarskii, 1995; Mestel, 1999), the theory of accreting sources in close binary sys-
tems (Shapiro and Teukolsky, 1983; Lipunov, 1992), the theory of the inner structure
and the surface layers of neutron stars (Baym and Pethick, 1979; Sedrakyan and
Shakhabasyan, 1991; Liberman and Johansson, 1995; Kirzhnits and Yudin, 1995)],
which gave impetus to theoretical research, the radio pulsars are used for concrete
astrophysical measurements. This was possible due to the unique properties of the
impulse emission of radio pulsars that make it possible, in particular, to control not
only the frequency but also the signal phase. Here we can mention, for example,

� the determination of the electron density in the interstellar medium by the time
delay of the arrival of pulses at different frequencies (Lyne and Graham-Smith,
1998; Johnston et al., 1999);

� the determination of the galactic magnetic field by the polarization plane rota-
tion at different frequencies (Lyne and Graham-Smith, 1998; Brown and Taylor,
2001);

� the refined diagnostics of the GR effects in close binary systems (Taylor and
Weisberg, 1989);

� the search for relic gravitational waves (Sazhin, 1978).

Thus, the general pattern of the radio pulsar activity seems to have been estab-
lished over many years. On the other hand, some fundamental problems are still
to be solved. It is, first of all, the problem of the physical nature of the coherent
radio emission of pulsars. In particular, as in the 1970s, there is no common view
of the problem of the coherent radio emission mechanism of a maser or an antenna
type (Blandford, 1975; Melrose, 1978; Beskin et al., 1988; Lyubarskii, 1995; Usov
and Melrose, 1996; Lyutikov et al., 1999). Besides, there is no common viewpoint
on the structure of the pulsar magnetosphere (Michel, 1991; Beskin et al., 1993;
Lyubarskii, 1995; Mestel, 1999). The point is that the initial hypothesis for the
magnetodipole energy loss mechanism (2.5) is, undoubtedly, unrealistic. Strictly
speaking, this chapter primarily deals with the proof of this assertion. We only
stress here that low-frequency waves with frequency ν = 1/P cannot propagate
in the interstellar medium for which the plasma frequency is, on average, several
kilohertz (Lipunov, 1992). Therefore, the problem of the slowing-down mechanism
can be solved only by determining the magnetosphere structure of the neutron star.
However, the consistent theory of the radio pulsar magnetosphere has not been
constructed yet. Thus, the structure of the longitudinal currents circulating in the
magnetosphere is not specified and, hence, the problem of the neutron star braking,
particle acceleration, and energy transport beyond the light cylinder still remains
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unsolved. The theory of the inner structure of neutron stars is also far from comple-
tion. Naturally, it seems impossible to discuss all these problems here. Therefore,
we discuss in detail only the problems directly connected with the main theme of
this book, viz., the theory of the pulsar magnetosphere. The main problems to be
discussed are the following:

1. the magnetosphere structure of a rotating neutron star;
2. the determination of the energy loss mechanism of radio pulsars;
3. the energy transport from the rotating neutron star within the magnetosphere;

and
4. the determination of the particle acceleration mechanism in the pulsar wind.

2.2 Basic Physical Processes

2.2.1 Vacuum Approximation

Before proceeding to the discussion of the consistent theory of radio pulsars, we
consider the basic physical processes taking place in the magnetosphere. We should
make a reservation that in this chapter we do not actually discuss the GR effects, the
exception is one of the particle generation mechanisms. Though the GR effects on
the neutron star surface can amount to 20% (Kim et al., 2005), they are not, gener-
ally, taken into account in the development of the pulsar magnetosphere theory. The
point is that the electromagnetic force Fem ∼ eE acting on a charged particle near
the neutron star surface turns out to be many orders greater than the gravitational
force Fg = G Mm/R2. This condition allows us to disregard the electromagnetic
field distortion connected with the space curvature in the vicinity of the neutron
star.

We first discuss the simplest vacuum model which, even if very far from reality,
gives an insight into the key properties of the real magnetosphere of the neutron star.
Thus, we consider a homogeneous magnetized star rotating in vacuum. The basic
parameters defining the properties of the magnetosphere are the magnetic field B0,
the star radius R, and the angular rotational velocity Ω . For a well-conducting star,
we find that in its interior

Ein + Ω × r
c

× Bin = 0. (2.6)

In this chapter, we, as usual, restore the dimension. The condition (2.6) simply
implies that the electric field in the coordinate system rotating with the star is zero:
E′ = 0.

Suppose now that the star rotation axis is parallel to the magnetization axis. Then
the problem is stationary and, therefore, the electric field is fully defined by the
potential Φe (E = −∇Φe), which inside the star can be written as
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Φe(r < R, θ ) = 1

2

ΩB0

c
r2 sin2 θ. (2.7)

Hence, on the star surface

Φe(R, θ ) = Φ0(θ ) = −1

3

ΩB0

c
R2P2(cos θ ) + const, (2.8)

where P2(x) = (3x2 − 1)/2 is the Legendre polynomial. The electric potential
beyond the star can be found from the solution of the Laplace equation ∇2Φe = 0
with the boundary conditions

1. Φe(R, θ ) = Φ0(θ );
2. Φe(r, θ ) → 0 for r → ∞.

The solution corresponding to the zero total electric charge of the star has the form

Φe(r > R, θ ) = −1

3

ΩB0

c

R5

r3
P2(cos θ ). (2.9)

As shown in Fig. 2.1, the rotation of homogeneously magnetized star gives rise to
a quadrupole electric field beyond it. As to the magnetic field, for an axisymmetric
rotator, it is exactly equal to the dipole magnetic field

B(r > R) = 3(mn)n − m
r3

, (2.10)

where n = r/r , and |m| = B0 R3/2 is the star magnetic moment.

Fig. 2.1 The structure of the
axisymmetric vacuum
magnetosphere of the neutron
star. The rotating
homogeneously magnetized
star generates the dipole
magnetic field (solid lines)
and the quadrupole electric
field E (dashed lines)

B

E

Problem 2.1 Show that the surface charge density σs defined by the jump of
the normal electric field component 4πσs = {En} has the form (Mestel, 1971)
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σs(θ ) = 1

8π

ΩR

c
B0(3 − 5 cos2 θ ). (2.11)

Explain why the total surface charge is different from zero

Q∗ =
∫

σs(θ )do = 2

3

ΩB0

c
R3 
= 0. (2.12)

Using the simplest vacuum model, we can make a number of general conclusions.

� The longitudinal electric field E‖ = (E · B)/B in the vicinity of the star surface
can be estimated as

E‖ ∼ ΩR

c
B0. (2.13)

� In the axisymmetric case (and for the zero total electric charge), the sign of the
product (E · B)(B · n) remains the same over the neutron star surface.

The latter conclusion is very important. The particles in the strong magnetic field can
move along the magnetic field only (see below). This implies that for the axisym-
metric rotator, particles of the same sign are ejected from both magnetic poles of
the neutron star. As we will see, this important property retains in the case of the
plasma-filled magnetosphere.

For an arbitrary inclination angle χ , the problem was solved by Deutsch (1955)
long before the discovery of pulsars. In this case, the electromagnetic fields are a
sum of the fields of the rotating magnetic dipole and the electric quadrupole, and
the quadrupole moment can be represented as

Qik = R2

c

[
miΩk + mkΩi − 2

3
(m · Ω)δik

]
. (2.14)

The electromagnetic fields for the arbitrary distance r in the limit R → 0 for χ =
90◦ are described by the known expressions (Landau and Lifshits, 1989)

Br = |m|
r3

sin θ Re

(
2 − 2i

Ωr

c

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
, (2.15)

Bθ = |m|
r3

cos θ Re

(
−1 + i

Ωr

c
+ Ω2r2

c2

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
, (2.16)

Bϕ = |m|
r3

Re

(
−i − Ωr

c
+ i

Ω2r2

c2

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
, (2.17)

Er = E Q
r , (2.18)
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Eθ = |m|Ω
r2c

Re

(
−1 + i

Ωr

c

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
+ E Q

θ , (2.19)

Eϕ = |m|Ω
r2c

cos θ Re

(
−i − Ωr

c

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
+ E Q

ϕ . (2.20)

Here EQ is the quadrupole static electric field

EQ = −∇ΦQ
e , ΦQ

e = Qikni nk

2r3
. (2.21)

At distances much smaller than the wavelength r � c/Ω , the electromagnetic fields
are close to the sum of the fields of the magnetic dipole and the electric quadrupole
at rest, and at large distances r � c/Ω , they correspond to a spherical wave.
Since, according to (2.13), the quadrupole electric field on the star surface is much
smaller than the magnetic field and, on the other hand, the quadrupole electric field
decreases with distance faster than the dipole magnetic field, the electric quadrupole
does not make a real contribution to the energy loss of the rotating star. Conse-
quently, the energy losses are determined, with adequate accuracy, by the standard
expression (2.5). Therefore, we restrict ourselves in (2.18), (2.19), and (2.20) to the
static part of the electric quadrupole field only.

One should stress here that the magnetodipole radiation turned out to result in
the change of not only the rotation period P = 2π/Ω but also the evolution of the
inclination angle χ , since, for the magnetodipole losses the invariant Imd remains
constant (Davis and Goldstein, 1970)

Imd = Ω cosχ. (2.22)

Hence, for the magnetodipole losses, the inclination angle of the rotating magne-
tized star must decrease with the characteristic time τχ coinciding with the dynami-
cal lifetime τD = P/2Ṗ . As a result, a decrease in the energy release is due not only
to an increase in the rotation period but also to a decrease in the inclination angle χ .

Unfortunately, the only direct observational channel permitting us to judge the
radio pulsar energy release mechanism is the so-called braking index

nbr = Ω̈Ω

Ω̇2
= 2 − P̈ P

Ṗ2
, (2.23)

which, as is easily checked, coincides with the exponent in the slowing-down depen-
dence on the angular velocity, viz., Ω̇ ∝ Ωnbr . As we see, to determine the braking
index, we must know the second derivative of the period P̈ . However, for most radio
pulsars, we fail to identify the second derivative of the noise background associated
with faster (than the slowing-down time) variations of the rotation period of the
neutron star (Johnston and Galloway, 1999). Therefore, it is possible to determine
the breaking index only for the fastest radio pulsars. As seen from Table 2.1, in all
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Table 2.1 Braking index nbr for fast radio pulsars

PSR P (s) Ṗ(10−15) nbr

B0531 + 21 0.033 421 2.51 ± 0.01
B0540 − 693 0.050 479 2.14 ± 0.01
J1119 − 6127 0.408 4022 2.91 ± 0.05
B1509 − 58 0.150 1490 2.84 ± 0.01
J1846 − 0258 0.324 7083 2.65 ± 0.01

cases, the braking index is less than 3, whereas the dipole slowing-down law (2.5)
yields nbr = 3.

Problem 2.2 Show that in a more realistic model taking into account the evo-
lution of the inclination angle χ (2.22), the braking index is even larger than
3 (Davis and Goldstein, 1970)

nbr = 3 + 2cot2χ. (2.24)

Problem 2.3 Integrate the evolution equation (2.5), with account taken of the
integral of motion (2.22), and show that the period of the pulsar P(t) exponen-
tially fast (with characteristic time τD = P0/2Ṗ0) approaches the maximum
value of Pmax = P0/ cosχ0 and the angle χ approaches 0◦.

Thus, we can conclude from the analysis of the braking index that the simple
magnetodipole mechanism cannot, evidently, be responsible for the observed slow-
ing down of the radio pulsar rotation. Therefore, there were numerous attempts to
correct relation (2.24) for example, by the magnetic field evolution (Blandford and
Romani, 1988; Chen et al., 1998) or the interaction of the superfluid component in
the neutron star nucleus with its hard crust (Allen and Horvath, 1997; Baykal et al.,
1999) (see also Melatos, 1997; Xu and Qiao, 2001). It turned out, however, that most
of the similar effects can lead to insignificant corrections only and cannot change
the value appreciably (2.24). In any event, the determination of the braking index
of other neutron stars and also the second-order braking index n(2)

br = Ω2 ...
Ω/Ω̇3

[this parameter is now known only for Crab pulsar (Lyne and Graham-Smith, 1998)]
would make it possible to greatly clarify the nature of the radio pulsar slowing down.
On the other hand, almost immediately after the discovery of the radio pulsars, it
was obvious that the vacuum model is not a good zero approximation to describe
the neutron star magnetosphere. And the reason, strange as it may seem, is that a
superstrong magnetic field exists.
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2.2.2 Particle Generation in the Strong Magnetic Field

The superstrong magnetic field B ∼ 1012 G leads to a number of important conse-
quences.

� The synchrotron lifetime (Landau and Lifshits, 1989)

τs ≈ 1

ωB

(
c

ωBre

)
∼ 10−15 s (2.25)

(ωB = eB/mec—electron cyclotron frequency, re = e2/mec2—the classical
electron radius) appears much smaller than the time it takes for a particle to
escape the magnetosphere. Consequently, the charged particle motion in the
neutron star magnetosphere includes the motion along the magnetic field lines
and the electric drift in a transverse direction.

� Since the dipole magnetic field lines are curved, the relativistic particle motion
along a curved trajectory gives rise to the emission of hard γ -quanta due to the
so-called curvature radiation (Zheleznyakov, 1996). This process is quite anal-
ogous to the ordinary synchrotron radiation, because the nature of the accel-
erated motion is unessential and for relativistic particles the formation length
δr ∼ Rcγ

−1 is much smaller than the curvature radius Rc. Therefore, all formu-
lae for the synchrotron radiation can be used to describe the curvature radiation
with the only change, viz., the Larmor radius rB = mec2γ /eB is to be replaced
by the radius of curvature of the magnetic field line Rc. In particular, the fre-
quency corresponding to the maximum radiation now looks like

ωcur = 0.44
c

Rc
γ 3. (2.26)

The extra degree γ as compared to the synchrotron radiation case ωsyn =
0.44ωBγ

2 is associated here with the fact that for the synchrotron losses the
Larmor radius rB itself is proportional to the particle energy.

� Finally, the importance of the one-photon generation of electron–positron pairs
in the superstrong magnetic field γ + B → e+ + e− + B was understood, which
occurs when photons in their motion cross the magnetic field lines (Sturrock,
1971). Indeed, the probability (per unit length) of the conversion of a photon
with energy εph propagating at an angle of θ to the magnetic field B far from the
threshold (i.e., for εph � 2mec2) is (Berestetsky et al., 1982)

w = 3
√

3

16
√

2

e3 B sin θ

�mec3
exp

(
−8

3

B�

B sin θ

mec2

εph

)
. (2.27)

Here the value

B� = m2
ec3

e�
≈ 4.4 × 1013 G (2.28)
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Fig. 2.2 Structure of the
acceleration region and
particle generation in the
vicinity of the neutron star
surface. The primary particles
that penetrated the nonzero
longitudinal electric field
region are accelerated along
the curved magnetic field
lines and begin to radiate hard
γ -quanta. These curvature
photons (dotted lines)
propagating in the curved
magnetic field reach the
particle generation threshold
and create electron–positron
pairs. Secondary particles
radiate synchrophotons and,
after acceleration, start to
radiate new generation of
curvature γ -quanta

corresponds to the critical magnetic field for which the energy gap between two
Landau levels reaches the rest energy of an electron, viz., �ωB = mec2. Recall
that, unlike the electric field, the magnetic field itself cannot generate particles.
However, it can act as a catalyst that ensures the fulfillment of the laws of energy
and momentum conservation for the process studied.

As we see, the characteristic magnetic fields of neutron stars are not much
smaller than the critical magnetic field B�. Therefore, the neutron star magneto-
sphere appears nontransparent even to low-energy photons with energy εph ∼ 2–3
MeV, i.e., in the vicinity of the particle generation threshold. We thus have the chain
of processes (see Fig. 2.2).

1. The primary particle acceleration by the longitudinal electric field existing, as
was shown, in the vacuum approximation.

2. The emission of curvature photons with characteristic frequencies ω ≤ ωcur

(2.26).
3. The photons propagation in the curved magnetic field up to the generation of the

secondary electron–positron pairs.
4. The acceleration of secondary particles, the emission of curvature photons,

which, in turn, give rise to the generation of new secondary particles.
5. The screening of the longitudinal electric field by the secondary plasma.
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Thus, we can conclude that the vacuum magnetosphere of the neutron star with
magnetic field B0 ∼ 1012 G proves unstable to the charged particle generation.

Some comments for correcting the above-formulated pattern are necessary. Note
first that though the curvature photons are actually emitted parallel to the magnetic
field lines, due to the same curvature of the magnetic lines a γ -quantum in its prop-
agation starts moving at an increasingly greater angle of θ to the magnetic field.
On the other hand, for the small, as compared to the curvature radius, photon free
path lγ , we can take sin θ ≈ lγ /Rc. Therefore, the γ -quantum free path lγ can be
estimated as (Sturrock, 1971)

lγ = 8

3Λ
Rc

B�

B

mec2

εph
, (2.29)

where Λ ≈ 20 is a logarithmic factor.
Further, for not too strong magnetic fields B < 1013 G, the secondary particles

are generated on the nonzero Landau levels (Beskin, 1982; Daugherty and Hard-
ing, 1983). Because of the short synchrotron lifetime τs (2.25), all the “transverse”
energy is radiated actually instantaneously due to the synchrotron emission. It turns
out that the energy of these synchrophotons is high enough for these photons to
be absorbed by the strong magnetic field and generate secondary particles. As to
primary particles, they can be generated by the cosmic background radiation. A
comprehensive analysis showed (Shukre and Radhakrishnan, 1982) that the cosmic
γ -ray background leads to the generation of 105 primary particles per second. This
is quite enough for the neutron star magnetosphere to be effectively filled with an
electron–positron plasma.

Problem 2.4 Having determined the free path length lγ as
∫ lγ

0 w(l)dl = 1,
show that

Λ ≈ ln

[
e2

�c

ωB Rc

c

(
B�

B

)2 (mec2

εph

)2
]
. (2.30)

Problem 2.5 Show that if a photon of energy εph � mec2 generates a pair
moving at an angle of θ to the magnetic field, after the secondary particles
descend to the lower Landau level, their Lorentz factors are

γ ≈ 1

θ
≈ Rc

lγ
. (2.31)
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Problem 2.6 Using the law of motion of a relativistic particle

dεe

dl
= eE‖ − 2

3

e2

R2
c

γ 4, (2.32)

where the first term on the right-hand side corresponds to the acceleration in
the electric field and the second one to the radiation reaction, show that for
the standard radio pulsar (B0 = 1012 G, P = 1 s) the primary electron energy
εe (and the positron one) can amount to 108 MeV, and the energy of curvature
photons to 107 MeV.

2.2.3 Magnetosphere Structure

Thus, the important conclusion is that the plasma-filled magnetosphere model rather
than the vacuum model is a more natural zero approximation. This implies that in
the zero approximation the longitudinal electric field can be considered to be zero

E‖ = 0. (2.33)

Physically, this condition implies that light electrons and positrons can always be
redistributed so as to screen the longitudinal electric field. The occurrence of the
longitudinal field in some magnetosphere region immediately leads to an abrupt
plasma acceleration and to the explosive generation of secondary particles.

As a result, we can determine the main features defining the pulsar magneto-
sphere.

Corotation. Due to the presence of plasma in the pulsar magnetosphere, the
frozen-in condition (2.6)

E + Ω × r
c

× B = 0 (2.34)

is, with adequate accuracy, satisfied not only in the interior of the neutron star but
also in the whole magnetosphere. As a result, the drift velocity

Udr = c
E × B

B2
= Ω × r + j‖B (2.35)

( j‖—a scalar function) consists of the motion along the magnetic field and the rigid
corotation with the neutron star. This corotation is present in the magnetosphere of
the Earth and large planets.

Light cylinder. It is clear that the rigid corotation becomes impossible at large dis-
tances from the rotation axis �>RL, where the light cylinder radius RL is defined as
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RL = c

Ω
. (2.36)

Actually, this scale defines the magnetosphere boundary. For the ordinary pulsars
RL ∼ 109–1010 cm, i.e., the light cylinder is at distances several thousand times
larger than the neutron star radius.

Light surface. As we see in the following, of great importance in the radio pulsar
magnetosphere structure is the so-called light surface—the surface on which the
electric field becomes equal to the magnetic one, viz., |E| = |B|. In the presence
of longitudinal currents, this surface does not coincide with the light cylinder but is
at larger distances and extends to infinity for rather high longitudinal currents. The
light surface defines the magnetosphere boundary more correctly, because the drift
approximation (2.34) and (2.35) becomes inapplicable beyond its boundaries and so
does the MHD approximation.

Polar cap. Since in the polar coordinates r , θ the dipole magnetic field lines are
described by the relation r = rmax sin2 θm , where rmax is the maximum distance of
the given field line from the star center, we can estimate the polar cap radius at
the pulsar magnetic pole R0 = R sin θ0 from which the magnetic field lines extend
beyond the light cylinder. Substituting for rmax the light cylinder radius RL, we get

R0 = R

(
ΩR

c

)1/2

, (2.37)

where the factor

εA =
(
ΩR

c

)1/2

∼ 10−2 (2.38)

is, as we will see, the main small parameter in the theory of the pulsar magneto-
sphere. Thus, for ordinary radio pulsars the polar cap size is only several hundreds
of meters. And on this extremely small, on a cosmic scale, area comparable with
the stadium size, the basic processes responsible for the observed activity of radio
pulsars occur.

Open and closed field lines. As shown in Fig. 2.3, the magnetic field lines going
beyond the light cylinder can diverge and extend to infinity. Since, as was noted, the
particle motion is possible only along the magnetic field, two groups of magnetic
field lines stand out in the magnetosphere. One group passing through the polar
cap intersects the light cylinder and extends to infinity. The other group located far
from the magnetic axis is closed within the light cylinder. The plasma located on the
closed magnetic lines turns out to be captured, whereas the plasma filling the open
magnetic lines can escape the neutron star magnetosphere.

