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The alternating groups

2.1 Introduction

The most familiar of the (finite non-abelian) simple groups are the alternating
groups An, which are subgroups of index 2 in the symmetric groups Sn. In
this chapter our main aims are to define these groups, prove they are simple,
determine their outer automorphism groups, describe in general terms their
subgroups, and construct their covering groups. At the end of the chapter we
briefly introduce reflection groups as a generalisation of the symmetric groups,
as they play an important role not only in the theory of groups of Lie type, but
also in the construction of many sporadic groups, as well as in the elucidation
of much exceptional behaviour of low-dimensional classical groups.

By way of introduction we bring in the basic concepts of permutation
group theory, such as k-transitivity and primitivity, before presenting one
of the standard proofs of simplicity of An for n � 5. Then we prove that
Aut(An) ∼= Sn for n � 7, while for n = 6 there is an exceptional outer
automorphism of S6. The subgroup structure of An and Sn is described by
the O’Nan–Scott Theorem, which we state and prove after giving a detailed
description of the subgroups which arise in that theorem.

Next we move on to the covering groups, and construct the Schur double
covers 2.An for all n � 4. We also construct the exceptional triple covers 3.A6

and 3.A7 (and hence 6.A6 and 6.A7), but make no attempt to prove the fact
that there are no other covers. Finally, we define and prove the Coxeter pre-
sentation for Sn on the fundamental transpositions (i, i+1), as an introduction
to reflection groups in general. We state Coxeter’s classification theorem for
real reflection groups, and the crystallographic restriction, for future use.

2.2 Permutations

We first define the symmetric group Sym(Ω) on a set Ω as the group of all
permutations of that set. Here a permutation is simply a bijection from the
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12 2 The alternating groups

set to itself. If Ω has cardinality n, then we might as well take Ω = {1, . . . , n}.
The resulting symmetric group is denoted Sn, and called the symmetric group
of degree n.

Since a permutation π of Ω is determined by the images π(1) (n choices),
π(2) (n−1 choices, as it must be distinct from π(1)), π(3) (n−2 choices), and
so on, we see that the number of permutations is n(n − 1)(n − 2) . . . 2.1 = n!
and therefore |Sn| = n!.

A permutation π may conveniently be written simply as a list of the im-
ages π(1), . . . , π(n) of the points in order, or more explicitly, as a list of the
points 1, . . . , n with their images π(1), . . . , π(n) written underneath them. For

example,
 

1 2 3 4 5
1 5 2 3 4

!

denotes the permutation fixing 1, and mapping

2 to 5, 3 to 2, 4 to 3, and 5 to 4. If we draw lines between equal numbers in
the two rows, the lines cross over each other, and the crossings indicate which
pairs of numbers have to be interchanged in order to produce this permuta-
tion. In this example, the line joining the 5s crosses the 4s, 3s and 2s in that
order, indicating that we may obtain this permutation by first swapping 5
and 4, then 5 and 3, and finally 5 and 2. A single interchange of two elements
is called a transposition, so we have seen how to write any permutation as
a product of transpositions. Of course, for any given permutation there are
many ways of doing this.

2.2.1 The alternating groups

An alternative interpretation of this picture is to read it from bottom to top,
and record the positions of the strings that are swapped. In this example, we
first swap the second and third strings, then the third and fourth, and finally
the fourth and fifth. Thus the second string moves to the fifth position, the
third string moves to the second position, and so on. In this way we have
written our permutation as a product of swaps of adjacent strings. Moreover,
the product of two permutations can be expressed by concatenating any two
corresponding lists of swapping strings.

But if we write the identity permutation as a product of such transposi-
tions, and the line connecting the is crosses over the line connecting the js,
then they must cross back again: thus the number of crossings for the identity
element is even. It follows that if π is written in two different ways as a prod-
uct of such transpositions, then either the number of transpositions is even
in both cases, or it is odd in both cases. Therefore the map φ from Sn onto
the group {±1} of order 2 defined by φ(π) = 1 whenever π is the product of
an even number of transpositions, is a (well-defined) group homomorphism.
As φ is onto, its kernel is a normal subgroup of index 2, which we call the
alternating group of degree n. It has order 1

2n!, and its elements are called the
even permutations. The other elements of Sn are the odd permutations. (An
alternative proof that An has index 2 in Sn can be found in Exercise 2.1.)
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The notation for permutations as functions on the left (where πρ means
ρ followed by π) is unfortunately inconsistent with the normal convention for
permutations that πρ means π followed by ρ. Therefore we adopt a different
notation, writing aπ instead of π(a), to avoid this confusion. We then have
aπρ = ρ(π(a)), and permutations are read from left to right, rather than right
to left as for functions.

2.2.2 Transitivity

Given a group H of permutations, i.e. a subgroup of a symmetric group Sn,
we are interested in which points can be mapped to which other points by
elements of the group H. If every point can be mapped to every other point,
we say H is transitive on the set Ω. In symbols, this is expressed by saying
that for all a and b in Ω, there exists π ∈ H with aπ = b. In any case, the set
{aπ | π ∈ H} of points reachable from a is called the orbit of H containing a.
It is easy to see that the orbits of H form a partition of the set Ω.