Critical charge density. Finally, it is very important that the charge density in
the magnetosphere of the rotating neutron star must be different from zero. Indeed,
using relation (2.34), we find ρe ≈ ρGJ where
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Fig. 2.3 The magnetosphere
structure of radio pulsars. The
open field lines coming out
from the magnetic poles cross
the light cylinder (dashed and
dotted line). The charge
density  GJ (2.39) changes
the sign on the surface on
which the magnetic lines are
orthogonal to the angular
velocity vector Ω

open
field
lines

light
cylinder

closed
field
lines

ρGJ = 1

4π
divE ≈ −Ω · B

2πc
. (2.39)

This expression was first obtained in P. Goldreich and P. Julian’s pioneer paper (Gol-
dreich and Julian, 1969). Therefore, the critical charge density (2.39) is, generally,
called the Goldreich–Julian (GJ) charge density. For ordinary pulsars, the appropri-
ate concentration nGJ = |ρGJ|/e near the star surface is 1010–1012 1/cm3. Accord-
ingly, the characteristic value of the current density can be written as jGJ = ρGJc.
Finally, the characteristic value of the total electric current in the magnetosphere
can be estimated as a product of the polar cap area, the GJ charge density, and the
velocity of light:

IGJ = πR2
0ρGJc. (2.40)

The physical meaning of the GJ charge density is simple—it is the charge den-
sity needed to screen the longitudinal electric field. The perpendicular electric field
occurs and its value, as we saw, turns out to be exactly the value of the electric drift
in the crossed fields to generate the plasma corotation.

Problem 2.7 Show that for the case of the total corotation (i.e., when the
poloidal currents are absent in the neutron star magnetosphere and, therefore,
the total current j can be written as j = ρeΩ × r), the exact expression for the
GJ charge density has the form
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ρGJ = − Ω · B

2πc

(
1 − Ω2� 2

c2

) . (2.41)

How can the singularity on the light cylinder be explained?

Problem 2.8 Show that the total electric charge of the neutron star for the
plasma-filled magnetosphere is

Q∗ = 1

3

ΩB0

c
R3 
= 0. (2.42)

Compare it with the charge Q∗ (2.12) obtained by integrating the surface
charge density for the vacuum magnetosphere.

Some explanation is also necessary here. First of all, as is evident from relation
(2.35), the light cylinder is the real boundary of the magnetosphere only for the zero
toroidal magnetic field, i.e., for the zero longitudinal electric current. As we will
see, for the sufficiently large longitudinal current (and, hence, for the large enough
toroidal magnetic field), the drift motion can occur at distances much larger than the
light cylinder radius RL. However, as shown in Fig. 2.4, in this case, there is almost
the full compensation of the corotational velocity Ω×r and the toroidal slip velocity
along the magnetic field j‖ Bϕ , so that the drift velocity Udr is directed radially from
the star. Therefore, beyond the light cylinder, in spite of the validity of the drift
approximation, the particle motion is actually perpendicular to the magnetic field
lines.

Further, relation (2.37) for the polar cap radius is only an estimate in order of
magnitude. The point is that the electric currents connected with electric charges
filling the pulsar magnetosphere in the vicinity of the light cylinder begin to disturb
the dipole magnetic field. Therefore, the exact form of the polar cap can be found
together with the solution of the complete problem of the neutron star magneto-
sphere. On the other hand, expression (2.37) allows us to estimate the maximum
value of the voltage drop in the vicinity of the magnetic poles ψmax = E(R0)R0:

ψmax =
(
ΩR

c

)2

RB0. (2.43)

For ordinary pulsars, it yields ψmax ∼ 107–108 MeV.
Finally, important consequences follow from expression (2.39) for the GJ charge

density. As shown in Fig. 2.3, in the vicinity of the neutron star, the charge den-
sity ρGJ changes sign on the surface, where Ω · B = 0. Therefore, except for the
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Fig. 2.4 The drift motion of a
charged particle beyond the
light cylinder in the presence
of the strong toroidal field
Bϕ � Bp is nearly in a radial
direction. The velocity Udr

(which is, naturally, smaller
than the velocity of light) can
be formally resolved into the
corotation velocity Ω × r and
the slip velocity along the
magnetic field j‖B, each of
them can be much larger than
the velocity of light. The
rotation axis is perpendicular
to the figure plane

orthogonal rotator χ = 90◦, the GJ charge density has the same sign in the vicinity
of both magnetic poles (in fact, this property is directly associated with the already
mentioned property of the vacuum magnetosphere—the radial electric field in the
region of the magnetic poles is identical). This implies that an inverse current flow-
ing in the vicinity of the boundary of the closed and open magnetic field lines is sure
to occur—only, in this case, the total charge of the neutron star does not change. We
should call attention to this property since it is the key property in the development
of the theory of the neutron star magnetosphere.

Problem 2.9 Show that the light cylinder (where the corotation velocity
approaches the velocity of light) is just the scale on which

� the electric field is compared in magnitude with the poloidal magnetic
field;

� the toroidal electric currents flowing in the magnetosphere begin to disturb
the poloidal magnetic field of the neutron star;

� the toroidal magnetic field connected with the longitudinal GJ current is
compared in magnitude with the poloidal magnetic field.

2.3 Secondary Plasma Generation

2.3.1 “Inner Gap”

Thus, in the radio pulsar magnetosphere, two substantially different regions must
develop, viz., the regions of open and closed magnetic field lines. The particles
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located on the field lines which do not intersect the light cylinder turn out to be
captured, whereas the plasma on the field lines intersecting the light cylinder can
extend to infinity. Consequently, the plasma must be continuously generated in the
region of the magnetic poles of a neutron star.

The necessity to take into account the secondary plasma generation in the mag-
netic pole region was indicated by Sturrock (1971) and then this process was studied
in more detail by Ruderman and Sutherland (1975), and also by V.Ya. Eidman’s
group (Al’ber et al., 1975). It is based on the above one-photon particle generation in
the strong magnetic field. The longitudinal electric field is generated by a continuous
escape of particles along the open field lines beyond the magnetosphere. As a result,
the longitudinal electric field region forms in the vicinity of the magnetic poles,
the height of which is determined by the secondary plasma generation condition.
Otherwise, the chain of processes is (see again Fig. 2.2)

1. the primary particle acceleration by the longitudinal electric field induced by the
difference of the charge density ρe from the GJ charge density ρGJ;

2. the emission of curvature photons with characteristic frequency ω ≤ ωcur (2.26);
3. the photons propagation in the curved magnetic field up to the secondary electron–

positron pair generation;
4. the secondary particles acceleration, the emission of curvature photons, which,

in turn, give rise to the new generation of secondary particles.

It is important that a greater part of secondary particles is generated already over the
acceleration region, where the longitudinal electric field is rather small, so that the
secondary plasma can escape the neutron star magnetosphere.

To estimate the longitudinal electric field we consider, for simplicity, only the
one-dimensional equation

dE‖
dh

= 4π (ρe − ρGJ), (2.44)

which can be used if the gap height H is much smaller than the size of the polar
cap R0 (2.37). Unfortunately, this approximation is valid for the fastest pulsars only.
Nevertheless, it contains all information concerning the inner gap structure. In spite
of its outward simplicity, Eq. (2.44) comprises a number of substantial uncertainties.
The main uncertainty is, undoubtedly, in the expression for the charge density ρe,
which depends on the particle generation mechanism, which, in turn, is defined by
the value of the longitudinal electric field.

We discuss the basic properties of Eq. (2.44). Thus, for the models with the non-
free particle escape from the neutron star surface, which are, generally, called the
Ruderman–Sutherland model (see the next section), we can take |ρe| � |ρGJ| in the
zero approximation, and the electric field on the star surface can be different from
zero. As a result, we have (Ruderman and Sutherland, 1975)

E‖ ≈ ERS
H − h

H
, (2.45)
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where

ERS = 4πρGJ H, (2.46)

and H is the height of the longitudinal electric field region. Its value should just
be determined from the condition for the onset of the secondary plasma generation.
Indeed, for H < Hcr the longitudinal electric field is not strong enough to effectively
generate particles, whereas for H > Hcr, the secondary plasma results in the fast
screening of the acceleration region. Besides, for the solid star surface, this event
can occur for the antiparallel directions of the magnetic and rotation axes, when
near the polar caps ρGJ > 0, and positively charged particles are to be ejected from
the surface. Within this model, the longitudinal current I , generally speaking, can
be arbitrary, but, certainly, not larger than the GJ current IGJ.

Problem 2.10 Using expression (2.46) connecting the longitudinal electric
field with the gap height H and relations (2.26) and (2.29) for the charac-
teristic energy and the free path of curvature photons, find the expressions for
gap height H and potential drop ψ = E‖ H (Ruderman and Sutherland, 1975)

HRS ∼ λ
2/7
C R2/7

c R3/7
L

(
B

B�

)−4/7

, (2.47)

ψRS ∼ mec2

e
λ

−3/7
C R4/7

c R−1/7
L

(
B

B�

)−1/7

. (2.48)

Here λC = �/mec is the Compton wavelength.
(Hint: the gap height H can be estimated as a sum of primary particle acceler-
ation length lacc and free path of emitted curvature photon lγ . For small accel-
eration lengths lacc, the primary particle energy εe = eE‖lacc and, therefore,
the emitted photon energy εph are low, and the free path of such low-energy
photons appears significant. The short free paths can be realized only for the
sufficiently high energy of photons, for the emission of which a primary par-
ticle is to pass a large distance. Therefore, the minimum value of the sum
lacc + lγ is the scale on which the secondary plasma generation starts, which
can screen the longitudinal electric field. This value is taken as an estimate of
the gap height H .)

On the other hand, if particles can freely escape from the neutron star surface, it
is logical to take here

E‖(h = 0) = 0, (2.49)

and the charge density ρe is close to ρGJ. The longitudinal electric field must also be
zero on the upper boundary of the acceleration region
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E‖(h = H ) = 0. (2.50)

Otherwise, the secondary particles of one of the signs would fail to extend to infinity.
As we see, in this model the longitudinal electric current I is to be very close to GJ
current IGJ. As a result, in the free particle escape model, the longitudinal electric
field is specified only by a small difference between the charge density ρe and the
critical density ρGJ. Indeed, the GJ charge density can be written as

ρGJ = −ΩB cos θb

2πc
, (2.51)

where θb is an angle between the magnetic field and the rotation axis. On the other
hand, for the relativistic plasma moving with velocity v ≈ c, we have within the
same accuracy

ρe = C(Ψ )B, (2.52)

where C(Ψ ) is constant along the magnetic field lines. As we see, the charge densi-
ties (2.51) and (2.52) change differently along the magnetic field line. Thus, the GJ
charge density (2.51), besides the factor B, also contains the geometric factor cos θb.
As a result, the charge-separated relativistic plasma in its motion fails to satisfy the
condition ρe = ρGJ, which gives rise to the particle acceleration in the longitudinal
electric field. The longitudinal electric field gives rise to particle acceleration, to
hard photon emission, and, hence, to secondary electron–positron plasma genera-
tion. Therefore, beyond the acceleration region, the field must already be close to
zero.

Note that the conditions (2.49) and (2.50) can be satisfied simultaneously only if
the electric charge density on the acceleration region boundaries does not coincide
with the GJ density, i.e., when the derivative dE‖/dh is different from zero here (see
Fig. 2.5). As a result, Eq. (2.44) can be rewritten as

Mestel

Arons

Fig. 2.5 The longitudinal electric field on the “preferable” magnetic field lines Aa > 0 in the Arons
(1981) and Mestel (1999) models for Ω · B > 0. In the Mestel model, the plasma charge density
ρe on the star surface is equal to the GJ charge density ρGJ (and, hence, dE/dh = 0), whereas in
the Arons model, the charge density for h = 0, due to the presence of a particle backflow, differs
from ρGJ. As a result, though in both cases the electric field is zero on the star surface, the electric
field direction and, hence, the particle acceleration appear different
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dE‖
dh

= Aa

(
h − H

2

)
, (2.53)

where

Aa = 4π
d(ρe − ρGJ)

dh

∣∣∣∣
h=H/2

. (2.54)

Finally, we have for χ > εA

Aa = 3

2

ΩB0

cR
θm cosϕm sinχ. (2.55)

Here θm ∼ εA is the polar angle and ϕm is an azimuthal angle relative to the magnetic
dipole axis. The solution to Eq. (2.53) has the form

E‖ = −EA
h(H − h)

H 2
, (2.56)

where

EA ≈ 3π

2
|ρGJ| H 2

R
θm cosϕm tanχ ∼ εA

H

R
ERS, (2.57)

so that |EA| � |ERS|. Therefore, for this solution to exist, a particle backflow is
needed; the value of which can be determined from Eq. (2.44):

jback

jGJ
≈ εA

H

R
∼ 10−4. (2.58)

This model was first studied by J. Arons’ group (Fawley et al., 1977; Scharlemann
et al., 1978; Arons and Scharlemann, 1979).

Note that the acceleration regime (when the generated longitudinal electric field
accelerates particles from the star surface) can occur only on the northern half of
the polar cap −π/2< ϕm < π/2 (Aa > 0), for which the magnetic field lines bend
in the direction of the rotation axis and, hence, cos θb increases with distance from
the star surface. In this case, the generated longitudinal electric field accelerates
particles from the star surface. These field lines were called the “preferable” lines.
In the domain π/2 < ϕm < 3π/2 (Aa < 0), where the magnetic field lines, on
the contrary, tend to be perpendicular to the rotation axis, the generated longitu-
dinal electric field would lead to the deceleration of particles rather than to their
acceleration. As a result, within this model, the acceleration and the generation of
the secondary particles occur only in one-half of the region of the open field lines
and, accordingly, the radiation directivity pattern should also have the form of a
semicircle (Arons and Scharlemann, 1979). However, this conclusion contradicts
the observational data (Lyne and Graham-Smith, 1998).

If the bulk particle backflow is absent, Eq. (2.44) yields the completely different
solution
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E‖ ≈ 3π

2
|ρGJ| θm cosϕm tanχ

h2

R
∼ EA

h2

H 2
, (2.59)

in which the longitudinal electric field turns out to be in the opposite direction.
Clearly, relation (2.59) can be used only up to distances h � R0; at larger distances
the longitudinal electric field tends to zero. Consequently, the particle acceleration
is possible only on the “unpreferable” magnetic field lines. Exactly this model, in
which the particle backflow must naturally be rather small, had been developed for
many years by L. Mestel (Mestel and Wang, 1979; Fitzpatrick and Mestel, 1988;
Mestel and Shibata, 1994; Mestel, 1999). Thus, only the consistent kinetic model
can choose between these two realizations [the thorough investigation of this prob-
lem can be found in Shibata (1997) and Shibata et al. (1998)].

2.3.2 Neutron Star Surface

The problem of the neutron star surface structure, which is of interest by itself, is
directly associated with the theory of the radio pulsar magnetosphere. Indeed, as
was mentioned, the inner gap structure greatly depends on the work function ϕw

for electrons (the cohesive energy for nuclei) on the neutron star surface. Recall
that in the 1970s, the nonfree particle escape model was mainly developed. It was
based on a series of theoretical papers on the matter structure in the superstrong
magnetic field, in which the work function had a rather large value ϕw ∼ 1–5
keV (Kadomtsev and Kudryavtsev, 1971; Ginzburg and Usov, 1972; Chen et al.,
1974; Hillebrandt and Müller, 1976; Flowers et al., 1977). However, from the early
1980s, when due to the more accurate computations the work function reduced to
ϕw ∼ 0.1 keV, the free particle escape models grew in popularity (Müller, 1984;
Jones, 1980; Neuhauser et al., 1986).

We stress that the problem remains unsolved. The point is that the accuracy of
determination of work function and cohesive energy is not high enough yet (Usov
and Melrose, 1996). It turned out that even the chemical composition of the neutron
star surface layers is not known—possibly, they do not consist of iron atoms, as
was supposed in most papers. The point is that the chemical composition of the
surface layers on the polar caps can greatly change because of their bombardment by
energetic particles accelerated by the longitudinal electric field in the gap. Besides,
and it is the subject of wide speculation now, iron atoms (which, being the most
stable nuclei, are, undoubtedly, copiously produced) could have been “sunk” by
the action of the gravitational field within the first few years after the formation of
the neutron star when its surface was not solid yet (Salpeter and Lai, 1997). It is not
improbable, therefore, that, in reality, the neutron star surface layers consist of much
lighter atoms rather than iron atoms—hydrogen and helium ones. Since the melting
temperature roughly estimated by the formula (Shapiro and Teukolsky, 1983)

Tm ≈ 3.4 × 107 K

(
Z

26

)5/3 (
ρ

106g/cm3

)
(2.60)
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depends on the atomic number Z , the neutron star surface at temperature T ∼ 106 K
characteristic of ordinary radio pulsars should be liquid and, in any event, must not
prevent the free particle escape. The radio pulsar thermal radiation models are just
based on this pattern (Zavlin and Pavlov, 2002; Haensel et al., 2007).

2.3.3 Propagation of γ -Quanta in the Superstrong Magnetic Field

We now proceed with a brief discussion of the effects of the propagation of high-
energy photons in the superstrong magnetic field in the vicinity of the neutron star
surface. This problem is directly associated with the particle generation mechanism
in the polar regions of radio pulsars. The quantum effects in the magnetic field, the
value of which is close to the critical value B� = 4.4 × 1013 G (2.28), were known
long ago (Berestetsky et al., 1982), but only after the discovery of radio pulsars
there was hope of their direct observation. These may include, for example, the
photon splitting process γ + B → γ + γ + B (Bialynicka-Birula and Bialynicka-
Birula, 1970; Adler, 1971), the change in the cross-section of the two-photon pair
generation γ + γ → e+ + e−, especially near the generation threshold (Kozlenkov
and Mitrofanov, 1986), the quantum synchrotron cooling connected with the fast
particle transition to the lower Landau level (Mitrofanov and Pozanenko, 1987), as
well as the propagation effects due to both the vacuum refraction (Bialynicka-Birula
and Bialynicka-Birula, 1970) and the peculiarities of the photon trajectories in the
vicinity of the generation threshold of secondary electron–positron pairs (Shabad
and Usov, 1984, 1985, 1986). As a result, in the 1970s, the possibility of the direct
detection of the effects connected with a quantizing magnetic field (2.28) seemed
absolutely real (Mésźaros, 1992). Nevertheless, these effects for most radio pulsars
appeared rather weak. The point is that, for example, the expression for the refrac-
tion index in the strong magnetic field (the formula corresponds to one of the linear
polarizations)

n = 1 + 7αfin

90π

(
B

B�

)2

(2.61)

comprises the fine structure constant αfin = e2/�c ≈ 1/137; therefore, we can
expect the occurrence of considerable quantum effects only in the fields B > 1014 G.
For most neutron stars observed as radio pulsars, we can, with adequate accuracy,
suppose that γ -quanta propagate rectilinearly.

However, in the context of the discovery of magnetars (pulsating X-ray sources,
the periods of which amount to a few seconds and the magnetic field estimated
by formula (2.5) reaches 1014–1015 G (Thompson and Duncan, 1993; Kouveliotou
et al., 1998)), this problem has recently become an urgent one. Therefore, the new
thorough computations of both the secondary particle generation process (Weise
and Melrose, 2002) and the photon splitting (Baring and Harding, 1997; Chistyakov
et al., 1998), and the determination of the trajectories of hard γ -quanta near the
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particle generation threshold (Shaviv et al., 1999) were carried out. In particular, it
was shown that for sufficiently large magnetic fields B ∼ 1014–1015 G, the process
of the γ -quanta conversion due to the photon splitting can be considerably sup-
pressed (Baring and Harding, 1998). Consequently, the secondary plasma genera-
tion process can be considerably suppressed as well. It is not surprising, therefore,
that most magnetars are not manifested as radio pulsars.

On the other hand, it was shown (Usov, 2002) that the splitting of ‖-polarized
photons (i.e., those with the electric vector located in the plane containing the
external magnetic field and the wave vector) below the pair production threshold
is strictly forbidden in arbitrary magnetic fields. Solving the system of kinetic equa-
tions for splitting photons and taking into account their polarization, it was shown
that the photon splitting, which was earlier considered as a suppression factor for the
secondary electron–positron plasma generation, is not suppressed at all (Istomin and
Sobyanin, 2007). Moreover, the plasma density in the magnetar magnetosphere can
be even higher than that in the magnetosphere of a pulsar with a weak magnetic field.
Thus, some light can be shed on the recent discovery of the pulsed radio emission
from several magnetars (Malofeev et al., 2007).

But, in general, the new qualitative phenomena that could be helpful in the obser-
vation of the quantum effects in the superstrong magnetic field were not found, and
the earlier obtained results were only refined in the computations.

2.3.4 General Relativity Effects

We consider the GR effects which, unlike the quantizing magnetic field effects, can,
undoubtedly, greatly affect the particle generation process in the vicinity of radio
pulsars. It turned out that in the model of free particle escape from the neutron star
surface, the GR effects must be of vital importance. Recall that the gravitational
potential ϕg on the pulsar surface is rather large

εg = 2|ϕg|
c2

≈ 2G M

Rc2
∼ 0.2, (2.62)

and any computations whose accuracy is better than 20% must be carried out, with
account taken of the relativistic effects. However, in the nonfree particle escape
models, taking account of these effects does not ensure substantial corrections,
because the qualitative structure of the electrodynamic equations does not change.
On the other hand, in the free particle escape model in Eq. (2.44), besides the small
geometric factor εA (2.38), the purely relativistic factor εg appears, which is asso-
ciated with the frame-dragging (Lense–Thirring) effect (Thorne et al., 1986). For
most radio pulsars with P ∼1 s, the relativistic correction εg turns out to be, at least
in order of magnitude, larger than εA so that the GR effects are to be taken into
consideration.

Indeed, as was already mentioned, in the Arons model, the occurrence of longi-
tudinal electric field in the gap region is due to the difference in the plasma charge
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density ρe from the GJ charge density ρGJ (2.39). In the general relativistic case,
Eq. (2.44) is to be rewritten as (Thorne et al., 1986)

d

dh

(
1

α
E‖

)
= 4π (ρe − ρGJ), (2.63)

and the GJ density has the form (see Sect. 3.2.5 for details)

ρGJ = − 1

8π2
∇k

(
Ω − ω

αc
∇kΨ

)
. (2.64)

Here again α is the lapse function, ω is the Lense–Thirring angular velocity, and Ψ

is a magnetic flux. Within the necessary accuracy, they can be written as

α2 = 1 − rg

r
, (2.65)

ω = Ω
rg Ir

Mr3
, (2.66)

Ψ = 1

2
B0 R3 sin2 θm

r
, (2.67)

where B0 is the magnetic field at the neutron star pole and Ir is its moment of inertia.
In the linear order with respect to the small values εA and εg, we now have

ρGJ = − (Ω − ω)B cos θb

2πcα
, (2.68)

where θb is again an angle between the magnetic field line and the rotation axis. On
the other hand, the expression for the charge density of the relativistic plasma has
the form

ρe = C(Ψ )
B

α
, (2.69)

where, as before, C(Ψ ) is constant along the magnetic field lines. As a result, the GJ
charge density (2.68), besides the factor B/α identical to the density ρe (2.69), as
well as the geometric factor cos θb, also contains the factor (Ω −ω), which changes
by the dependence of ω(r ) on r . As a result, for sinχ > εA and cosχ > εA, the
constant Aa in Eq. (2.53) has the form (Muslimov and Tsygan, 1990; Beskin, 1990;
Muslimov and Tsygan, 1992)

Aa = 3

2

ΩB0

cR

[
4
ω

Ω
cosχ + θm cosϕm sinχ + O(ε2

g) + · · ·
]
. (2.70)

As we see, taking account of the GR effects leads to the additional term, pro-
portional to ω/Ω ∼ εg. According to (2.70), for 4ω/Ω > εA tanχ , the major
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contribution to Aa is made by the gravitational term. For the homogeneous density
of the star when on its surface

ω

Ω
= 2

5
εg, (2.71)

this condition can be rewritten as

P > 10−3 s

(
R

106 cm

)2 ( M

M�

)−2

. (2.72)

Hence, the GR effects are of vital importance for all observed pulsars. The most
important consequence of expression (2.70) is that all open field lines prove “prefer-
able” (Beskin, 1990), because the first term in (2.70) proves positive. Thus, allowance
for the GR effects qualitatively changes the conclusions of the first version of the
Arons model. The stationary generation becomes possible over the entire polar cap
surface.

2.3.5 Particle Generation in the Magnetosphere

We discuss how all the above physical processes affect the particle generation in
the vicinity of the neutron star surface. We first consider the effects of the super-
strong magnetic field B > 1014 G characteristic of magnetars. As was noted, only
for these magnetic fields, the pronounced effects of the quantizing magnetic field
should be expected (Baring and Harding, 1997; Shaviv et al., 1999). First of all, it
was obvious long ago that the strong magnetic field must suppress the secondary
plasma generation process. First, with the fields larger than 1013 G, a secondary
electron–positron pair is to be produced at the lower Landau level, which results in
the suppression of the synchrotron radiation (Beskin, 1982; Daugherty and Harding,
1983). Second, the nontrivial vacuum permeability in the vicinity of the generation
threshold at the zero Landau level with the transverse photon momentum close to
2mec can give rise to the deflection of the γ -quanta along the magnetic field. As
a result, instead of two free particles, their bound state is generated, viz., positro-
nium (Shabad and Usov, 1985, 1986). Third, as was mentioned, the photon split-
ting process γ → γ + γ becomes significant, which results in a decrease in their
energy and the suppression (though incomplete) of the secondary particle genera-
tion (Baring and Harding, 1998). However, most radio pulsars have insufficiently
large magnetic fields for these effects to be detected.

On the other hand, for ordinary radio pulsars, the interaction process of primary
particles accelerated in the gap, with X-ray photons radiated by the heated neutron
star surface, may appear substantial; Kardashev et al. (1984) first pointed to the
importance of inverse Compton (IC) scattering in the particle generation region. As
it turned out, the hard γ -quanta generated by this interaction have enough energy
to produce electron–positron pairs and, hence, affect the inner gap structure (Cheng
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et al., 1986; Hirotani and Shibata, 2001). Finally, as was already noted, the value of
the work function ϕw also substantially affects the electric field structure.

Nevertheless, in this part of the theory, new important results have recently been
obtained. In particular, one should mention A. Harding and A. Muslimov (1998,
2002) who studied both the GR effects and the process of (the nonresonance and
resonance) IC scattering of X-ray photons emitted by the neutron star surface. It is
interesting to note that in this model, the acceleration region may not be adjacent
to the neutron star surface, but it is as if suspended over the magnetic poles of the
pulsar. However, as was noted, for a comprehensive analysis, it is necessary to take
into account the kinetic effects, as it was first done by Gurevich and Istomin (1985),
for the acceleration region in vicinity of the neutron star surface within the nonfree
particle escape model (see also Hirotani and Shibata, 2001). Recall that analysis of
the kinetic effects is needed, in particular, for the determination of particle backflow,
which, in turn, is directly associated with the problem of constructing the plasma
generation region.

In conclusion, we emphasize that the general properties of the secondary
electron–positron plasma outflowing from the magnetosphere appeared, as a whole,
to be low-sensitive to the details of the acceleration region structure. For most mod-
els (Ruderman and Sutherland, 1975; Daugherty and Harding, 1982; Gurevich and
Istomin, 1985), both the density and the energy spectra of the outflowing plasma
appear rather universal. Therefore, it is safe to say that the plasma flowing along the
open field lines in the pulsar magnetosphere consists of a beam of primary particles
with energy ε ≈ 107 MeV and density close to the GJ density nGJ and also of
the secondary electron–positron component. Its energy spectrum, within adequate
accuracy, has the power form

N (εe) ∝ ε−2
e , (2.73)

and the energies are enclosed in the range from εmin ∼ 100 MeV to εmax ∼ 104–105

MeV (true, if we suppose the presence of a strong nondipole component near the
magnetic poles, the minimum energies can be reduced to 10 MeV and even 3 MeV).
Note that the minimum energy εmin directly follows from the estimate (2.31), where
for most low-energy particles we should take lγ = R, because for longer free paths
the decrease in the magnetic field with distance from the neutron star surface is
substantial. The total secondary plasma density, as the numerous calculations show,
is to be 103–104 times greater than the GJ density:

λ = ne

nGJ
∼ 103 − 104. (2.74)

Exactly this model was studied in a great number of papers devoted to the pulsar
radio emission theory. It is important that the electron and positron distribution
functions must be shifted from one another [this was already shown in Ruderman
and Sutherland (1975)]. Only in this case, the outflowing plasma charge density
coincides with the GJ charge density.
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2.3.6 “Hollow Cone” Model

As was noted, there is no common viewpoint on the nature of the pulsar coherent
radio emission now. Nevertheless, it turned out that the basic observed properties of
the radio emission can be interpreted by the above particle generation pattern. It is
the so-called hollow cone model (Radhakrishnan and Cooke, 1969), which was pro-
posed already at the end of the 1960s and perfectly accounted for the basic geometric
properties of the radio emission. Indeed, as was shown, the secondary particle gen-
eration is impossible in the rectilinear magnetic field when, first, the intensity of the
curvature radiation is low and, second, the photons emitted by relativistic particles
propagate at small angles to the magnetic field. Therefore, as shown in Fig. 2.6, in
the central regions of the open magnetic field lines, a decrease in secondary plasma
density should be expected.

Fig. 2.6 The hollow cone model. If the intensity of the radio emission is directly connected with
the outflowing plasma density, in the center of the directivity pattern there must be a decrease in
the radio emission. Therefore, we should expect a single mean profile in pulsars whose line of sight
intersects the directivity pattern far from its center and the double profile for the central passage.
The plasma rotation around the magnetic axis leads to the observed subpulse drift

If we make a rather reasonable assumption that the radio emission must be
directly connected with the outflowing plasma density, there must be a decrease
in the radio emission intensity in the center of the directivity pattern. Therefore,
without going into details (actually, the mean profiles have a rather complex struc-
ture (Rankin, 1983, 1990; Lyne and Graham-Smith, 1998)), we should expect a
single (one-hump) mean profile in pulsars in which the line of sight intersects the
directivity pattern far from its center and the double (two-hump) profile for the cen-
tral passage. It is exactly what is observed in reality (Beskin et al., 1993; Lyne and
Graham-Smith, 1998).
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Fig. 2.7 Pulsar distribution in
the P–Ṗ diagram. Encircled
dots indicate radio pulsars in
binary systems. Dashed lines
indicate magnetic field B0

evaluated by magnetodipole
formula (2.5), dashed and
dotted lines indicate
dynamical age τD (Seiradakis
and Wielebinski, 2004). The
death line corresponds to the
relation H = R0

As a result, it was possible to explain all the basic properties of the pulsar radio
emission such as

� the death line in the P–Ṗ diagram (see Fig. 2.7);
� the statistical distribution of pulsars with single and double mean profiles (double

profiles are mainly observed in pulsars in the vicinity of the death line when
particles can be generated only in a thin ring in the vicinity of the polar cap
boundary) (Beskin et al., 1993);

� the characteristic S-shaped change in the position angle of the linear polarization
along the mean profile (Radhakrishnan and Cooke, 1969) (as shown in Fig. 2.8,
the complete change in the position angle is close to 180◦ if the line of sight
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Fig. 2.8 The change in the position angle (left panel) of two linear polarizations along the double
mean profile, which is naturally connected with the change in the magnetic field orientation (right
panel, radial lines) in the picture plane. With the central passage of the directivity pattern, the
change in the position angle is close to 180◦ (with side passage, it is much less)
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intersects the directivity pattern in the vicinity of its center and the small change
in the periphery passage); and also

� the radio window width Wd and even its statistical dependence on the pulsar
period (Rankin, 1990; Beskin et al., 1993).

The latter circumstance is based on the assumption that the generation of radio
emission in all pulsars occurs roughly at the same distance rrad from the neutron
star. We thus have for the width of the directivity pattern Wd

Wd ≈
(
Ωrrad

c

)1/2

≈ 10◦ P−1/2
( rrad

10R

)1/2
, (2.75)

i.e., Wd ∝ P−1/2, which is in agreement with the observations.
As to the death line, it is natural to connect it with the termination of the sec-

ondary plasma generation in the vicinity of the magnetic poles. Indeed, as was men-
tioned, the radio emission must be generated by the secondary electron–positron
plasma produced in neutron star polar regions. Therefore, the condition

H (P, B) = R0(P) (2.76)

(i.e., ψ = ψmax) can be regarded as an “ignition condition” dividing the active and
passive ranges of parameters when the neutron star does not manifest itself as a
radio pulsar. In the nonfree particle escape model, relation (2.76) can be rewritten
as (Ruderman and Sutherland, 1975; Beskin et al., 1984)

Pmax ≈ 1s

(
B0

1012 G

)8/15

≈ 1−3 s. (2.77)

This condition is usually represented as a “death line” in the P–Ṗ diagram. This
satisfactory agreement can, unconditionally, be regarded as the confirmation of the
pattern discussed here. For the free particle escape model, because of the much
smaller values of the accelerating potential, the limit period must be smaller:

Pmax = 0.1 − 0.3 s. (2.78)

The expectations that Pmax can be increased by taking account the GR effects were
not realized (Arons, 1998). Here there are still different solutions, for example,
a dipole displacement from the neutron star center (Arons, 1998) or the exis-
tence of a rather strong nondipole magnetic field near the neutron star surface (Gil
and Melikidze, 2002; Asséo and Khechinashvili, 2002; Kantor and Tsygan, 2003),
which results in a decrease in the curvature of the magnetic field lines Rc and, hence,
in an increase in the particle generation efficiency. Nevertheless, as we see, the free
particle escape models encounter certain difficulties.

Note also that for the nonfree particle escape models, it is convenient to introduce
the dimensionless parameter Q
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Q = 2

(
P

1 s

)11/10 ( Ṗ

10−15

)−4/10

, (2.79)

determined, as we see, directly from the observations. It turns out to be an extremely
convenient parameter characterizing the main characteristics of radio pulsars (Beskin
et al., 1984; Taylor and Stinebring, 1986; Rankin, 1990). For example, the ratios of
the inner radius of the hollow cone near the star surface rin and the inner gap height
H to the polar cap radius R0 are written as

rin

R0
≈ Q7/9, (2.80)

H

R0
≈ Q. (2.81)

Therefore, the pulsars with Q > 1, in which the directivity pattern is a rather narrow
cone, mostly have a double mean profile of the radio emission. It is in these pul-
sars that various irregularities, such as the full radio emission termination (nulling),
mode switching, are detected. Conversely, the pulsars with Q � 1 (rin � R0) are
characterized by stable radio emission, and their mean profiles are mostly of a single
type.

Finally, some properties of radio pulsars (for example, subpulse drift) indirectly
confirm the existence of the potential drop and the particle acceleration over the
magnetic poles of the neutron star (Ruderman and Sutherland, 1975). Indeed, if in
the vicinity of the pulsar surface there is a longitudinal electric field region on the
open field lines, an additional potential difference develops between the central and
periphery domains over the acceleration region so that the additional electric field is
directed to or from the magnetic axis (see Fig. 2.9). As a result, besides the general
motion around the rotation axis, the additional electric drift results in the plasma

Fig. 2.9 Equipotential
surfaces ψ = const (dashed
lines) in the region of the
open field lines. The potential
drop in the acceleration
region gives rise to an
additional potential
difference between the
magnetic surfaces. The
electric drift produced by the
additional electric field (fine
arrows) results in an
additional plasma rotation
around the magnetic axis neutron star

acceleration
region

separatrix
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rotation around the magnetic axis, which, in turn, can be observed as the regular drift
of radiating regions within the mean pulse (see Fig. 2.6). About 200 radio pulsars
with drifting subpulses are known now (Lyne and Graham-Smith, 1998; Weltevrede
et al., 2007).

2.3.7 Secondary Plasma Generation—“Outer Gap”

Finally, we should point to another particle generation mechanism that can occur
already far from the neutron star. As seen from Fig. 2.3, on some open field lines,
where Ω · B = 0, the charge density, according to (2.39), changes the sign. Clearly,
the charge-separated plasma outflowing from the star could not ensure the fulfill-
ment of the condition ρe =ρGJ. Therefore, the hypothesis for the existence of an
“outer gap” in the vicinity of the line ρGJ=0 was put forward, in which the emerg-
ing longitudinal electric field also produces the secondary plasma. However, since,
because of a weak magnetic field, the one-photon conversion becomes impossi-
ble, the main particle generation mechanism is the two-photon conversion process
γ + γ → e+ + e− (Cheng et al., 1986). At present, the thorough computations of
cascade processes in the outer gap were carried out and their aim was to explain
the high-energy radiation of radio pulsars (Chiang and Romani, 1994; Zhang and
Cheng, 1997; Cheng et al., 2000; Hirotani and Shibata, 2001). The chain of pro-
cesses is the following:

1. The occurrence of the longitudinal electric field, because the condition ρe = ρGJ

cannot be satisfied.
2. The acceleration of primary particles.
3. The emission of curvature photons.
4. The IC scattering of thermal X-ray photons emitted from the neutron star surface.
5. The secondary particles generated by the collision of high-energy IC γ -quanta

with soft X-ray photons.

Certainly, in the real conditions, plasma outflowing from the magnetosphere con-
tains particles of both signs so that, in principle, the condition ρe = ρGJ could
be satisfied by slightly changing the longitudinal particle velocities. However, this
problem, which requires, generally speaking, kinetic analysis, has not been solved
yet (see, e.g., Lyubarskii, 1995).

2.4 Pulsar Equation

2.4.1 Force-Free Approximation. The Magnetization Parameter

Let us return to our main subject and place a force-free limit to the GS equation. For
this approximation to be used, it is necessary that
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1. the plasma energy density εpart is much smaller than the energy density of the
electromagnetic field εem;

2. the amount of plasma is enough to screen the longitudinal electric field E‖.

The force-free approximation must be valid in the radio pulsar magnetosphere
with large margin, because the plasma filling the magnetosphere is secondary with
respect to the magnetic field. Following Michel (1969), for a quantitative estimate,
one can introduce the magnetization parameter

σ = eΩΨtot

4λmec3
, (2.82)

where Ψtot is the total magnetic flux and λ = n/nGJ (2.74) is the multiplicity of
particle generation. One should, however, stress that in Michel (1969), the case of
the monopole magnetic field was considered for simplicity. Therefore, we must be
careful when determining this value for concrete astrophysical objects. In particular,
for radio pulsars

Ψtot ≈ πB0 R2
0 ≈ πB0 R2ΩR

c
, (2.83)

which corresponds to the magnetic flux only in the region of open field lines. There-
fore, for the radio pulsar magnetosphere

σ = eB0Ω
2 R3

4λmec4
. (2.84)

As a result, the smallness condition of the particle contribution to the energy–
momentum tensor T αβ

part � T αβ
em up to the light cylinder can be written as

σ � γin. (2.85)

Here γin ∼ 102–104 is the characteristic Lorentz factor of the plasma near the star
surface.

Problem 2.11 Using definitions (2.74) and (2.84), check that relation (2.85)
really corresponds to the smallness condition of the particle contribution (up
to the light cylinder!) for the component T 00, i.e., for the energy density.

The magnetization parameter is one of the key dimensionless parameters char-
acterizing the relativistic plasma moving in the magnetic field. As we see, up to the
factor γin, it coincides with the ratio of the electromagnetic energy flux to the particle
energy flux. In particular, the large value of σ shows that the main contribution to
the energy flux in the interior regions of the magnetosphere is made by the electro-
magnetic flux. For the characteristic parameters of radio pulsar (P∼1 s, B0 ∼1012
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G), we have σ∼104–105, and only for the youngest ones (P∼0.1 s, B0∼1013 G) the
value σ∼106. Nevertheless, the condition σ � γin turns out to be satisfied. As to
the screening of longitudinal electric field, this condition must also be satisfied with
large margin by relation λ � 1 (2.74).

Thus, in the zero order with respect to the parameters σ−1 and λ−1, the radio
pulsar magnetosphere can actually be described by the force-free approximation.
The force-free approximation implies that in the general equation—the energy–
momentum conservation law ∇αT αβ = 0—we can now disregard the particle con-
tribution. Using the explicit form of the energy–momentum tensor of the electro-
magnetic field (Landau and Lifshits, 1989)

T αβ
em =

⎛
⎜⎜⎝

(E2 + B2)

8π

c

4π
E × B

c

4π
E × B − 1

4π
(Ei Ek + Bi Bk) + 1

8π
(E2 + B2) δik

⎞
⎟⎟⎠ , (2.86)

we obtain for the space components the known equation

1

c
j × B + ρeE = 0, (2.87)

or

[∇ × B] × B + (∇ · E) E = 0. (2.88)

Equation (2.87) in the nonrelativistic limit naturally reduces to zero of Ampére’s
force FA = j × B/c. Therefore, the approximation studied is called the force-free
approximation.

2.4.2 Integrals of Motion

Recall now that we are, first of all, interested in axisymmetric stationary configura-
tions. In this case, it is convenient to take, as an unknown variable, the magnetic flux
function Ψ (r, θ ). Strictly, it was just the method first successfully used by H. Grad
(1960) and V.D. Shafranov (1958).

Thus, we write the magnetic field as

B = ∇Ψ × eϕ
2π�

− 2I

c�
eϕ, (2.89)

dependent on two scalar functions Ψ (r, θ ) and I (r, θ ). Here the numerical coef-
ficient in the first term is chosen so that the function Ψ (r, θ ) coincides with the
magnetic flux passing through the circle r, θ, 0 < ϕ < 2π (see Fig. 2.10).

Indeed, the definition of the magnetic flux function is quite analogous to that of
the stream function Φ(r, θ ) (1.90) introduced in Sect. 2.4.2. Therefore, all the basic
properties retain.
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Fig. 2.10 Axisymmetric
magnetic surfaces Ψ (r, θ) =
const. For the case Ψ > 0,
the GJ charge density
ρGJ < 0. Therefore, in the
vicinity of the north polar
cap, I is positive and the
current jp is antiparallel to the
magnetic field B

I

� The condition dΨ = B ·dS is always satisfied (dS—an area element). Therefore,
the function Ψ (r, θ ) has the meaning of a magnetic flux.

� The condition ∇ · B = 0 is satisfied automatically. Therefore, three magnetic
field components are fully specified by two scalar functions Ψ (r, θ ) and I (r, θ ).

� The condition B · ∇Ψ = 0 is also satisfied. Therefore, the lines Ψ (r, θ ) = const
prescribe the form of the magnetic surfaces.

As to I (r, θ ), it is the total electric current passing through the same circle. We
can easily verify this fact by the obvious relation

∫
Bϕdϕ = −(4π/�c)I . The minus

sign in this expression and in the toroidal magnetic field expression (2.89) is chosen
from the condition that the value I is positive for the electric current connected with
the GJ charge density outflow. For the case Ψ > 0 shown in Fig. 2.10, the GJ charge
density is negative, viz., ρGJ < 0 (and, conversely, ρGJ > 0 for Ψ < 0). Therefore,
in the vicinity of the north polar cap, the current jp is always antiparallel to the
magnetic field B. Having written the definition of the poloidal density of the electric
current as

jp = −∇ I × eϕ
2π�

, (2.90)

we obtain the same set of properties as for the magnetic flux function.

� The condition dI = −j · dS is satisfied. Therefore, the function I (r, θ ) has the
meaning of the total electric current inflowing into the magnetosphere.

� The continuity condition ∇ · j = 0 is satisfied automatically (recall that we
consider the stationary configurations only).

� The condition j·∇ I = 0 is satisfied. Therefore, the lines I (r, θ ) = const prescribe
the form of the current surfaces in the magnetosphere.

Finally, the toroidal electric current can easily be determined from the
ϕ-component of Maxwell’s equation ∇ × B = (4π/c)j. Thus, using the definition
(2.89), we have
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jϕ = − c

8π2r sin θ

[
∂2Ψ

∂r2
+ sin θ

r2

∂

∂θ

(
1

sin θ

∂Ψ

∂θ

)]
. (2.91)

As we see, in the definition of the toroidal current density jϕ , the known operator
L̂ = � 2∇k

(
�−2∇k

)
(1.119) written in the spherical coordinates is available again.

On the other hand, when investigating the radio pulsar magnetosphere, as we will
see, it is more convenient to use the cylindrical coordinates (�, z). In this case, the
expression for the toroidal current density looks like

jϕ = − c

8π2�

[
∇2Ψ − 2

�

∂Ψ

∂�

]
. (2.92)

We now proceed to the electric field definition. Naturally, it has three independent
components in the general case. However,

1. Maxwell’s equation ∇ × E = 0, in the axisymmetric case, yields the condition
Eϕ = 0;

2. the full screening assumption yields E‖ = 0.

Thus, it is convenient to write the electric field as

E = − ΩF

2πc
∇Ψ, (2.93)

i.e., express it in terms of one scalar function ΩF(r, θ ).
This expression yields the following important properties:

� The condition E · B = 0 is satisfied automatically.
� From Maxwell’s equation ∇ × E = 0, it follows that ∇ΩF × ∇Ψ = 0. In

the axisymmetric case, where all the values depend only on two variables, this
implies that

ΩF = ΩF(Ψ ), (2.94)

i.e., the surfaces ΩF(r, θ ) = const are to coincide with the magnetic surfaces
Ψ (r, θ ) = const.

� The drift velocity Udr = c E × B/B2, as was mentioned, is now written as

Udr = ΩF × r + j‖B, (2.95)

where again j‖ is some scalar function. As we see, the introduced function ΩF

has the meaning of the angular velocity of particles moving in the magneto-
sphere. The condition (2.94) is the known Ferraro isorotation law (Ferraro, 1937;
Alfven and Fälthammar, 1963) according to which the particle angular velocity
is to be constant on the axisymmetric magnetic surfaces.
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Finally, using definitions (2.89) and (2.90) for B and jp, we can write the toroidal
component of Eq. (2.88) as [∇ I ×eϕ]×[∇Ψ ×eϕ] = ∇ I ×∇Ψ = 0. Consequently,
the total current inside the magnetic surface is also an integral of motion:

I = I (Ψ ). (2.96)

Problem 2.12 Show that in the force-free limit the total energy and angular
momentum losses are now defined as

Wtot = 1

c

∫
E(Ψ )dΨ, Ktot = 1

c

∫
L(Ψ )dΨ, (2.97)

where

E(Ψ ) = ΩF I

2π
, (2.98)

L(Ψ ) = I

2π
. (2.99)

2.4.3 Grad–Shafranov Equation

We are now ready to formulate the GS equation describing the poloidal structure of
the magnetic field. As in the hydrodynamical case, we write the poloidal component
of Eq. (2.87) as

jϕ
c

∇Ψ + Bϕ

c
∇ I − ∇ · E

4π

ΩF

2π�
∇Ψ = 0. (2.100)

This vector equation, under the condition ∇ I = (dI/dΨ )∇Ψ resulting from (2.96),
can again be reduced to the scalar equation multiplied by ∇Ψ . In the cylindrical
coordinates, it has the form

−
(

1 − Ω2
F�

2

c2

)
∇2Ψ + 2

�

∂Ψ

∂�
− 16π2

c2
I

dI

dΨ
+� 2

c2
(∇Ψ )2 ΩF

dΩF

dΨ
= 0, (2.101)

where ∇2 is the Laplace operator. It is just the pulsar equation obtained in dozens
of papers in the 1970s (see, e.g., Mestel (1973); Scharlemann and Wagoner (1973);
Michel (1973a); Mestel and Wang (1979); the final version containing the latter term
was deduced by Okamoto (1974)). The nonrelativistic version of the force-free GS
equation is formulated in Appendix B.
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The pulsar equation has the following properties:

� As any GS equation, it comprises only the stream function Ψ (�, z) and the
invariants ΩF(Ψ ) and I (Ψ ).

� On the other hand, the force-free equation does not contain any additional param-
eters associated with the plasma properties; therefore, it must not be supple-
mented with Bernoulli’s equation.

� Equation (2.101) remains elliptic over the entire space where it is defined; this
observation, as we will see, is very important. Indeed, the force-free equa-
tion (2.87) has meaning only if the condition |E| < |B| is satisfied, whereas
Eq. (2.101) can formally be extended to the nonphysical domain |E| > |B|.

� The differential operator

L̂psr =
(

1 − Ω2
F�

2

c2

)
∇2Ψ − 2

�

∂Ψ

∂�
(2.102)

is linear in the derivatives Ψ ; for ΩF = const, all nonlinearity of the pulsar
equation is only in the last two terms associated with the integrals of motion.

� The differential operator (2.102) does not explicitly contain the coordinate z.
� At small distances, as compared to the light cylinder radius � � RL, the differ-

ential operator Lpsr coincides with L̂ (1.119).
� The equation contains one critical surface—the light cylinder �L = c/ΩF.
� For known flow structure (i.e., given Ψ (�, z), ΩF(Ψ ), and I (Ψ )), the electric

field and the toroidal component of the magnetic field are specified from the
algebraic relations.

� According to the general formula b = 2 + i − s ′ for the number of boundary
conditions, we have b = 3, i.e., the problem requires three boundary conditions.

For example, within the analytical approach, it is convenient to take, as such
boundary conditions, two integrals of motion ΩF = ΩF(Ψ ) and I = I (Ψ ), as well
as the normal component of the magnetic field on the neutron star surface r = R or,
what is the same, the magnetic flux Ψ = Ψ (R,θ ). Thus, for example, for the dipole
magnetic field

Ψ (R, θ ) ≈ |m| sin2 θ

R
. (2.103)

Here m is the magnetic moment of the neutron star. But in this case, it is not clear
whether the solution can be extended to infinity. Therefore, in numerical simula-
tions, one generally uses another set of boundary conditions, viz., the angular veloc-
ity ΩF = ΩF(Ψ ) and the magnetic flux Ψ both on the neutron star surface and “at
infinity” (i.e., on the outer boundary of the computational domain). Then the current
I (Ψ ) is to be determined from the solution.

It is very important that Eq. (2.101) contains two key values—the longitudinal
current I and the angular rotational velocity ΩF, the latter is directly associated with
the voltage drop in the inner gap. Indeed, as shown in the following section, the
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electric and magnetic fields for the arbitrary inclination angle χ must be connected
by the relation

E + Ω × r
c

× B = −∇ψ, (2.104)

where ψ at small distances � � RL has the meaning of the electric potential
in the rotating coordinate system. In particular, since in the interior of a perfectly
conducting star Ein + (Ω × r/c) × Bin = 0, we have ψin = 0. On the other hand,
for the case of the zero longitudinal electric field E‖ = 0, we have B · ∇ψ = 0.
Thus, in the domain, where the condition E‖ = 0 is satisfied, the potential ψ must
be constant on the magnetic surfaces

ψ = ψ(Ψ ). (2.105)

Hence, in the region of the closed magnetic field lines (i.e., the field lines not out-
going beyond the light cylinder), we simply have ψ = 0. On the other hand, in
the region of the open field lines, which are separated from the neutron star by the
longitudinal electric field region, the potential ψ is different from zero (see Fig. 2.9).
Its value coincides with the electric potential drop in the particle generation region.
The occurrence of the nonzero potential ψ in the region of the open field lines
leads to additional plasma rotation around the magnetic axis, which is observed as
a subpulse drift (see Fig. 2.6).

Indeed, using the definition of the electric field (2.93), we find that in the axisym-
metric case the angular velocity ΩF can be written as

ΩF = Ω + 2πc
dψ

dΨ
. (2.106)

It is easy to verify that the derivative dψ/dΨ is always negative, so the plasma angu-
lar velocity ΩF is always smaller than the angular velocity of the neutron star Ω .
The value ψ(P,B0) is determined by the concrete particle generation mechanism. In
the following, it is convenient to introduce the dimensionless accelerating potential

β0 = ψ(P,B0)

ψmax
, (2.107)

where ψmax (2.43) is the maximum potential drop in the acceleration region. As a
result, the angular velocity ΩF over the acceleration region, where the secondary
plasma screens the longitudinal electric field (and, therefore, the GS equation
method can be used), is simply determined by ΩF = (1−β0)Ω . As to the longitudi-
nal currents, it is convenient to normalize them to the GJ current density jGJ = cρGJ.
As a result, we can write

I (Ψtot) = i0 IGJ, (2.108)



128 2 Force-Free Approximation—The Magnetosphere of Radio Pulsars

where

IGJ = B0Ω
2 R3

2c
(2.109)

is the characteristic total current across the polar cap surface.

2.4.4 Mathematical Intermezzo—Quasistationary Formalism

In this section, we call attention to some relations involving the quasistationary
generalization of the above equations describing the magnetosphere of an inclined
rotator. The assumption of quasistationarity implies that we consider the electro-
magnetic fields that depend on time t and angular coordinate ϕ only in ϕ−Ωt com-
bination. Note that the condition for quasistationarity is wider than the condition for
time independence of all values in the reference frame rotating with angular velocity
Ω , because the quasistationarity condition can be extended beyond the light cylinder
where the rotation with angular velocity Ω is impossible. In particular, the spherical
wave (2.15), (2.16), (2.17), (2.18), (2.19), and (2.20) emitted by the rotating neutron
star in vacuum satisfies the quasistationarity condition.

When the time dependence is available in all equations only in the ϕ − Ωt
combination, all time derivatives can be replaced by derivatives with respect to the
coordinates using the relations (Mestel, 1973)

∂

∂t
Q = −Ω

∂

∂ϕ
Q, (2.110)

∂

∂t
V = −(Ω × r,∇)V + Ω × V (2.111)

for the arbitrary scalar Q(�,ϕ−Ωt, z) and the vector V(�,ϕ−Ωt, z) fields. Using
now the known vector relation ∇ × [U × V] = −(U∇)V + (V∇)U + (∇ · V)U −
(∇ · U)V, we can rewrite the condition (2.111) as

1

c

∂

∂t
V = ∇ × [βR × V] − (∇ · V)βR. (2.112)

Hereafter, by definition,

βR = Ω × r
c

(2.113)

is the corotation vector. As is easily checked, ∇ · βR = 0.

Problem 2.13 Check relations (2.110), (2.111), and (2.112).
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Using relations (2.110), (2.111), and (2.112), we can rewrite Maxwell’s equa-
tion as

∇ · E = 4πρe, (2.114)

∇ × E = −∇ × [βR × B], (2.115)

∇ · B = 0, (2.116)

∇ × B = ∇ × [βR × E] + 4π

c
j − 4πρeβR. (2.117)

Equation (2.115) just yields relation E + βR × B = −∇ψ (2.104), where

ψ = Φe − (βR · A), (2.118)

and Φe and A are, respectively, the scalar and vector potentials of the electromag-
netic field.

If the (4π/c)j − 4πρeβR combination in (2.117) is also zero (for example, this is
the case for the vacuum approximation), this equation can be resolved as

B − βR × E = −∇h, (2.119)

where h(�,ϕ − Ωt, z) is an arbitrary scalar function. In this case, the electric and
magnetic fields are expressed in terms of the potentials ψ and h as

Ep = 1

1 − β2
R

(−∇ψ + βR × ∇h) , (2.120)

Eϕ = − 1

�

∂ψ

∂ϕ
, (2.121)

Bp = 1

1 − β2
R

(−∇h − βR × ∇ψ) , (2.122)

Bϕ = − 1

�

∂h

∂ϕ
. (2.123)

Substituting these expressions in equations ∇ · E = 0 and ∇ · B = 0 valid for the
vacuum case, we obtain the system of equations (Beskin et al., 1993)

L̂2ψ − 2

1 − x2
r

∂h

∂z′ = 0, (2.124)

L̂2h + 2

1 − x2
r

∂ψ

∂z′ = 0, (2.125)

where xr = Ω�/c, z′ = Ωz/c, and the operator L̂2 is
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L̂2 = ∂2

∂x2
r

+ 1

xr

1 + x2
r

1 − x2
r

∂

∂xr
+ 1 − x2

r

x2
r

∂2

∂ϕ2
+ ∂2

∂z′2 . (2.126)

Problem 2.14 Check that the solutions to system (2.124) and (2.125) for the
orthogonal rotator (i.e., if sinχ = 1)

h = |m| sin θ Re

(
1

r2
− i

Ω

c

1

r
− Ω2

c2

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
,(2.127)

ψ = |m| sin θ cos θ Re

(
Ω

c

1

r
− i

Ω2

c2

)
exp

(
i
Ωr

c
+ iϕ − iΩt

)
,(2.128)

exactly correspond to the electromagnetic fields (2.15), (2.16), (2.17), (2.18),
(2.19), and (2.20) for the rotating magnetic dipole.

Within the quasistationary approximation, we can write the general equation for
the magnetic field. Indeed, the condition for constancy of the total current I (2.96)
on the magnetic surfaces can be regarded as a consequence of Eq. (2.95) for the drift
velocity Udr. Therefore, the electric current can also be represented as the expansion
j = ρe Ω × r + i‖B. Substituting this condition in the general equation (2.117), we
readily see that ∇ · (i‖B) = 0 and, hence, the function i‖ must also be constant along
the magnetic field lines, viz., B · ∇i‖ = 0. In particular, if the longitudinal current is
zero near the neutron star surface, it is to be zero in the entire magnetosphere. As a
result, Eq. (2.117), with account taken of (2.104), can be rewritten as (Beskin et al.,
1983)

∇ × {(1 − β2
R)B + βR(βR · B) + [βR × ∇ψ]} =

4π

1 − β2
R + βR[∇ψ × B]/B2

[
i‖
c

(
(1 − β2

R)B + [βR × ∇ψ]
)

+ [∇ψ × B]

B2

(
Ω · B
2πc

+ 1

4π
(∇2ψ − (βR∇)(βR∇ψ))

)]
. (2.129)

Along with the equation ∇ · B = 0 (given the scalar functions i‖ and ψ), it specifies
the quasistationary magnetic field structure.

The quasistationary approximation is a natural generalization to axisymmetrical
stationary configurations studied here. On the other hand, the possibility to use it
seems unlikely. The point is that in the quasistationary case, it is impossible to intro-
duce the analogue of the unique function Ψ describing the magnetic surfaces. As a
result, one fails to reduce Maxwell’s equations to a single scalar equation for the
stream function by formalizing the constancy condition of the potential ψ and the
current i‖ along the given magnetic field line. Therefore, Eq. (2.129) was not essen-
tially analyzed and its solutions were found only in the exceptional cases (Beskin
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et al., 1983; Mestel et al., 1999), where it was actually reduced to the system of
equations (2.124), (2.125) for the scalar functions ψ and h.

2.5 Energy Losses of Radio Pulsars

2.5.1 Current Loss Mechanism

Before proceeding to the discussion of the exact solutions to the pulsar equation,
we consider the problem of the energy losses of the rotating neutron star. As was
noted, in the vacuum approximation, the only mechanism resulting in the pulsar
slowing down is a magnetodipole radiation. However, in the case of the plasma-
filled magnetosphere, another slowing-down mechanism connected with the electric
currents flowing in the magnetosphere occurs.

Indeed, the total current outflowing from the pulsar surface is to be zero. On the
other hand, as was specially noted above, the charges of the same sign are to outflow
from both magnetic poles (the charge densities ρGJ in the vicinity of the magnetic
poles are identical). Therefore, an inverse current making up for the charge loss
of the neutron star must inevitably flow along the separatrix dividing the open and
closed magnetic field lines. As a result, the currents Js that close the longitudinal
currents in the magnetosphere flow over the pulsar surface (see Fig. 2.11). The pon-
deromotive action of these currents must result in the slowing down of the radio pul-
sar rotation (Beskin et al., 1993). It is important that this slowing-down mechanism
occurs for the axisymmetric rotator when the magnetodipole losses are obviously
zero. Actually, this mechanism was developed even in P. Goldreich and P. Julian’s
(1969) pioneer paper that was devoted to the axisymmetric magnetosphere.

Fig. 2.11 Electric current
structure (contour arrows) in
the magnetic pole region of
the neutron star. Ampére’s
force FA connected with the
surface current Js generates
the moment of force K
resulting in the neutron star
slowing down. For inclination
angles χ not too close to 90◦,
the slowing-down moment K
is antiparallel to the neutron
star magnetic moment. The
energy flux over the
acceleration region is mainly
connected with the Poynting
vector (shaded arrows)

Js Js

A A
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We first emphasize that if the energy losses of radio pulsars are really connected
with the rotational kinetic energy loss of the neutron star, the total energy losses
Wtot = −IrΩΩ̇ and the angular momentum losses Ktot = −IrΩ̇ should be con-
nected by the relation

Wtot = ΩKtot. (2.130)

Hence, the energy and the angular momentum for the outgoing radiation must satisfy
the same condition.

To show that relation (2.130) really holds for the current losses, we write the
energy losses as

Wtot = −Ω · K, (2.131)

where

K = 1

c

∫
[r × [Js × B]]dS (2.132)

is a slowing-down moment connected with Ampére’s force of the current flowing
on the surface. Here, for simplicity, we consider the axisymmetric case. The general
relations are given in the following section.

It is easy to show that for χ = 0◦, the slowing-down moment is exactly antipar-
allel to the neutron star angular velocity. The surface current Js must satisfy the
continuity equation

∇2Js = jn, (2.133)

where ∇2 is a two-dimensional differentiation operator and jn is the normal com-
ponent of the longitudinal current flowing in the magnetosphere. As a result,
Eq. (2.133) can be rewritten as

1

R sin θ

d

dθ
(sin θ Jθ ) = [∇ I × eϕ]n

2πR sin θ
. (2.134)

It yields

Js = I

2πR sin θ
eθ . (2.135)

Using formulae (2.131) and (2.132), we can write the total energy losses as

Wtot = Ω

2πc

∫
I (Ψ )dΨ. (2.136)
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On the other hand, the total losses of the angular momentum Ktot (2.132) are rewrit-
ten as

Ktot = 1

2πc

∫
I (Ψ )dΨ. (2.137)

As a result, relation (2.130), as was expected, turns out to be identically valid for
the current losses.

Besides, we should point out that expression (2.136), as is seen, can be expanded
into the sum of two terms

Wtot = Wem + Wpart. (2.138)

Here the first term

Wem = 1

2πc

∫
ΩF(Ψ )I (Ψ )dΨ, (2.139)

according to definitions (2.89) and (2.93), is just the Poynting vector flux

Wem = c

4π

∫
[E × B]dS. (2.140)

Therefore, Wem corresponds to the electromagnetic energy flux flowing away from
the neutron star. As is expected, the electromagnetic energy losses are different from
zero only in the presence of the longitudinal electric current generating the toroidal
magnetic field. Note that the energy is transported at zero frequency; therefore, the
electromagnetic field transporting this energy is not an electromagnetic wave in an
ordinary sense.

On the other hand, the second term

Wpart = 1

2πc

∫
I (Ψ )[Ω − ΩF(Ψ )]dΨ, (2.141)

according to relation (2.106), can be rewritten as

Wpart = −
∫

dψ

dΨ
I (Ψ ) dΨ = −

∫
I (Ψ )dψ =

∫
ψdI = −

∫
ψjedS. (2.142)

Here, when integrating by parts, we used the zero condition of the potential ψ on
the polar cap boundary. As we see, the losses Wpart correspond to the energy gained
by primary particles in the acceleration region.

Problem 2.15 Show that relation (2.138) holds for any inclination angle χ

and, in particular, for any form of the polar cap.
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(Hint: since the source of both the surface current Js and the additional mag-
netic field BT is the longitudinal current i‖B flowing in the region of open
field lines (∇ · Js = i‖ Bn , ∇ × BT = (4π/c)i‖B), as is easily checked, they
are connected by the simple relation

Js = − c

4π
[BT × n]. (2.143)

As a result, formulae (2.131) and (2.132) valid for any inclination angle χ can
be identically rewritten as

Wtot = c

4π

∫
(βR · B)(B · dS). (2.144)

Further, it is necessary to use relation (2.104) yielding the identity

[E × B]dS = (βR · B)(B · dS) + [∇ψ × B]dS (2.145)

and the condition ψ = 0 on the polar cap boundary.)

Thus, already from the analysis of the axisymmetric case, we can make a number
of important conclusions.

1. The compatibility condition Wtot = ΩKtot (2.130) cannot be obtained within the
force-free approximation, because in this approximation there is no additional
term Wpart (2.141) corresponding to the energy of particles accelerated in the
inner gap. Attempts to solve the loss problem by the force-free approximation,
inevitably, lead to misunderstanding (Holloway, 1977; Shibata, 1994).

2. Under the condition ψ � ψmax, of major importance in the total balance of
current losses is the electromagnetic energy flux at zero frequency Wem (2.139).
But for pulsars located near the “death line” in the P–Ṗ diagram (for which
the condition ψ ∼ ψmax is satisfied), the losses Wpart correspond to the energy
gained by primary particles in the acceleration region rather than to the energy
of particles flowing along the open field lines. As was shown, a considerable
part of the energy loss Wpart is not used to generate particles but low-energy
γ -quanta able to freely escape the neutron star magnetosphere. Therefore, the
γ -quanta luminosity of radio pulsars located near the “death line” region is up
to a few percent of the total losses IrΩΩ̇ . In these pulsars, the efficiency of
the rotation energy processing in the high-energy radiation appears much larger
than in the radio band. Consequently, the particle energy flux, at least, inside
the light cylinder, appears much smaller than the flux Wem transported by the
electromagnetic field. This fact just corresponds to the condition σ � 1 (2.82)
valid for all radio pulsars.



2.5 Energy Losses of Radio Pulsars 135

3. On the other hand, for the slowing-down current mechanism discussed, the
change in the angular moment Ktot is due to the electrodynamic losses (2.137).
This must be the case as the angular momentum of photons Lph emitted in the
vicinity of the star surface is much less than εph/Ω . Therefore, the γ -quanta
emitted in the vicinity of the neutron star surface cannot play a considerable role
in the total balance of the angular momentum losses.

2.5.2 Slowing Down of Inclined and Orthogonal Rotators

We now discuss the problem of the energy losses of neutron stars for the arbitrary
inclination angle χ . The necessity to do this is already obvious from an uncertainty
in the expression for the energy losses of radio pulsars at the stage of the orthogonal
rotator. The point is that the simple assumption based on the analysis of only the
longitudinal currents results in a decrease in the factor (ΩR/c)1/2 as compared to
the current losses of the axisymmetric rotator (Mestel et al., 1999). Indeed, let us
estimate the energy losses by the Poynting vector flux through the light cylinder
surface RL = c/Ω

Wtot = c

4π

∫
[E × B]dS ∼ cE(RL)Bϕ(RL)R2

L. (2.146)

The electric field in the vicinity of the light cylinder E(RL) is determined only by
the value of the poloidal magnetic field Bp

E(RL) ≈ ΩRL

c
Bp ≈ Bp, (2.147)

and according to the dependence B ∝ r−3 for the dipole magnetic field within
the light cylinder, we have Bp(RL) ≈ (ΩR/c)3 B0, where B0 is a magnetic field
on the neutron star surface. The toroidal magnetic field Bϕ is connected with the
longitudinal currents flowing in the magnetosphere. Therefore, the charge density
of the orthogonal rotator within the polar cap R0 ∼ (ΩR/c)1/2 R is εA = (ΩR/c)1/2

times less than that of the axisymmetric rotator. The toroidal magnetic field on the
light cylinder can be estimated as

Bϕ(RL) ≈
(
ΩR

c

)1/2

Bp(RL), (2.148)

which yields the additional factor εA in the expression for the energy losses. How-
ever, a comprehensive analysis shows that, in reality, a decrease in the factor must
have the form ε2

A = (ΩR/c), so that the total losses of the orthogonal rotator should
be written as (Beskin et al., 1993; Beskin and Nokhrina, 2004)
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W orth
tot ≈ B2

0Ω
4 R6

c3

(
ΩR

c

)
. (2.149)

To show this, we are to write the most general expression for the surface current
Js in the presence of the strong magnetic field. It can be divided into two compo-
nents, a parallel and a perpendicular one to the surface electric field Es, i.e., we write
the current Js as

Js = J(1)
s + J(2)

s , (2.150)

where

J(1)
s = Σ||Es, (2.151)

J(2)
s = Σ⊥

[
Bn

Bn
× Es

]
. (2.152)

Here Σ|| is the Pedersen conductivity and Σ⊥ is the Hall conductivity. Suppose now
that the pulsar surface conductivity perpendicular to the magnetic field is homoge-
neous and the field Es has the potential ξ ′. Hence, relations (2.151) and (2.152) look
like

J(1)
s = ∇ξ ′, (2.153)

J(2)
s = Σ⊥

Σ‖

[
Bn

Bn
× ∇ξ ′

]
. (2.154)

Note at once that since the magnetic field structure in the vicinity of the pulsar
surface is symmetric about the plane passing through the vectors of the angular
velocity and the magnetic moment of the neutron star, the surface current should
have the same symmetry. Thus, the currents proportional to Σ⊥ do not contribute to
the energy losses of the neutron star.

As a result, Eq. (2.133) is now rewritten as

∇2
2ξ

′ = −i‖ B0. (2.155)

If we make in this equation the substitution xm = sin θm and introduce the dimen-
sionless potential ξ = 4πξ ′/B0 R2Ω and the current i0 = −4π i‖/ΩR2, we finally
get

(
1 − x2

m

) ∂2ξ

∂x2
m

+ 1 − 2x2
m

xm

∂ξ

∂xm
+ 1

x2
m

∂2ξ

∂ϕ2
m

= i0(xm, ϕm). (2.156)

Here again θm and ϕm are spherical coordinates relative to the magnetic axis. Natu-
rally, the solution to Eq. (2.156) substantially depends on the boundary conditions.
As is shown below, this boundary condition is the assumption that beyond the polar
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cap there are no surface currents associated with the bulk longitudinal current flow-
ing in the magnetosphere. In this case, the boundary condition can be written as

ξ [x0(ϕm), ϕm] = const, (2.157)

where the function x0(ϕm) prescribes the form of the polar cap.
We should emphasize that the main uncertainty is just in this assertion. Indeed,

the absence of the longitudinal current in the region of the closed field lines xm > x0,
i.e., the fulfillment of the condition i0(xm > x0, ϕm) = 0, does not imply that the
gradient ∇ξ (and, hence, the surface current Js) is also zero here. In the case of the
inclined rotator, the longitudinal current closure can occur beyond the polar cap,
where the equation for the potential ξ has the form ∇2ξ = 0. The solution to this
equation is a set of multipole flows ξn ≈ An cosn ϕm/xn

m whose amplitudes An could
be quite arbitrary. The corresponding jump of the derivative of the potential ξ on the
polar cap boundary fixes the value of the surface current flowing along the separatrix
dividing the region of closed and open field lines (see Fig. 2.12). Otherwise, this
implies that, besides the bulk current flowing along the open field lines, additional
surface current must flow in the magnetosphere; the value of the current, at first
sight, can be in no way associated with the value of the bulk current.

However, it is easy to show that, in reality, the closing surface currents cannot
extend beyond the polar cap. If this were the case, the longitudinal currents would
exist in the closed magnetosphere region (see Fig. 2.13). Indeed, as is evident from
relations (2.151) and (2.152), the existence of the surface current Js must, inevitably,
be accompanied by the occurrence of the surface electric field Es, i.e., the electric
potential difference between various points of the neutron star surface, which are

Fig. 2.12 The structure of
electric currents flowing in
the vicinity of the magnetic
poles of the orthogonal
rotator. The currents flowing
along the separatrix (bold
arrows) dividing the region of
closed and open field lines
are compatible with the bulk
currents (contour arrows), so
the closing surface currents
(fine arrows) are totally
concentrated within the polar
cap

Ω

Closed
field
lines

Open
field

linesm
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Fig. 2.13 Surface current
structure (fine lines) and the
toroidal magnetic field
(dotted lines) for two
magnetic poles of the
orthogonal rotator. If the
surface currents flew beyond
the polar caps (dashed lines),
this would give rise to a
potential difference between
the points A and A′

connected by the closed
magnetic field line. The
surface current structure
corresponds to the solution
(2.159)

A' A

connected by the closed magnetic field lines. But this contradicts the assumption
of the absence of longitudinal currents in the closed magnetosphere. Consequently,
the current flowing along the separatrix must be compatible with the bulk currents
flowing within the open field line region so that the closing surface currents may be
totally concentrated within the polar cap. This just leads to the boundary condition
(2.157).

On the other hand, for the arbitrary inclination angle χ the current i0 can be
written as a sum of the symmetric and antisymmetric components. It is natural to
normalize the longitudinal current to the GJ current jGJ = cρGJ. Supposing the
pulsar magnetic field to be a dipole one, we obtain for the GJ current with xm � 1

iGJ(xm, ϕm) ≈ cosχ + 3

2
xm cosϕm sinχ. (2.158)

Since within the polar cap xm ∼ εA � 1, we obtain iGJ ∼ 1 for χ � 0 and iGJ ∼ εA

for χ � 90◦. In the following, we write the current i0 as i0 = iS + iAxm cosϕm,
where iS and iA are the amplitudes of the symmetric and antisymmetric longitudinal
currents normalized to the corresponding components of the GJ current (2.158).
In particular, for the GJ current, we have iS = cosχ and iA = (3/2) sinχ . Thus,
the solution to Eq. (2.156) is fully defined by the bulk longitudinal current i0. For
example, for χ = 90◦ for the GJ current i0 = iAxm cosϕm and for x0 = const, we
have (Beskin et al., 1993)

ξ = iA
xm(x2

m − x2
0 )

8
cosϕm. (2.159)
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Problem 2.16 Show that in this case the total current Isep flowing along the
separatrix is 3/4 the total bulk current Ibulk flowing in the region of the open
field lines:

Isep

Ibulk
= −3

4
. (2.160)

Further, we expand the slowing-down moment K (2.132) in terms of the vec-
tors em, n1, and n2, where em = m/|m|, the unit vector n1 is perpendicular to the
magnetic moment m and lies in the plane formed by the vectors Ω and m (and
Ω · n1 > 0), and n2 = em × n1

K = K‖em + K⊥n1 + K†n2. (2.161)

As a result, we have (Beskin et al., 1993)

K‖ = − B2
0 R4Ω

c

∫ 2π

0

dϕm

2π

∫ x0(ϕm)

0
dxm x2

m

√
1 − x2

m
∂ξ

∂xm
, (2.162)

and K⊥ = K1 + K2, where

K1 = B2
0 R4Ω

c

∫ 2π

0

dϕm

2π

∫ x0(ϕm)

0
dxm

(
xm cosϕm

∂ξ

∂xm
− sinϕm

∂ξ

∂ϕm

)
, (2.163)

K2 = B2
0 R4Ω

c

∫ 2π

0

dϕm

2π

∫ x0(ϕm)

0
dxm x3

m cosϕm
∂ξ

∂xm
, (2.164)

and K†, as we will see, does not enter the Euler equations at all. Here we also took
into account that both magnetic poles contribute to the slowing-down moment.

Since integration over xm in (2.163) and (2.164) is taken to the polar cap bound-
ary x0(ϕm) ∼ εA, as an estimate, we could take K2 ∼ ε2

A K1, i.e., K2 � K1. How-
ever, as is readily checked, when the boundary condition (2.157) is satisfied, the
integrand in (2.163) is a complete derivative with respect to ϕm:

∫ x0(ϕm)

0
dxm

(
xm cosϕm

∂ξ

∂xm
− sinϕm

∂ξ

∂ϕm

)
=

∂

∂ϕm

[
−

∫ x0(ϕm)

0
dxm ξ sinϕm + ξ (x0, ϕm) x0(ϕm) sinϕm

]
. (2.165)

Therefore, the contribution K1 appears identically equal to zero. As a result, the
expressions for K‖ and K⊥ have the form
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K‖ = − B2
0Ω

3 R6

c3

[
c‖iS + μ‖

(
ΩR

c

)1/2

iA

]
, (2.166)

K⊥ = − B2
0Ω

3 R6

c3

[
μ⊥

(
ΩR

c

)1/2

iS + c⊥

(
ΩR

c

)
iA

]
, (2.167)

where c‖ and c⊥ are factors of the order of unity dependent on the particular profile
of the longitudinal current i0 and the form of the polar cap. As to the coefficients μ‖
and μ⊥, they are associated with the polar cap axisymmetry and their contribution
proves unessential. In particular, μ‖(0) = μ⊥(0) = 0 and μ‖(90◦) = μ⊥(90◦) = 0.

We can explain the unavailability of the leading term K1 (2.163) for the energy
losses. As was shown above, the energy losses of radio pulsars Wtot can be identi-
cally rewritten as (2.144)

Wtot = c

4π

∫
(βR · B)(B · dS). (2.168)

On the light cylinder, expression (2.168) coincides with the estimate (2.146) but can
be used in the vicinity of the neutron star surface as well. It is easy to verify that
the condition of the current closure within the polar cap (2.157) is equivalent to the
condition of the complete screening of the magnetic field BT, which is caused by the
longitudinal currents flowing in the region of the open field lines. This fact is obvious
for the axisymmetric rotator; however, it needs a substantial additional assumption
for the angles χ ≈ 90◦. As shown in Fig. 2.13, the toroidal magnetic field specifying
the value (βR · B) must not extend beyond the polar cap. As a result, in the zero
approximation, the mean value of the scalar product (βR · B) in the region of open
field lines turns out to be zero and the energy loss itself is determined by the small
corrections ∼ε2

A associated with the curvature of the neutron star surface. Clearly,
the pattern must be the same on the light cylinder. In other words, for the orthogonal
rotator, the mean value of the toroidal magnetic field of order Bϕ(RL) ∼ i0 Bp(RL)
is to be zero on the light cylinder. This establishes the difference in the estimates of
the energy losses for the orthogonal rotator.

Writing the Euler equations, we can find the change in the angular velocity Ω̇

and the inclination angle χ̇ of the pulsar:

Ir
dΩ

dt
= K‖ cosχ + K⊥ sinχ, (2.169)

IrΩ
dχ

dt
= K⊥ cosχ − K‖ sinχ. (2.170)

Here we, for simplicity, suppose that the neutron star is spherically symmetric, and
its moment of inertia Ir is thus independent of the orientation of the rotation axis.
As a result, for angles χ not too close to 90◦, so that cosχ > ε2

A (i.e., when the
symmetric currents are of major importance), we find
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dΩ

dt
= −c‖

B2
0Ω

3 R6

Irc3
iS cosχ, (2.171)

dχ

dt
= c‖

B2
0Ω

2 R6

Irc3
iS sinχ. (2.172)

We readily see that Eqs. (2.171) and (2.172) yield the conservation of the invari-
ant

Icur = Ω sinχ, (2.173)

different from (2.22). This is because, as was mentioned, the slowing-down moment
K (2.132) for the symmetric currents is opposite to the magnetic dipole m, so the
projection of the angular velocity Ω onto the axis perpendicular to m is an integral
of motion. For the orthogonal rotator χ ≈ 90◦, where cosχ < ε2

A, we get

dΩ

dt
= −c⊥

B2
0Ω

4 R7

Irc4
iA. (2.174)

Because of the dependence iS ≈ cosχ , the contribution of the symmetric current
can be disregarded here. The comparison of relations (2.171) and (2.174) shows
that the energy release of pulsars at the orthogonal rotator stage (and for GJ current
iA ≈ 1) is ΩR/c times less than that of axisymmetric pulsars.

To sum up, we can make the general conclusions:

1. For inclination angles χ < 90◦, the slowing-down moment K (2.132) is antipar-
allel to the magnetic moment of the neutron star m. Therefore, for the current
losses the invariant value is

Ω sinχ = const. (2.175)

This conclusion directly follows from the analysis of the Euler equations, viz.,
the projection of the angular velocity onto the direction perpendicular to the
applied moment of forces is an invariant of motion (Landau and Lifshits, 1976).
Consequently, unlike the magnetodipole losses, the inclination angle must increase
with time. According to the invariant (2.173), the characteristic time of the
change in the inclination angle χ (τχ = χ/2χ̇ ) coincides with the dynamical
age of the pulsar τD = P/2Ṗ

τD ≈ Irc3

2B2
0Ω

2 R6
≈ 10 mln years

(
P

1 s

)2 ( B0

1012 G

)−2

. (2.176)

2. The current losses Wtot can be rewritten as Wtot = V I . Here

V ∼ E L ∼
(

B0
ΩR0

c

)
R0 (2.177)



142 2 Force-Free Approximation—The Magnetosphere of Radio Pulsars

is the characteristic potential drop within the polar cap and I is the total current
circulating in the magnetosphere. Using now the definition i0 = I/IGJ and the
fact that for χ not too close to 90◦, we can take V ≈ ψmax to obtain

Wtot = c‖
B2

0Ω
4 R6

c3
i0 cosχ. (2.178)

The coefficient c‖∼ 1, as seen from relation (2.164), depends on the longitudi-
nal current profile. One should stress here that, besides the factor cosχ con-
nected with the scalar product in (2.131), the substantial dependence of the
current losses Wtot on the inclination angle is in the factor i0 ≈ iS. The point
is that in the definition of the dimensionless current, there is the GJ current
for the axisymmetric case, whereas for nonzero χ the GJ charge density in
the vicinity of the magnetic poles substantially depends on the angle χ , viz.,
ρGJ ≈ −(Ω · B)/2πc ∝ cosχ . Therefore, it is logical to expect that for the
inclined rotator the dimensionless current i0 is bounded from above

i (max)
0 (χ ) ∼ cosχ. (2.179)

As a result, the current losses decrease as the angle χ increases, at least, as
cos2 χ .

3. As to radio pulsars, in which the inclination angle χ is close to 90◦, for the
antisymmetric longitudinal currents iA the energy losses can be written as

Wtot = c⊥
B2

0Ω
4 R6

c3

(
ΩR

c

)
iA. (2.180)

Here the coefficient c⊥∼ 1 already depends not only on the antisymmetric lon-
gitudinal current profile but also on the form of the polar cap. Consequently, the
current losses for the orthogonal rotator (and for iA ∼ 1) turn out to be (ΩR/c)
times less than in the axisymmetric case. Certainly, if the current density can be
much larger than the local GJ current ρGJ,90c, then iA � 1, the energy losses can
be large enough. We discuss this possibility in Sect. 2.6.3.

Problem 2.17 Show that for the constant current density iS = const within
the polar cap (Beskin et al., 1993)

c‖ = f 2
∗
4
, (2.181)

where f∗ is the dimensionless area of the polar cap: S = f∗π (ΩR/c)R2.
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Problem 2.18 Using relation (2.159), show that for the orthogonal rotator

c⊥ = f 3
∗

64
. (2.182)

Thus, the important conclusion is that for currents I ∼ IGJ (i.e., for i0 ∼ 1)
characteristic of the radio pulsar magnetosphere, the current losses (2.178) in this
expression coincide with the magnetodipole losses (2.5). On the other hand, the
current and magnetodipole losses have a number of considerable differences.

� The magnetodipole losses (2.5) are absent in the axisymmetric case, whereas the
current losses are maximal for χ = 0◦.

� The magnetodipole losses result in a decrease in the inclination angle with time
(Ω cosχ = const), whereas for the current losses the angle χ , on the contrary,
is to increase (Ω sinχ = const) approaching 90◦. However, in both cases, the
evolution of the angle χ is in the range of parameters, where the energy losses of
the neutron star become minimal.

� For the magnetodipole losses, the braking index nbr is larger than three (see
(2.24)), whereas for the current losses, it can be less than three (see Beskin et al.
(1993) for details).

� The magnetodipole losses are universal i.e., they are independent of the addi-
tional parameters. On the other hand, the current losses (2.178) are proportional
to the electric current i0 circulating in the magnetosphere.

Otherwise, the difference between the current and magnetodipole losses is rather
substantial. Theoretically, this brings up the question of the relative role of these two
slowing-down mechanisms in the total balance of the energy losses. The answer to
this question can be given only together with the solution to the complete problem
of the neutron star magnetosphere. On the other hand, one should note that for most
radio pulsars the dimensionless current is i0 ∼ 1, so that the simplest magnetodipole
formula (2.5) yields, in the large, a reliable estimate for the total energy losses of the
rotating neutron star. As a result, both the magnetodipole and the current losses give
similar results when analyzing the statistical characteristics of radio pulsars (Michel,
1991; Beskin et al., 1993). The direct determination of the sign of the derivative χ̇
different for the two slowing-down mechanisms is now beyond the sensitivities of
the present-day receivers. Therefore, up to now, the observations do not allow one
to choose between these two slowing-down mechanisms (see Appendix C as well).

2.6 Magnetosphere Structure

2.6.1 Exact Solutions

We again return to our main topic and consider the structure of the radio pulsar mag-
netosphere. It was shown that in the zero order with respect to the small parameters
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σ−1 and λ−1, the magnetosphere structure can be described by the force-free equa-
tion (2.101). As was noted, this equation contains only one singular surface and,
therefore, needs three boundary conditions. As such boundary conditions, one can
take the values of the invariants ΩF(Ψ ) and I (Ψ ), as well as the normal component
of the magnetic field on the neutron star surface (or, what is the same, the stream
function Ψ (R, θ ) on its surface).

Equation (2.101) is of a nonlinear type. However, unlike the hydrodynamical
GS equation version, the whole nonlinearity is now associated with the integrals of
motion. In particular, in the absence of the longitudinal current and for the constant
angular velocity ΩF(Ψ ) = Ω , it becomes linear

−
(

1 − Ω2� 2

c2

)
∇2Ψ + 2

�

∂Ψ

∂�
= 0. (2.183)

On the other hand, unlike the hydrodynamical case, for the constant value of the
angular velocity ΩF, the location of the singular surface ΩF�/c = 1 is known
beforehand. Since Eq. (2.183) does not explicitly comprise the cylindrical coordi-
nate z, its solution can be sought by the method of separation of variables (Michel,
1973a; Mestel and Wang, 1979)

Ψ (�, z) = |m|
RL

∫ ∞

0
Rλ(� ) cos(λz) dλ. (2.184)

These properties made it possible to obtain the solution to Eq. (2.101) for a number
of the simplest cases.

2.6.1.1 Axisymmetric Magnetosphere with the Zero Longitudinal Current for
the Dipole Magnetic Field of the Neutron Star

In the absence of the longitudinal currents, the only currents in the magnetosphere
are corotation currents ΩF�ρGJeϕ . Recall that we assume here ΩF = const. There-
fore, the range of applicability of Eq. (2.183) extends only to the light cylinder which
coincides with the light surface. Substituting expansion (2.184) in Eq. (2.183), we
obtain for the radial function Rλ(xr ) (Michel, 1973a; Mestel and Wang, 1979)

d2 Rλ(xr )

d2xr
− (1 + x2

r )

xr (1 − x2
r )

dRλ(xr )

dxr
− λ2 Rλ(xr ) = 0. (2.185)

Hereafter, we again use the dimensionless variables xr = Ω�/c and z′ = Ωz/c.
The boundary conditions for Eq. (2.185) are

1. the dipole magnetic field in the vicinity of the star surface B = [3(nm)n−m]/r3,
i.e.,

Ψ (xr , z′) = |m|
RL

x2
r

(x2
r + z′2)3/2

(2.186)

for xr → 0 and z′ → 0;
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2. the absence of a singularity on the light cylinder xr = 1.

According to the known expansion

x2
r

(x2
r + z′2)3/2

= 2

π

∫ ∞

0
λxr K1(λxr ) cos(λz′) dλ, (2.187)

where K1(x) is the Macdonald function of the first order, the first condition implies
that for xr → 0 the relation

Rλ(xr ) → 2

π
λxr K1(λxr ) (2.188)

must hold. As we see, the situation is absolutely equivalent to the hydrodynamical
limit when one of the boundary conditions for the ordinary differential equation is
connected with a field source and the second one corresponds to the absence of a
singularity on the critical surface.

Problem 2.19 Show that the solution to Eq. (2.185) can be constructed in the
form of the series

Rλ(xr ) = D(λ)
∞∑

n=0

an(1 − x2
r )n, (2.189)

where the expansion coefficients an satisfy the recurrent relations

a0 = 1, a1 = 0, an+1 = 4n2

4(n + 1)2
an + λ2

4(n + 1)2
an−1. (2.190)

The value D(λ) can be determined from the boundary condition (2.188) near
the neutron star surface. Indeed, using the asymptotic behavior K1(x) = x−1

for x → 0, we get

D(λ)−1 = π

2

∞∑
n=0

an. (2.191)

Figure 2.14 shows the magnetic field structure obtained from the solution to
Eq. (2.183) (Michel, 1973a). As was expected, the dipole magnetic field is dis-
turbed only in the vicinity of the light cylinder; at small distances the magnetic
field remains dipole. Note also that the magnetic field on the light cylinder appears
orthogonal to its surface. This fact can be directly checked by definition (2.89)
in the form of expansion (2.189)—the z-component of the magnetic field on the
light cylinder Bz(xr = 1) turns out to be automatically equal to zero. This is, by
the way, the solution to the singularity problem in expression (2.41)—the charge
density remains finite on the light cylinder. At the equator of the light cylinder
(� = RL, z = 0), the magnetic field is zero. Finally, it turned out that the total
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Fig. 2.14 Magnetic field structure for the zero longitudinal current and the accelerating poten-
tial (i0 = 0, β0 = 0) for the dipole axisymmetric magnetic field of the neutron star (Michel,
1973a). The numbers indicate the values of the dimensionless magnetic field function f (Ψ =
πB0 R2(ΩR/c) f ) (Reproduced by permission of the AAS, Fig. 1 from Michel, F.C.: Rotating
magnetosphere: a simple relativistic model. ApJ 180, 207–226 (1973))

magnetic flux crossing the light cylinder is about 1.592 times larger than that in the
vacuum case. This result implies that the area of the polar cap increases in the same
proportion (Michel, 1973a)

Scap ≈ 1.592πR2
0 . (2.192)

As to the toroidal magnetic field, since the longitudinal electric currents are absent,
it is identically equal to zero in the whole magnetosphere.

Problem 2.20 Having written the expression for the magnetic flux through the
light cylinder surface, show that the coefficient f∗ ≈ 1.592 (so-called Michel
number) is connected with the function D(λ) by the relation

f∗ =
∫ ∞

0
D(λ)dλ. (2.193)
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It is also interesting to note that when receding from the equatorial plane, within
the light cylinder, the electric and magnetic fields decrease exponentially fast rather
than by a power law: B ∝ exp(−pz/RL), where p ≈ 3.0. This property is associated
with the structure of expansion (2.184) and the existence of the pole of the function
Rλ for λ = i p (Beskin et al., 1993). This fast decrease in the fields is possible
because the magnetic moment of the corotation currents almost fully screens the
magnetic moment of the neutron star.

Further, the electric field on the light cylinder is compared in magnitude with the
magnetic one, but its direction is along the rotation axis of the neutron star. Since
the normal component of the electric field vanishes on the light cylinder, one can
conclude that the total charge of the neutron star and the magnetosphere turns out to
be zero. Otherwise, part of the charge Q∗ (2.12) located, in the vacuum case, on the
neutron star surface passes into the pulsar magnetosphere. On the other hand, the
equality of the electric and magnetic fields on the light cylinder shows that for the
zero longitudinal current the light cylinder coincides with the light surface. There-
fore, the constructed solution cannot be extended beyond the light cylinder, though,
formally, the pulsar equation does not have any singularities here.

2.6.1.2 Axisymmetric Magnetosphere with the Zero Longitudinal Current for
the Monopole Magnetic Field

At first sight, there is no sense to consider this case, because the monopole magnetic
field does not occur in reality. However, as we see in the following, the analysis of
the rotating monopole magnetosphere proves very fruitful, especially, for the case
of the black hole magnetosphere.

The solution of the problem for the monopole magnetic field is analogous to the
previous one (Michel, 1973a). There is a difference only in boundary condition 1
on the star surface and, hence, only in the explicit form of the function D(λ). As
a result, as for the dipole magnetic field, the magnetic field on the light cylinder
appears orthogonal to its surface and also decreases exponentially with distance
from the equatorial plane, and at small distances from the star the monopole field
perturbations prove small (see Fig. 2.15). On the other hand, as in the previous
example, the electric field on the light cylinder is compared with the magnetic one
and, therefore, the solution of the pulsar equation cannot be extended beyond the
light cylinder.

2.6.1.3 Magnetosphere with the Zero Longitudinal Current for the Inclined
Rotator

The exact solution for the zero longitudinal currents (and in the absence of the
accelerating potential ψ = 0) can be constructed at an arbitrary inclination angle of
χ (Beskin et al., 1983). This becomes possible because for i‖ = 0 and ψ = 0 the
quasistationary GS equation (2.129) also becomes linear

∇ × [
(1 − β2

R)B + βR(βR · B)
] = 0. (2.194)
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Fig. 2.15 Magnetic field structure for the zero longitudinal current and the accelerating potential
(i0 = 0, β0 = 0) for the monopole magnetic field of the compact object (Michel, 1973a) [Repro-
duced by permission of the AAS, Fig. 2 from Michel, F.C.: Rotating magnetosphere: a simple
relativistic model. ApJ 180, 207–226 (1973)]

The solution to Eq. (2.194) [so-called Mestel equation (Mestel, 1973)] can be writ-
ten as

(1 − β2
R)B + βR(βR · B) = −∇h, (2.195)

while, for the zero accelerating potential ψ , Maxwell’s equation ∇ · B = 0 looks
like L̂2h = 0:

∂2h

∂x2
r

+ (1 + x2
r )

xr (1 − x2
r )

∂h

∂xr
+ (1 − x2

r )

x2
r

∂2h

∂ϕ2
+ ∂2h

∂z′2 = 0. (2.196)

On the other hand, the electric field for ψ = 0 can be found from the condition
E + βR × B = 0, because relation (2.104) must hold for any quasistationary con-
figurations. Therefore, the electric and magnetic fields can again be specified by
equalities (2.120), (2.121), (2.122), and (2.123) in which we must take ψ = 0
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Ep = [βR × ∇h]

1 − β2
R

, (2.197)

Eϕ = 0, (2.198)

Bp = − ∇h

1 − β2
R

, (2.199)

Bϕ = − 1

�

∂h

∂ϕ
. (2.200)

To construct the solution to Eq. (2.196), we see that in the studied linear case, the
magnetic field of the neutron star can be expanded into axisymmetric and orthogonal
parts. In other words, the potential h(xr , ϕ − Ωt, z′) can be represented as

h(xr , ϕ − Ωt, z′) = h0(xr , z′) cosχ + h1(xr , z′) cos(ϕ − Ωt) sinχ, (2.201)

and now the potentials h0(xr , z′) and h1(xr , z′) satisfy the equations

∂2h0

∂x2
r

+ (1 + x2
r )

xr (1 − x2
r )

∂h0

∂xr
+ ∂2h0

∂z′2 = 0, (2.202)

∂2h1

∂x2
r

+ (1 + x2
r )

xr (1 − x2
r )

∂h1

∂xr
+ ∂2h1

∂z′2 − (1 − x2
r )

x2
r

h1 = 0. (2.203)

Therefore, as in the case of the axisymmetric rotator, the solution to Eqs. (2.202)
and (2.203) can be found in the form

h0(xr , z′) = |m|
R2

L

∫ ∞

0
R(0)
λ (xr ) sin(λz′) dλ, (2.204)

h1(xr , z′) = |m|
R2

L

∫ ∞

0
R(1)
λ (xr ) cos(λz′) dλ, (2.205)

where the radial functions R(0)
λ (xr ) and R(1)

λ (xr ) must satisfy the equations

d2 R(0)
λ (xr )

d2xr
+ (1 + x2

r )

xr (1 − x2
r )

dR(0)
λ (xr )

dxr
− λ2 R(0)

λ (xr ) = 0, (2.206)

d2 R(1)
λ (xr )

d2xr
+ (1 + x2

r )

xr (1 − x2
r )

dR(1)
λ (xr )

dxr
−

(
λ2 + 1 − x2

r

x2
r

)
R(1)
λ (xr ) = 0. (2.207)

The boundary conditions for Eqs. (2.206) and (2.207), as before, are

1. the dipole magnetic field B = [3(nm)n−m]/r3 in the vicinity of the star surface,
i.e.,
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h0(xr , z′) → |m|
R2

L

z′

(x2
r + z′2)3/2

, (2.208)

h1(xr , z′) → |m|
R2

L

xr

(x2
r + z′2)3/2

, (2.209)

for xr → 0 and z′ → 0;
2. the absence of a singularity on the light cylinder xr = 1:

dR(0)
λ

dxr

∣∣∣∣∣
xr =1

= 0, (2.210)

dR(1)
λ

dxr

∣∣∣∣∣
xr =1

= 0. (2.211)

Using expansion (2.187) again, we find that for xr → 0, the following relations must
hold:

R(0)
λ (xr ) → 2

π
λK0(λxr ), (2.212)

R(1)
λ (xr ) → 2

π
λK1(λxr ). (2.213)

Here K0(x) and K1(x) are the Macdonald functions of zero and the first order.
Besides (and it is very important), it is also necessary that the magnetic field

should decrease at infinity along the rotation axis for z →∞. The necessity to intro-
duce an “additional” boundary condition is that the magnetic field line extending to
infinity along the rotation axis does not intersect the light cylinder and, hence, there
is no additional regularity condition for it. When this condition is not satisfied, we
have the nonphysical solution (Endean, 1983)

hE(xr , ϕ, z′, t) = h∗[xr J0(xr ) − J1(xr )] cos(ϕ − Ωt) (2.214)

(h∗—an arbitrary constant) independent of z and, hence, not decreasing at infinity.

Problem 2.21 Show that the solution to Eqs. (2.206) and (2.207) can be con-
structed in the form of the formal series (Beskin et al., 1983; Mestel et al.,
1999)

R(0)
λ (xr ) = D0(λ)

∞∑
n=2

bn(1 − x2
r )n, (2.215)

R(1)
λ (xr ) = D1(λ)

∞∑
n=2

cn(1 − x2
r )n, (2.216)



2.6 Magnetosphere Structure 151

where the expansion coefficients bn and cn satisfy the recurrent relations

bn+1 = n

n + 1
bn + λ2

4(n2 − 1)
bn−1, (2.217)

cn+1 = n(2n − 3)

n2 − 1
cn − 4(n − 1)(n − 2) − λ2

4(n2 − 1)
cn−1 − λ2 − 1

4(n2 − 1)
cn−2, (2.218)

where b0 = b1 = c0 = c1 = 0 and b2 = c2 = 1.

Problem 2.22 Using the asymptotic behavior K0(x) → − ln x and
K1(x) → x−1 for x → 0, show that

D0(λ)−1 = − π

2λ
lim

xr →0

1

ln xr

∞∑
n=2

bn(1 − x2
r )n, (2.219)

D1(λ)−1 = π

2
lim

xr →0
xr

∞∑
n=2

cn(1 − x2
r )n. (2.220)

Problem 2.23 Using definitions (2.197), (2.198), (2.199), and (2.200) and
(2.215) and (2.216), show that the magnetic field and the charge density on
the light cylinder are defined as

B� (RL, ϕ
′, z′) = (2.221)

4
|m|
R3

L

[
cosχ

∫ ∞

0
D0(λ) sin(λz′)dλ + sinχ cosϕ′

∫ ∞

0
D1(λ) cos(λz′)dλ

]
,

ρe(RL, ϕ
′, z′) = (2.222)

Ω|m|
2πcR3

L

[
cosχ

∫ ∞

0
D0(λ)λ cos(λz′)dλ − sinχ cosϕ′

∫ ∞

0
D1(λ)λ sin(λz′)dλ

]
,

where ϕ′ = ϕ − Ωt .

Problem 2.24 Show that in the axisymmetric case the singular solution inde-
pendent of z has a singularity on the light cylinder and, hence, must be aban-
doned automatically.
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Fig. 2.16 Magnetic field
structure for the zero
longitudinal current and the
accelerating potential (i0 = 0,
β0 = 0) for the inclined
dipole magnetic field of the
neutron star (Beskin et al.,
1983)

As shown in Fig. 2.16, for the case of the inclined rotator, the basic properties
valid for the axisymmetric magnetosphere fully retain. In the absence of the longitu-
dinal currents, the boundary of the region of applicability is the light cylinder, where
the corotation currents begin to distort the dipole magnetic field. The magnetic field
itself becomes orthogonal to the light cylinder here. On the other hand, the electric
and magnetic fields exponentially decrease with distance from the equatorial plane.
Finally, the total electric charge in the magnetosphere is zero.

Relations (2.215) and (2.216) allow us to get the complete information concern-
ing the magnetosphere structure. Thus, Table 2.2 gives the values of the magnetic
field (in |m|/R3

L units) and the charge density (in ΩB/2πc units) on the light cylin-
der for four different inclination angles χ . Besides, Fig. 2.17 shows the change in the
polar cap form as the inclination angle χ increases. Its area varies from 1.592πR2

0
for χ = 0◦ to 1.96πR2

0 for χ = 90◦.

Problem 2.25 Using the nonphysical solution (2.214), show that the dimen-
sionless area of the polar cap surface f∗(90) ≈ 1.96 for χ = 90◦ is expressed
in terms of the Bessel functions J0 and J1

f∗(90) = 2

π [J0(1) − J1(1)]
. (2.223)
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Table 2.2 The magnetic field Bx (2.221) and the charge density ρe (2.222) on the light cylinder at
different inclination angles of χ

χ = 0◦ χ = 30◦ χ = 60◦ χ = 90◦

z/RL Bx ρe Bx ρe Bx ρe Bx ρe

1.5 0.16 −0.13 0.17 −0.14 0.12 −0.11 0.05 −0.05
1.4 0.22 −0.17 0.23 −0.19 0.18 −0.16 0.07 −0.08
1.3 0.30 −0.23 0.32 −0.26 0.25 −0.22 0.11 −0.12
1.2 0.41 −0.30 0.44 −0.35 0.36 −0.31 0.18 −0.19
1.1 0.54 −0.38 0.61 −0.48 0.51 −0.44 0.27 −0.29
1.0 0.71 −0.48 0.83 −0.63 0.72 −0.61 0.41 −0.43
0.9 0.93 −0.58 1.11 −0.81 1.00 −0.84 0.62 −0.63
0.8 1.17 −0.65 1.48 −1.02 1.39 −1.11 0.93 −0.90
0.7 1.44 −0.67 1.93 −1.20 1.89 −1.41 1.36 −1.24
0.6 1.70 −0.59 2.43 −1.32 2.52 −1.70 1.93 −1.62
0.5 1.89 −0.35 2.96 −1.30 3.24 −1.90 2.65 −1.99
0.4 1.95 0.08 3.44 −1.05 4.01 −1.90 3.50 −2.23
0.3 1.81 0.67 3.77 −0.53 4.72 −1.59 4.41 −2.22
0.2 1.41 1.31 3.84 0.22 5.23 −0.92 5.23 −1.82
0.1 0.78 1.82 3.58 1.06 5.42 0.01 5.81 −1.04
0.0 0.00 2.01 3.01 1.74 5.22 1.01 6.02 0.00

−0.1 −0.78 1.82 2.23 2.09 4.64 1.81 5.81 1.04
−0.2 −1.41 1.31 1.39 2.05 3.82 2.23 5.23 1.82
−0.3 −1.81 0.67 0.64 1.69 2.91 2.25 4.41 2.22
−0.4 −1.95 0.08 0.06 1.18 2.06 1.97 3.50 2.23
−0.5 −1.89 −0.35 −0.31 0.69 1.35 1.55 2.65 1.99
−0.6 −1.70 −0.59 −0.51 0.30 0.82 1.11 1.93 1.62
−0.7 −1.44 −0.67 −0.57 0.04 0.45 0.74 1.36 1.24
−0.8 −1.17 −0.65 −0.55 −0.11 0.22 0.46 0.93 0.90
−0.9 −0.92 −0.58 −0.49 −0.18 0.08 0.26 0.62 0.63
−1.0 −0.71 −0.48 −0.41 −0.20 0.00 0.14 0.41 0.43
−1.1 −0.54 −0.38 −0.33 −0.19 −0.04 0.06 0.27 0.29
−1.2 −0.41 −0.30 −0.26 −0.16 −0.05 0.02 0.18 0.19
−1.3 −0.30 −0.23 −0.20 −0.13 −0.05 −0.01 0.11 0.12
−1.4 −0.22 −0.17 −0.16 −0.11 −0.05 −0.01 0.07 0.08
−1.5 −0.16 −0.13 0.12 −0.08 −0.04 −0.01 0.05 0.05

(Hint: it is necessary to determine the Poynting vector flux through the light
cylinder surface and the neutron star surface.)

On the other hand, from the analysis of the above solutions, we conclude that
over the entire surface of the light cylinder, the toroidal magnetic field is zero
though, unlike the axisymmetric case, it is not zero in the interior regions of the
magnetosphere. Indeed, since expansions (2.215) and (2.216) begin with the second
powers (1 − x2

r ), definitions (2.199) and (2.200) show that at small distances from
the light cylinder, the magnetic field components behave as

Bz ∝ (1 − x2
r ), Bϕ ∝ (1 − x2

r )2. (2.224)
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Fig. 2.17 The change in the polar cap form with increasing inclination angle χ . The numbers
indicate the values of the angles ϕ (in degrees) and for χ = 90◦ the values of z/RL for which the
field line coming out from the given point intersects the light cylinder
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It is, at first sight, a purely mathematical property but, actually, is of fundamental
importance and one of the key conclusions in this chapter. Therefore, the solution
of the pulsar equation is thoroughly derived and given in the theorem:

Theorem 2.1 In the absence of the longitudinal currents and the accelerating
potential the Poynting vector flux through the surface of the light cylinder is zero.
Otherwise, the corotation currents flowing in the magnetosphere completely screen
the magnetodipole radiation of the neutron star. Therefore, in the case of the inclined
rotator, all energy losses are connected with the longitudinal current circulating in
the magnetosphere (Beskin et al., 1983; Mestel et al., 1999).

One should note that the conclusion that there are no losses is, in no way, con-
nected with the quasistationary approximation used here. Indeed, as was shown
above, the magnetodipole radiation can be produced within this formalism. The
point is that in the vacuum case we have two second-order equations (2.124) and
(2.125) for the functions ψ and h, which can be rewritten as a single fourth-order
equation for one of these values. Therefore, in the vacuum case, two independent
solutions corresponding to retarded and advanced potentials are possible. The choice
of only the retarded potentials involves an additional physical assumption in the
absence of the confluence energy flux from infinity. In the case of the plasma-filled
magnetosphere, Eq. (2.196) has the unique solution in the form of a standing wave
that does not transport energy to infinity.

2.6.1.4 Axisymmetric Magnetosphere with a Nonzero Longitudinal Current
for the Monopole Magnetic Field

F.C. Michel found another remarkable analytical solution for the monopole mag-
netic field of the star (Michel, 1973b). It turned out that for the special choice of the
longitudinal current

I (Ψ ) = IM = ΩF

4π

(
2Ψ − Ψ 2

Ψ0

)
(2.225)

and for ΩF = const, the monopole magnetic field

Ψ (r, θ ) = Ψ0(1 − cos θ ) (2.226)

is the exact solution to the pulsar equation (2.101), beyond the light cylinder as well.
Otherwise, for the current I = IM (2.225), the effects of the longitudinal currents
and the corotation currents are fully compensated. It is easy to check that the current
I takes the form I (θ ) = I (A)

M sin2 θ , where

I (A)
M = ΩFΨ0

4π
, (2.227)

which, actually, corresponds to the GJ current density. As is evident from relations
(2.225) and (2.226), in the Michel solution the electric field E having only the



156 2 Force-Free Approximation—The Magnetosphere of Radio Pulsars

θ -component is equal in magnitude to the toroidal component of the magnetic field

Bϕ = Eθ = −B0

(
ΩR

c

)
R

r
sin θ, (2.228)

which at distances larger than the light cylinder radius becomes larger than the
poloidal magnetic field Bp = B0(R/r )2. On the other hand, in this solution the
full magnetic field remains larger than the electric one everywhere, which makes
the light surface extend to infinity.

As was already noted, the Michel solution, in spite of its artificial character, is
of great importance in the black hole magnetosphere theory. Therefore, we return
to this solution in the next chapter. We note here that the Michel solution proves
useful for the radio pulsar magnetosphere theory as well, because this structure
of the magnetic field can be realized beyond the light cylinder in the pulsar wind
region. Therefore, we should emphasize at once that under the real conditions we,
of course, deal with the so-called split monopole

Ψ (r, θ ) = Ψ0(1 − cos θ ), θ < π/2, (2.229)

Ψ (r, θ ) = Ψ0(1 + cos θ ), θ > π/2, (2.230)

rather than with a monopole when the magnetic flux converges in the lower hemi-
sphere and diverges in the upper one, as shown in Fig. 2.18. In other words, for this
solution to exist it is necessary to introduce the current sheet in the equatorial plane
dividing the convergent and divergent magnetic fluxes. One should remember that
in this geometry topologically equivalent to the dipole magnetic field both in the
northern and in the southern parts of the magnetosphere, there is a charge outflow
of the same sign. Therefore, the poloidal surface currents closing the bulk currents
and ensuring the electric current conservation must flow along the sheet. This sheet
is possible in the presence of the accretion disk in which the studied force-free
approximation becomes inapplicable.

Problem 2.26 Show by direct substitution in Eq. (2.101) that the monopole
magnetic field remains an exact solution for the arbitrary profile of the angular
velocity ΩF(Ψ ) if the electric current is still connected with it by the rela-
tion (Blandford and Znajek, 1977; Beskin et al., 1992a)

4π I (Ψ ) = ΩF(Ψ )

(
2Ψ − Ψ 2

Ψ0

)
. (2.231)

Later Bogovalov (2001) demonstrated that in the force-free approximation (when
massless charged particles can move radially with the velocity of light), the inclined
split monopole field
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Fig. 2.18 The Michel
monopole solution in which
the electric field Eθ is exactly
equal to the toroidal magnetic
field Bϕ . In the real
conditions, this solution can
be realized in the presence of
the conducting disk in the
equatorial plane along which
the electric current closure
occurs (contour arrows)

Ψ (r, θ, ϕ, t) = Ψ0(1 − cos θ ), θ < π/2 − χ cos(ϕ − Ωt + Ωr/c), (2.232)

Ψ (r, θ, ϕ, t) = Ψ0(1 + cos θ ), θ > π/2 − χ cos(ϕ − Ωt + Ωr/c), (2.233)

is the solution of the problem as well. In this case, within the cones θ < π/2 − χ ,
π − θ < π/2 − χ near the rotation axis, the electromagnetic field is not time
dependent, while in the equatorial region the electromagnetic fields change the sign
at the instant the processing current sheet intersects the given point.

2.6.1.5 Axisymmetric Magnetosphere with a Nonzero Longitudinal Current
for the Parabolic Magnetic Field

It turned out that the exact solution can be constructed by the “nonphysical”
parabolic field Ψ ∝ r (1 − cos θ ) (1.127) shown in Fig. 2.19 (Blandford, 1976).
Certainly, this structure of the magnetic field can again be realized only in the pres-
ence of the conducting disk so that the magnetic field lines in the lower and upper
hemispheres specularly repeat one another. The jump of the tangential component
of the magnetic field is connected with the electric currents flowing within the disk.
One should stress at once that in the studied solution only the form of the magnetic
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Fig. 2.19 The parabolic
structure of the magnetic field
and the longitudinal currents
for the “nonphysical”
solution (2.237). The angular
velocity ΩF(Ψ ) is determined
by the rotational velocity of
the disk. Therefore, according
to (2.235), the longitudinal
current closes at the finite
values of the magnetic flux
Ψ . Dashed line indicates the
light cylinder
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surfaces coincides with the vacuum magnetic field. The density of the magnetic
field lines should differ from that of the magnetic field in vacuum. Otherwise, the
magnetic flux Ψ (r, θ ) should have the form Ψ (r, θ ) = Ψ (X ), where for θ < π/2

X = r (1 − cos θ ). (2.234)

As in the previous case, this structure of the magnetic field can occur only if there
is a certain connection between the angular velocity ΩF and the current I , viz., when
the following relation holds:

I (Ψ ) = CΩF(X )X

2

[
1 + Ω2

F(X )X2

c2

]1/2 , (2.235)

where C is an integration constant. In this case, the magnetic flux can be found from
the condition

dΨ

dX
= πC[

1 + Ω2
F(X )X2

c2

]1/2 . (2.236)

As we see, here the solution also exists for any profile ΩF(X ). In particular, for the
constant angular velocity, it has the form (Lee and Park, 2004)
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Ψ (r, θ ) = πCc

ΩF
ln

⎡
⎣ΩF X

c
+

√
1 + Ω2

F X2

c2

⎤
⎦ . (2.237)

We should emphasize that though the above solution is formally valid for any
value ΩF(X )X/c, in reality, only the configurations in which

ΩF(X )X

c
< 1 (2.238)

can be realized. The point is that, as shown in Fig. 2.19, all magnetic surfaces must
intersect the region of the accretion disk that must determine the value of the angular
velocity ΩF. But the accretion disk cannot rotate with the velocity larger than the
velocity of light. Since in the equatorial plane X = � , the condition (2.238) is to
be satisfied over the entire space. As a result, the magnetic field structure does not
differ too much from the vacuum solution.

On the other hand, for a fast decrease in the angular velocity ΩF(Ψ ) with
increasing Ψ , so that ΩF(Ψ )�/c → 0, the longitudinal current, according to
(2.235), is concentrated only in the region ΩF(0)X/c ∼ 1, so that the char-
acteristic magnetic flux, within which the current closure occurs, can be
estimated as

Ψ0 = πCc

ΩF(0)
. (2.239)

This relation defines the connection between the integration constant C and the
flow Ψ0 involved, for example, in the definition of the magnetization parameter
σ (2.82).

The “nonphysical” solution was not as known as the Michel monopole solution
though it, in many respects, much better describes the structure of the magnetized
wind outflowing from compact objects. In particular, it adequately models the jet
formation process. On the other hand, one should remember that for the existence
of the magnetic field decreasing with distance as r−1 (and it is exactly how the
magnetic field corresponding to the potential X = r (1 − cos θ ) is constructed), the
toroidal currents flowing in the equatorial plane are needed. In the absence of these
currents, the parabolic magnetic field cannot be realized.

Problem 2.27 Show that for the parabolic solution, as in the Michel monopole
solution, at large distances r → ∞ the electric field is compared in
magnitude with the magnetic one so that Bp � Bϕ and Bϕ ≈ |E|,
where



160 2 Force-Free Approximation—The Magnetosphere of Radio Pulsars

Bϕ = − CΩF

c

[
1 + Ω2

F(X )X2

c2

]1/2

(1 − cos θ )

sin θ
, (2.240)

|E| = CΩF

c

[
1 + Ω2

F(X )X2

c2

]1/2

(
1 − cos θ

2

)1/2

. (2.241)

2.6.1.6 Perturbation of the Monopole Magnetic Field

In conclusion, we consider another model problem of the small perturbation of
the Michel monopole solution (Beskin et al., 1998). As was already mentioned,
Eq. (2.101) needs three boundary conditions. We suppose that the angular velocity
ΩF = const remains the same as in the Michel solution. As to the longitudinal cur-
rent I (R, θ ), it is assumed to differ little from the Michel current (2.228)

I (R, θ ) = IM(θ ) + l(θ ) = I (A)
M sin2 θ + l(θ ), (2.242)

so that l(θ ) � I (A)
M . Since the perturbations are assumed to be small, relation (2.242)

defines the value of the current as a function of the stream function Ψ .
Writing now the solution to Eq. (2.101) as Ψ (r, θ ) = Ψ0[1 − cos θ + ε f (r, θ )],

we obtain in the first order with respect to the small parameter ε = l/I (A)
M

ε(1 − x2 sin2 θ )
∂2 f

∂x2
+ ε(1 − x2 sin2 θ )

sin θ

x2

∂

∂θ

(
1

sin θ

∂ f

∂θ

)
− 2εx sin2 θ

∂ f

∂r

−2ε sin θ cos θ
∂ f

∂θ
+ 2ε(3 cos2 θ − 1) f = − 1

I (A)
M sin θ

d

dθ
(l sin2 θ ). (2.243)

Here x = ΩFr/c. Equation (2.243), as was expected, has a singularity on the light
cylinder x sin θ = 1.

In the general case, the solution to Eq. (2.243) is extremely cumbersome. How-
ever, for the special choice of the perturbation

l(θ ) = ε∗ I (A)
M sin2 θ, (2.244)

where |ε∗| = const � 1, the analytical solution can be found. It has the form

Ψ (r, θ ) = Ψ0

[
1 − cos θ + ε∗

(
ΩFr

c

)2

sin2 θ cos θ

]
. (2.245)
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The solution (2.245) shows that for I < IM (ε∗ < 0), the magnetic field lines are
concentrated near the equator (δΨ < 0 for θ < π/2). In this case, the light surface
is located at finite distance from the light cylinder. It has the form of a cylinder with
the radius

�C = |2ε∗|−1/4 RL, (2.246)

on which the monopole field perturbation can still be considered to be small.
Accordingly, for I > IM (ε∗ > 0), the magnetic field lines turn to the rotation
axis (δΨ > 0 for θ < π/2), and the light surface is reached only at infinity.

Problem 2.28 Find relation (2.246).

The above exact solutions of the pulsar equation lead to the following general
conclusions:

1. The solution to the force-free equation (2.101) can be constructed only within the
light surface |E| = |B|, which, for the zero longitudinal currents, coincides with
the light cylinder � = c/ΩF. Beyond the light surface, the electric field becomes
larger than the magnetic one, which results in violation of the frozen-in condition
E+v×B/c = 0. In the general case, the light surface does not coincide with the
light cylinder but is located at larger distances. As we will see, the presence or
the absence of the light surface is of crucial importance for the discussion of the
particle acceleration problem (within the force-free approximation the particle
Lorentz factor on the light surface, formally, is infinite).

2. In the case of zero longitudinal currents, regardless of the inclination angle χ ,
the magnetic field on the light cylinder must be perpendicular to its surface (Hen-
riksen and Norton, 1975; Beskin et al., 1983). This mathematical result leads to
the most important physical conclusion—the Poynting vector does not have a
normal component here and, hence, the electromagnetic energy flux through the
light cylinder surface is zero. Consequently, in the absence of the longitudinal
currents, the secondary plasma filling the magnetosphere must fully screen the
magnetodipole radiation of the neutron star (Beskin et al., 1983; Mestel et al.,
1999). Therefore, all the energy losses of the rotating neutron star are to be
associated with the ponderomotive action of the surface currents closing the
longitudinal currents flowing in the magnetosphere. Thus, formula (2.178) fully
defines the slowing down of radio pulsars.

3. In the absence of the longitudinal currents, the magnetic field lines are con-
centrated in the vicinity of the equator. Otherwise, the toroidal currents j =
ρGJ Ω × r connected with the corotation of the GJ charge density ρGJ do not
collimate the magnetic field lines but, on the contrary, make them diverge and
concentrate near the equator. As a result, the magnetic field along the rotation
axis decreases exponentially fast rather than by the power law.
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2.6.2 Magnetosphere Structure with Longitudinal Currents

We proceed to the key part of this chapter, viz., to the discussion of the magneto-
sphere structure in the presence of the longitudinal current I and the accelerating
potential ψ . The importance of this problem is obvious—as was shown above, the
energy losses of radio pulsars are fully specified by the longitudinal electric currents
circulating in the magnetosphere. Therefore, the question of the value of the longi-
tudinal currents (and, hence, the presence or the absence of the light surface) is the
key one the neutron star magnetosphere theory is to answer.

At the same time, there are two important circumstances. First, as was already
noted, within the force-free approximation, the longitudinal current is a free param-
eter. Second, and it was also mentioned, the particle acceleration problem cannot
be solved within this approximation. Therefore, we can analyze a limited set of
problems only. A more comprehensive analysis is made in Chap. 5 on the basis of
the full magnetohydrodynamic version of the GS equation.

On the other hand, in the presence of the longitudinal current even in the force-
free approximation, Eq. (2.129) becomes essentially nonlinear. It is not surprising,
therefore, that in most papers the analysis of only the axisymmetric magnetosphere
was made. Indeed, since the total current within the polar cap is to be zero, expres-
sion I dI/dΨ cannot be a linear function Ψ on all open field lines. Except for the
Michel and Blandford remarkable solutions (Michel, 1973b; Blandford, 1976), only
some analytical solutions were obtained (Beskin et al., 1983; Lyubarskii, 1990;
Sulkanen and Lovelace, 1990; Fendt et al., 1995; Beskin and Malyshkin, 1998).
Therefore, the problem of construction of magnetosphere with nonzero longitudinal
currents is still to be solved. As to the case of an inclined rotator, there are only
preliminary results here (Mestel and Wang, 1982; Bogovalov, 1999, 2001).

Technically, the reason is that Eq. (2.101) contains a critical surface—a light
cylinder, the passage of which requires the expansion of the solution into eigenfunc-
tions that have no singularity on this surface. Exactly this method of solution was
described above when analyzing the magnetosphere with zero longitudinal current.
Therefore, in most cases, the similar problem was solved only analytically, which,
in turn, could be done only for a certain class of functions I (Ψ ), viz., when the
current density is constant in the whole region of open magnetic field lines (i.e.,
when I (Ψ ) = kΨ ), and the current closure occurs along the separatrix dividing the
open and closed field lines. In this statement, Eq. (2.101) appears linear in the region
of not only closed but also open magnetic field lines, and the main problem reduces
to matching the solutions in these two regions. It is in this direction that the main
results of the magnetosphere structure with longitudinal electric field were obtained.

Consider now the analytical method for constructing the solution in more detail,
since it allows us to formulate the main problems that arise when trying to construct
the self-consistent model of the magnetosphere of radio pulsars containing longi-
tudinal currents. Thus, we consider the axisymmetric force-free magnetosphere of
the rotating neutron star. As was already mentioned, with the special choice of the
longitudinal current I and the potential ψ , Eq. (2.101) can be reduced to a linear
one. This is possible if we take the values of ΩF(Ψ ) and I (Ψ ) in the form
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ΩF(Ψ ) = Ω(1 − β0), (2.247)

I (Ψ ) = Ω

2π
i0Ψ, (2.248)

where i0 and β0 are constant. Recall that their physical meaning is defined by rela-
tions (2.107) and (2.108).

The pulsar equation in the region of open field lines in the dimensionless vari-
ables xr = Ω�/c, z′ = Ωz/c takes the form

−∇2Ψ
[
1 − x2

r (1 − β0)2
] + 2

xr

∂Ψ

∂xr
− 4i2

0Ψ = 0. (2.249)

In the region of closed field lines, where, as was already noted, the potential ψ = 0
(i.e., β0 = 0), we simply have

−∇2Ψ
(
1 − x2

r

) + 2

xr

∂Ψ

∂xr
= 0. (2.250)

As a result, all nonlinearity is enclosed in a thin transition layer in the vicinity of the
separatrix, the very position of which must be found from the solution. Note that,
unlike the case of the zero longitudinal current, the zero point of the magnetic field
must not necessarily lie on the light cylinder surface xr = 1.

Problem 2.29 Show that, in this case, the solution to Eq. (2.249) that has no
singularity on the surface xr = (1 − β0)−1 can be constructed in the form of
the series (Beskin et al., 1983)

Rλ(x1) = D(λ)
∞∑

n=0

an(1 − x2
1 )n, (2.251)

where x1 = (1 − β0)xr , α1 = 4i2
0/(1 − β0)2, and the expansion coefficients an

satisfy the recurrent relations

a0 = 1, a1 = −α1

4
, an+1 = 4n2 − α1

4(n + 1)2
an + α1 + λ2

4(n + 1)2
an−1. (2.252)

Here D(λ)−1 = (π/2)(1 − β0)−1 ∑∞
n=0 an .

We now specify the boundary conditions for the system of equations (2.249) and
(2.250). In the region of open field lines, Eq. (2.249), according to (1.64), requires
three boundary conditions. These conditions are, first of all, the values i0 and β0

determined on the star surface. The third boundary condition is not only the value
of the stream function Ψ (R, θ ) on the star surface (2.103) but also the value of the



164 2 Force-Free Approximation—The Magnetosphere of Radio Pulsars

function Ψ on the surface of the separatrix z′
∗(xr ) dividing the region of the open

and closed magnetospheres (Okamoto, 1974)

Ψ (1)
∣∣
z′=z′∗(xr ) = Ψ (2)

∣∣
z′=z′∗(xr ) . (2.253)

Finally, the regularity condition (2.211) on the light cylinder xr = xL is written as

2

xr

∂Ψ

∂xr

∣∣∣∣
xr =(1−β0)−1

− 4i2
0Ψ

∣∣
xr =(1−β0)−1 = 0. (2.254)

Clearly, in the presence of the longitudinal current (i.e., for Bϕ 
= 0), the light
surface no longer coincides with the light cylinder. Relation (2.254) also shows that
in the studied statement of the problem, the magnetic field lines on the light cylinder
must be directed from the equator (Bz > 0 for Ω · m > 0).

As to the region of closed field lines, which, in the general case, does not reach
the light cylinder, exactly the conditions of matching the regions of closed and open
field lines must act as additional boundary conditions for it. These conditions should
be, first of all, the coincidence of the location of the separatrix field line z′ = z′

∗(xr )
for both the regions (2.253) and, besides, the continuity of the value B2 − E2:

{B2 − E2} = 0. (2.255)

The latter condition is easy to deduce by integrating the force-free equation written
as (∇·E)E+[∇×B]×B = 0 over a thin transition layer (Okamoto, 1974; Lyubarskii,
1990). It is important that the condition (2.255) is obtained if the curvature of the
magnetic field lines is disregarded and, therefore, cannot be used in the vicinity of
singular points.

Problem 2.30 Find the condition (2.255) for the Cartesian coordinate system
in which the transition layer coincides with the xy-plane (Lyubarskii, 1990).

We can now mention the main papers concerned with the force-free magneto-
sphere of radio pulsars (in which, in particular, the system of equations (2.249) and
(2.250) was analyzed) for the real dipole field of the neutron star.

1. In Beskin et al. (1983), the case i0 
= 0, β0 
= 0 was studied. Only relation
(2.253) was used; the equilibrium condition (2.255) was not taken into account.
Besides, the region of closed field lines was supposed to remain the same as in
the absence of the longitudinal current.

2. In Lyubarskii (1990), for β0 = 0, both the equilibrium conditions (2.253) and
(2.255) were taken into account. Incidentally, the additional assumption was that
the last open field line, as in the Michel monopole solution, coincides with the
equator beyond the light cylinder. Finally, in the paper, the absence of an inverse
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current along the separatrix was implicitly assumed, which substantially changed
the magnetic field structure in the vicinity of the zero point.

3. In Sulkanen and Lovelace (1990), for β0 = 0, the case of the strong longitudinal
current i0 > 1 was studied. As was expected, with these longitudinal currents, the
magnetic surface collimates to the rotation axis. The equilibrium conditions with
the region of closed field lines were not used at all. As a result, there occurred
a region, in which the poloidal magnetic field is absent, between the regions of
open and closed field lines.

4. In Beskin and Malyshkin (1998), both the two equilibrium conditions and the
perturbation of the region of closed field lines were taken into account. It was
also shown that the zero point can be located inside the light cylinder: x (∗)

r < 1.
However, the magnetic field structure in the equatorial region beyond the zero
point was not discussed in the paper.

Figure 2.20 shows, as an example, the structure of the magnetic surfaces for the
nonzero longitudinal current i0 and the accelerating potential β0 obtained numer-
ically by solving Eqs. (2.249) and (2.250) (Beskin and Malyshkin, 1998). It was
shown that the solution of the problem cannot be constructed for any values of i0

and β0. The point is that, for certain parameters i0, β0, the solution to Eq. (2.249)
in the region of open field lines shows that the zero line of the magnetic field is
located beyond the light cylinder xL = 1. Clearly, in this case, the solution cannot
be matched to the closed magnetosphere region because the solution with i0 = 0
cannot be extended to the region xr > 1. As shown in Fig. 2.21, on the plane of the
parameters i0 − β0, the forbidden region corresponds to rather small values of i0.

Fig. 2.20 The magnetosphere structure of the axisymmetric rotator for i0 = 0.39 and β0 = 0.05.
The values of i0 and β0 do not correspond to “Ohm’s law” (2.256) and, therefore, the zero point
is within the “light cylinder” xr = 1. The real light cylinder (dashed line) is at a distance of
xr = 1/(1 − β0) from the rotation axis. The dotted line indicates the light surface (in this paper, its
location was not established) (Beskin and Malyshkin, 1998)
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Fig. 2.21 The range of
parameters i0–β0, for which
the construction of the
solution is possible. The
dotted line indicates “Ohm’s
law” (2.256) (Beskin and
Malyshkin, 1998)

Thus, the important conclusion is that the existence in the neutron star mag-
netosphere of the closed magnetic field lines that do not intersect the light cylin-
der can impose a certain constraint on the longitudinal currents circulating in
the magnetosphere. The thorough computations show that the total energy of the
electromagnetic field proves minimal exactly in the vicinity of the boundary line
β0 = β0(i0), when, by the way, the zero point of the magnetic field lies in the
vicinity of the light cylinder (Beskin and Malyshkin, 1998). Consequently, we can
suppose that the equilibrium of the radio pulsar magnetosphere is realized only for a
certain connection between the accelerating potential ψ(P, B0) and the longitudinal
current I .

The existence of this “Ohm’s law” (Beskin et al., 1983) is certainly a very impor-
tant conclusion. Indeed, as was shown, it is the longitudinal currents that specify
the energy losses of a rotating neutron star. Consequently, if there is a connec-
tion between the longitudinal current and the accelerating potential, the energy
losses of the neutron star are fully determined by the concrete particle generation
mechanism near the pulsar surface. Note that the compatibility relation prescribing
nonlinear “Ohm’s law” can be derived directly from the pulsar equation. Indeed,
supposing that the field line Ψ = Ψ∗ corresponding to the solution of Eq. (2.249)
in the open magnetosphere region passes in the vicinity of the zero point (where
Bz ∝ (∂Ψ/∂xr ) = 0) located on the light cylinder (where xr = 1), we have directly
from (2.249)

β0(i0) = 1 −
(

1 − i2
0

i2
max

)1/2

, (2.256)
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where imax =
√

(∇2Ψ )∗/4Ψ∗ ≈ 0.79. As seen from Fig. 2.21, the analytical estimate
(2.256) is in good agreement with the numerical computations. Relation (2.256), in
the large, remains valid for the inclined rotator (Beskin et al., 1993).

On the other hand, as shown in Fig. 2.21, relation (2.256) actually yields only the
lower bound for the longitudinal current. Accordingly, the conclusion of the small
value of the longitudinal current was not confirmed independently in other papers.
Therefore, the question of the value of the longitudinal current remains open. What
can be stated with assurance is that the longitudinal current circulating in the radio
pulsar magnetosphere does not, evidently, exceed the GJ current. Thus, the problem
of the exact value of the energy losses Wtot and the existence of the light surface,
on which, as we will see, the extra acceleration of particles is possible, remains
unsolved. However, for most applications, the estimate I ≈ IGJ appears adequate,
so that relation (2.5) is a good approximation to Wtot. In any event, the problem
of the value of the longitudinal current cannot be fully solved by the force-free
approximation.

As was already noted, the analytical approach is restricted by the choice of the
homogeneous longitudinal current density (I (Ψ ) = kΨ ). Only a quarter of a cen-
tury later, after the pulsar equation was formulated, Contopoulos et al. (1999) first
studied the system of equations (2.249) and (2.250) numerically. In particular, they
succeeded in (by an iterative procedure) passing the singularity on the light cylin-
der for the arbitrary current I (Ψ ). For the case β0 = 0, the additional assumption
that the last open field line coincides with the equator was also made there (see
Fig. 2.22). It is not surprising, therefore, that the longitudinal current (which in the
presence of the additional condition is no longer a free parameter) appeared close to

Fig. 2.22 The magnetosphere
structure in the
model (Contopoulos et al.,
1999). The additional
assumption that the last open
field line coincides with the
equator was made
(Reproduced by permission
of the AAS, Fig. 3 from
Contopoulos, I., Kazanas, D.,
Fendt, C.: The axisymmetric
pulsar magnetosphere. ApJ
511, 351–558 (1999))
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the current IM (2.225) for the Michel monopole solution which does not correspond
to the GJ current density jGJ = ρGJc ≈ const. At the same time, the equilibrium
condition (2.255) was not taken into account in the paper. This statement of the
problem was later discussed in Ogura and Kojima (2003), Goodwin et al. (2004),
Gruzinov (2005), Contopoulos (2005), Komissarov (2006), McKinney (2006a), and
Timokhin (2006), and, in a number of papers, the case, in which the zero point of
the magnetic field can be located within the light cylinder, was also analyzed.

Let us briefly enumerate the main difficulties the force-free magnetosphere the-
ory encounters. First of all, it turned out that the analytical solution method dis-
cussed above does not, actually, allow us to uniquely specify the magnetic field
structure. The point is that the dipole magnetic field in the vicinity of the neutron
star corresponds to the high harmonics λ in expansion (2.184), whereas the visible
magnetic field structure on scales comparable with those of the light cylinder is
specified by the small values of λ. As a result, the solution

Ψ (�, z) = |m|
RL

∫ ∞

0
Q(λ)Rλ(� ) cos λzdλ, (2.257)

where Q(λ) → 1 for λ → ∞, still corresponds to the dipole magnetic field for
r → 0. This is because on the background of the large dipole magnetic field near
the neutron star surface, one fails to control the harmonics with the small value of
λ, which is crucial at large distances from the star.

The problem of the magnetic field structure in the equatorial region beyond the
zero point is not solved either. As was mentioned, in most papers it was supposed
in the example of the solar wind that a current sheet is to develop here, which sepa-
rates the oppositely directed flows of the magnetic field (see Fig. 2.22) (Lyubarskii,
1990; Contopoulos et al., 1999; Uzdensky, 2003; Goodwin et al., 2004). It was,
generally, believed that the inverse current is enclosed in an infinitely thin sheet
and, therefore, the toroidal magnetic field Bϕ does not disappear up to the sepa-
ratrix surface. However, as was shown (Beskin and Malyshkin, 1998; Uzdensky,
2003), allowance for the width finiteness of the sheet with the inverse current (i.e.,
allowance for the continuity of Bϕ) can appreciably change the main conclusions
of the magnetic field structure in the vicinity of the separatrix. In particular, it is
obvious that if the toroidal magnetic field Bϕ is zero in the equatorial plane, the
light surface |E| = |B| must pass through the point � = c/Ω , z = 0 on the light
cylinder surface (see Uzdensky (2003) for details). This problem does not arise for
the solar wind since the Earth is within the light cylinder.

On the other hand, one should note that this topology is not the only possibility.
Indeed, as is seen from the form of Eq. (2.250), at the zero point (i.e., at the point
at which ∂Ψ/∂xr = 0), either the condition (∇2Ψ )∗ = 0 or the condition x2

r = 1 is
to be satisfied. Therefore, for rather large longitudinal currents when the zero point
is located within the light cylinder, the condition (∇2Ψ )∗ = 0 is to be satisfied. This
implies that the angle between the separatrices is 90◦. There is the same angle for
the vacuum case. Therefore, this zero point can be matched to the outer region that is
not connected by the magnetic field lines with the neutron star surface, for example,
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with the chain of magnetic islands located in the equatorial plane (see Fig. 3.12b).
Only in the limiting case, in which the zero point lies on the light cylinder xr = 1
(as, for example, is the case for the solution with the zero longitudinal current), the
value (∇2Ψ )∗ remains finite at the zero point (the angle between the separatrices, as
shown in Fig. 2.14, is 70◦).

Finally, one should remember that most of the solutions, which influence our
viewpoint on the radio pulsar magnetosphere structure, referred to the axisymmet-
ric case. For the inclined rotator, quite new effects can occur, which completely
change the entire pattern involved. Unfortunately, in this region (except for the
case of the above zero longitudinal current) no reliable results that would allow
us to confidently judge the magnetosphere properties of the inclined rotator were
obtained (Mestel and Wang 1982; Bogovalov 1999, 2001; Spitkovsky, 2006).

Nevertheless, let us try to point out the general properties following from the
analysis of Eq. (2.101) describing the force-free neutron star magnetosphere.
1. In the case of zero longitudinal currents independent of the inclination angle χ ,

the secondary plasma filling the magnetosphere fully screens the magnetodipole
radiation (Beskin et al., 1983; Mestel et al., 1999). Therefore, the energy losses
of the rotating radio pulsar can be caused only by the ponderomotive action of the
surface currents closing the longitudinal currents flowing in the pulsar magneto-
sphere. Consequently, formula (2.178) fully defines the slowing down of radio
pulsars.

2. When the longitudinal current coincides with the Michel current IM, the full
compensation of two opposite processes occurs, viz., the decollimation con-
nected with the toroidal current and the collimation due to the longitudinal cur-
rents. As a result, the monopole magnetic field, which is an exact vacuum solu-
tion, turns out to be an exact solution to Eq. (2.101) in the presence of plasma.
Certainly, the exact value of the critical current depends on the concrete geometry
of the poloidal magnetic field. However, we can confidently state that jcr ≈ ρGJc.

3. For j‖ > jcr, the light surface (which, in the general case, does not coincide
with the light cylinder) extends to infinity. This implies that for sufficiently large
longitudinal currents the solution can be really extended to infinity. The magnetic
surfaces are collimated to the rotation axis (Sulkanen and Lovelace, 1990).

4. If there are any physical constraints from above on the value of the longitudinal
current so that j‖ < jcr, the magnetosphere has a “natural boundary”—the light
surface. In this case, the complete problem comprising the outer regions can-
not be solved within one-fluid magnetic hydrodynamics because, in this case,
multiple flow regions occur.

2.6.3 Magnetosphere Models

As was mentioned, the pulsar wind problem is impossible to solve by the force-free
approximation. Therefore, we briefly discuss here only the common features of the
most developed models of the radio pulsar magnetosphere. The particle acceleration
problems are discussed in Chap. 5.
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Recall first that the existence of the light surface depends on the value of the
longitudinal current. The point is that, as was noted, the presence of light surface at a
finite distance from the neutron star must result in the efficient particle acceleration
in the pulsar wind. In particular, in the nonfree particle escape models (in which
the electric current in the plasma generation region can be arbitrary), the longitu-
dinal current i0 is to be determined from relation (2.256). For sufficiently small
values of the potential drop β0 < 1, the longitudinal current should also be small.
This implies that the light surface, on which the additional particle acceleration,
inevitably, occurs, should be at a finite distance from the neutron star. Certainly, the
existence of the light surface leads to the substantial complication of the theory—in
fact, not a single, at least, somewhat reliable result of the plasma behavior beyond
the light surface has been obtained yet.

Besides, one should not think that the existence of the light surface can be real-
ized only within the model of the nonfree particle escape from the neutron star
surface. Indeed, as is evident from the example of the force-free approximation,
the light surface extends to infinity only for rather large values of the longitudinal
current. As shown in Chap. 4, this conclusion remains valid for the MHD flows
as well. Therefore, for any additional constraints from above on the value of the
longitudinal electric current, the occurrence of the light surface at a finite distance
from the pulsar can be expected. However, within the particle generation model
with free particle escape from the star surface, the value of the longitudinal electric
current 4π I (Ψ ) = 2ΩFΨ ( j‖ = jGJ) is fixed and, what is especially important,
substantially differs from the Michel current 4π IM = ΩF(2Ψ −Ψ 2/Ψ0). Therefore,
it is not improbable that in the real dipole geometry of the pulsar magnetic field
this current is not strong enough for a continuous (in particular, transonic) plasma
outflow to exist up to large distances as compared to the light cylinder radius. In
any case (and it is very important), in the numerically obtained solutions, the value
of the longitudinal current I (Ψ ) is smaller than that of the limit current IM (2.225)
corresponding to the Michel monopole solution. Therefore, the light surface for
this solution can be at a finite distance from the neutron star (see, e.g., Ogura and
Kojima, 2003). Certainly, the exact proof of this fact invites further investigation.

Indeed, the analysis of the axisymmetric magnetosphere produced up to now did
not clarify this point. As was demonstrated, exact analytical solutions (having the
longitudinal current j‖ ≈ const within open magnetic field lines) contain the light
surface at a finite distance. But their behavior is irrational near the equatorial plane
outside the light cylinder. On the other hand, the numerical calculations postulating
the existence of the current sheet outside the light cylinder demand the presence of
the longitudinal current I ≈ IM, which is inconsistent with any particle generation
mechanism ( j‖ → 0 near the separatrix).

The above arguments for the existence of the light surface were brought forward
for the axisymmetric magnetosphere. It turned out that in the case of the inclined
rotator, the situation is much more obvious. Indeed, for the orthogonal rotator the GJ
charge density in the vicinity of the magnetic pole should be εA = (ΩR/c)1/2 times
less than that in the axisymmetric magnetosphere. Accordingly, one can expect that
the longitudinal current flowing along the open field lines is weaker in the same
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proportions. Then in the vicinity of the light cylinder, the toroidal magnetic field
appears much smaller than the poloidal magnetic field. On the other hand, as we
saw in the example of the Michel solution, for the light surface to extend to infinity,
it is necessary that the toroidal magnetic field on the light cylinder be of the order
of the poloidal field. Therefore, if the longitudinal current j‖, in reality, is not ε−1/2

A
times higher than ρGJ,90c, where ρGJ,90 is the mean charge density on the polar cap
for χ ∼ 90◦ (and for ordinary pulsars this factor is 102), the light surface for the
orthogonal rotator must, inevitably, be in the immediate vicinity of the light cylinder.

Thus, the presence or the absence of the light surface must be the basic element
when constructing the radio pulsar magnetosphere model. Therefore, we will try
to classify the magnetosphere models with this in mind. The first class of mod-
els suggests the presence of the light surface in the vicinity of the light cylinder,
which can be realized for rather weak longitudinal currents flowing in the magneto-
sphere (Beskin et al., 1983; Chiueh et al., 1998). Within this approach, it is supposed
that

� the energy losses of the rotating neutron star are fully defined by the current
losses;

� the small value of the longitudinal current i0 < 1 results in the occurrence of the
light surface;

� in the vicinity of the light surface almost the total electromagnetic flux is trans-
ferred to the particle energy flux;

� accordingly, the full closure of the longitudinal current circulating in the magne-
tosphere really occurs here (see Fig. 2.23).

The problems of the particle acceleration in the vicinity of the light surface are
beyond the scope of our discussion. Therefore, we only point to the main features of
this process. In the simplest cylindrical geometry when solving the two-fluid hydro-
dynamical equations (describing exactly the difference in the electron and positron
motion), it was shown (Beskin et al., 1983) that a considerable part of the energy
carried within the light surface by the electromagnetic field in the thin transition
layer

Δr ∼ λ−1 RL (2.258)

in the vicinity of the light surface is transferred to the particle energy flux (λ ∼ 104

is the multiplicity parameter). Here, as shown in Fig. 2.23, the total closure of the
longitudinal current circulating in the magnetosphere really occurs. As a result, the
high efficiency of the particle acceleration has its logical explanation.

Note, however, that the presence of the light surface leads to a considerable com-
plication of the whole problem of the neutron star magnetosphere structure. In this
case, it is possible to somewhat reliably describe only the interior regions of the
magnetosphere. The problems of the future destiny of the accelerated particles, the
energy transport at large distances, and also the current closure are still to be solved.
As was noted, these problems are beyond the scope of one-fluid hydrodynamics;
evidently, they cannot be solved at all within the analytical approach.
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Fig. 2.23 Magnetosphere structure in the model by Beskin et al. (1993). If there are some physical
constraints on the value of the longitudinal current (contour arrows) so that j‖ < jcr, the mag-
netosphere has a “natural boundary”—the light surface |E| = |B|, where the frozen-in condition
becomes inapplicable. Therefore, electrons and positrons begin to accelerate in different directions
along the electric field and a strong poloidal electric current is generated. As a result, in the thin
layer Δr ≈ RL/λ, the full closure of the electric current really occurs and the particle energy flux
becomes comparable with the total energy flux

The analogous result was later obtained on the basis of the solutions of the two-
fluid hydrodynamical equations for more realistic geometry when the poloidal mag-
netic field is close to the monopole one (Beskin and Rafikov, 2000). It was shown
that all results obtained for the cylindrical case remain valid for the more realistic
two-dimensional geometry. In particular, it was confirmed that the particles can be
accelerated up to energy

εe ∼ eB0 R
1

λ

(
ΩR

c

)2

∼ 104 MeV

(
λ

103

)−1 ( B0

1012G

)(
P

1s

)−2

, (2.259)

but not more than 106 MeV, when the radiation friction effects become appreciable.
However, as in the one-dimensional case, the problem of constructing the solution
beyond the light surface remains unsolved.

The second class of models also suggests the existence of the “dissipation
domain” in the vicinity of the light cylinder (see Fig. 2.24). However, only the
insignificant energy transfer from the electromagnetic field to particles is postulated
here (Mestel and Shibata, 1994; Mestel, 1999). Otherwise, within this model, it is
assumed that

� the longitudinal current is close to the critical current (i0 ≈ 1);
� in the vicinity of the light surface, only a small amount of the electromagnetic

energy flux is transferred to the particle energy flux;
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Fig. 2.24 The magnetosphere structure in the Mestel model (Mestel and Shibata, 1994). The
existence of the particle acceleration region in the vicinity of the light surface is also supposed.
However, only a small change in the longitudinal current (contour arrows) is assumed, whereas
the potential drop along the magnetic field lines (and, hence, the change in the angular velocity
ΩF) was assumed to be significant but insufficient for the particle energy to change appreciably.
Therefore, at large distances from the neutron star, the main energy flux is still connected with the
Poynting flux

� accordingly, there is only the partial closure of the longitudinal currents circulat-
ing in the magnetosphere;

� at large distances from the neutron star, the main energy flux is still connected
with the Poynting flux.

Note that in this model the properties of the transition layer were only postulated.
In particular, it was assumed that in the transition layer only a small change in
the longitudinal current occurs, whereas the relative change in the electric potential
along the magnetic field lines (and, hence, the change in the angular velocity ΩF)
was assumed to be significant. As a result, the light surface again extended to infin-
ity. Therefore, at large distances from the neutron star, the main energy flux was still
connected with the Poynting flux.

One should stress that the basic property of the transition layer studied—the large
change in the angular velocity ΩF with a relatively small longitudinal current—
is in contradiction with the properties of the acceleration region in the vicinity of
the light surface. As the analysis of the two-fluid MHD equations showed (Beskin
et al., 1983; Beskin and Rafikov, 2000), it is the longitudinal current rather than the
electric potential that should change most rapidly in the direction perpendicular to
the transition layer.

This result can be readily explained. The point is that in the vicinity of the light
surface, as was already mentioned, the particle energy formally tends to infinity.
As a result, the frozen-in equation is violated, which requires transition to the more
exact two-fluid equations. Physically, the result is that electrons and positrons begin
to accelerate in different directions along the electric field. Consequently, a strong
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poloidal electric current occurs, which is generated by the entire electron–positron
density λ|ρGJ|/|e|. This poloidal current results in an abrupt decrease in the toroidal
magnetic field, i.e., in a decrease in the Poynting flux. As to the electric potential,
its change in the layer is specified by the electric charge density proportional to
the difference in the electron and positron densities only. Since in the radio pulsar
magnetosphere the particle density is many orders of magnitude higher than the GJ
density nGJ = |ρGJ|/|e|, the relative change in the layer current must considerably
exceed the change in the electric potential. Actually, the availability of the factor
1/λ in expression (2.258) is exactly associated with this event.

Finally, the third class includes models in which the light surface is absent
(Lyubarskii, 1990; Bogovalov, 1997b; Contopoulos et al., 1999). Otherwise, it is
assumed here that
� the longitudinal current is larger than the critical current (i0 > 1);
� the light surface extends to infinity;
� the longitudinal current is closed at large distances from the light cylinder;
� at large distances from the neutron star the main energy flux is still connected

with the Poynting flux.

This class of models has presently been studied quite thoroughly, though mainly for
the axisymmetric case only (Goodwin et al., 2004; Gruzinov, 2005; Contopoulos,
2005; Komissarov, 2006; McKinney, 2006a; Timokhin, 2006). Only a few years
ago, the new and rather fruitful efforts have been made in constructing the force-
free model of the inclined rotator (Spitkovsky and Arons, 2003; Spitkovsky, 2006)
(see Fig. 2.25). In particular, the existence of the surface currents flowing along the
separatrix in the direction opposite to the bulk current in the region of open field
lines was confirmed. It was also confirmed that for the existence of the outflowing

Fig. 2.25 The magnetosphere
structure of the orthogonal
rotator in which the light
surface is absent (Spitkovsky,
2006). At large distances
from the neutron star, the
main energy flux is connected
with the Poynting flux.
Rotation axis is perpendicular
to the figure plane
[Reproduced by permission
of the AAS, Fig. 2a from
Spitkovsky, A.:
Time-dependent force-free
pulsar magnetospheres:
axisymmetric and oblique
rotators. ApJ 648, L51–L54
(2006)]



2.7 Conclusion 175

wind, the longitudinal current density for the inclined rotator must be much larger
than the local GJ one (iA � 1). For this reason, it is not surprising that the energy
losses even increase with the inclination angle χ

Wtot = 1

4

B2
0Ω

4 R6

c3

(
1 + sin2 χ

)
. (2.260)

On the other hand, since there is no restriction to the value of the longitudinal
current, one fails to confirm or refute the hypothesis for the existence of the light
surface in the vicinity of the light cylinder, where the efficient acceleration of par-
ticles is possible. Moreover, within this approach, it was impossible to effectively
transfer the electromagnetic energy to the particle energy flux. This problem will be
studied in more detail in Chap. 5.

2.7 Conclusion

As we see, the consistent theory of the radio pulsar magnetosphere is now still far
from completion. One of the main problems is the insufficient potentialities of the
analytical methods that fail, in the general case, to construct the solution even in
the rather simple force-free approximation. Evidently, only a dozen papers dealing
with this set of problems appeared in the 1990s. Attempts to formulate, in general
form, the problem of the magnetosphere structure due to the particle motion in the
self-consistent electromagnetic field were long beyond the available computating
resources (Krause-Polstorff and Michel, 1984, 1985; Petri et al., 2002; Smith et al.,
2001).

To sum up, the situation with the existence of the light surface in the pulsar
magnetosphere remains unclear. The behavior of the exact analytical solutions cor-
responding to reasonable longitudinal currents j‖ ≈ const within the open magnetic
field lines is irrational in the equatorial region outside the light cylinder. On the
other hand, the numerical solutions postulating the reasonable quasispherical out-
flow at large distances are in disagreement with the longitudinal current that can be
generated in the polar regions of the neutron star.

Thus, within the force-free approximation, it is impossible to determine the lon-
gitudinal current flowing in the magnetosphere and, hence, find the energy losses.
Therefore, the force-free statement of the problem, inevitably, calls for the con-
cretization of the medium properties on the boundary of the force-free region, be it
infinity or the current sheet, which is to be included in the equatorial region in most
models. As we will see, this flaw will be naturally eliminated in the full GS equation
version, which takes into account that the particle mass is finite.
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