More generally, if we can simultaneously map k points wherever we like,
the group is called k-transitive. This means that (for k � n) for every list of
k distinct points a1, . . . , ak and every list of k distinct points b1, . . . , bk there
exists an element π ∈ H with ai

π = bi for all i. In particular, 1-transitive is
the same as transitive.

For example, it is easy to see that the symmetric group Sn is k-transitive
for all k � n, and that the alternating group An is k-transitive for all k � n−2.

It is obvious that if H �= 1 is k-transitive then H is (k−1)-transitive, and is
therefore m-transitive for all m � k. There is however a concept intermediate
between 1-transitivity and 2-transitivity which is of interest in its own right.
This is the concept of primitivity, which is best explained by defining what it
is not.

2.2.3 Primitivity

A block system for a subgroup H of Sn is a partition of Ω preserved by H;
that is, a set of mutually disjoint non-empty subsets of Ω whose union is Ω.
We call the elements of the partition blocks. In other words, if two points a
and b are in the same block of the partition, then for all elements π ∈ H,
the points aπ and bπ are also in the same block as each other. There are two
block systems which are always preserved by every group: one is the partition
consisting of the single block Ω; at the other extreme is the partition in
which every block consists of a single point. These are called the trivial block
systems. A non-trivial block system is often called a system of imprimitivity
for the group H. If n � 3 then any group which has a system of imprimitivity
is called imprimitive, and any non-trivial group which is not imprimitive is
called primitive. (It is usual also to say that S2 is primitive, but that S1 is
neither primitive nor imprimitive.)
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It is obvious that

if H is primitive, then H is transitive. (2.1)

For, if H �= 1 is not transitive, then the orbits of H form a system of imprim-
itivity for H, so H is not primitive. On the other hand, there exist plenty of
transitive groups which are not primitive. For example, in S4, the subgroup

H of order 4 generated by
 

1 2 3 4
2 1 4 3

!

and
 

1 2 3 4
3 4 1 2

!

is transitive,

but preserves the block system {{1, 2}, {3, 4}}. It also preserves the block sys-
tems {{1, 3}, {2, 4}} and {{1, 4}, {2, 3}}. Of course, in any block system for a
transitive imprimitive group, all the blocks have the same size.

Another important basic result about primitive groups is that

every 2-transitive group is primitive. (2.2)

For, if H is imprimitive, we can choose three distinct points a, b and c such
that a and b are in the same block, while c is in a different block. (This is
possible since the blocks have at least two points, and there are at least two
blocks.) Then there can be no element of H taking the pair (a, b) to the pair
(a, c), so it is not 2-transitive.

2.2.4 Group actions

Suppose that G is a subgroup of Sn acting transitively on Ω. Let H be the
stabiliser of the point a ∈ Ω, that is, H = {g ∈ G | ag = a}. Then the
points of Ω are in natural bijection with the (right) cosets Hg of H in G.
This bijection is given by Hx ↔ ax. It is left as an exercise for the reader (see
Exercise 2.2) to prove that this is a bijection. In particular, |G : H| = n.

We can turn this construction around, so that given any subgroup H in G,
we can let G act on the right cosets of H according to the rule (Hx)g = Hxg.
Numbering the cosets of H from 1 to n, where n = |G : H|, we obtain a
permutation action of G on these n points, or in other words a group homo-
morphism from G to Sn. If this homomorphism is injective, we say G acts
faithfully.

2.2.5 Maximal subgroups

This correspondence between transitive group actions on the one hand, and
subgroups on the other, permits many useful translations between combina-
torial properties of Ω and group-theoretical properties of G. For example, a
primitive group action corresponds to a maximal subgroup, where a subgroup
H of G is called maximal if there is no subgroup K with H < K < G. More
precisely:

Proposition 2.1. Suppose that the group G acts transitively on the set Ω,
and let H be the stabiliser of a ∈ Ω. Then G acts primitively on Ω if and only
if H is a maximal subgroup of G.
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Proof. We prove both directions of this in the contrapositive form. First as-
sume that H is not maximal, and choose a subgroup K with H < K < G.
Then the points of Ω are in bijection with the (right) cosets of H in G. Now
the cosets of K in G are unions of H-cosets, so correspond to sets of points,
each set containing |K : H| points. But the action of G preserves the set of
K-cosets, so the corresponding sets of points form a system of imprimitivity
for G on Ω.

Conversely, suppose that G acts imprimitively, and let Ω1 be the block
containing a in a system of imprimitivity. Since G is transitive, it follows
that the stabiliser of Ω1 acts transitively on Ω1, but not on Ω. Therefore
this stabiliser strictly contains H and is a proper subgroup of G, so H is not
maximal.

2.2.6 Wreath products

The concept of imprimitivity leads naturally to the idea of a wreath product
of two permutation groups. Recall the direct product

G × H = {(g, h) | g ∈ G, h ∈ H} (2.3)

with identity element 1G×H = (1G, 1H) and group operations

(g1, h1)(g2, h2) = (g1g2, h1h2),
(g, h)−1 = (g−1, h−1). (2.4)

Recall also the semidirect product G:H or G:φH, where φ : H → Aut(G)
describes an action of H on G. We define G:H = {(g, h) | g ∈ G, h ∈ H} with
identity element 1G:H = (1G, 1H) and group operations

(g1, h1)(g2, h2) = (g1g
φ(h1

−1)
2 , h1h2),

(g, h)−1 = ((g−1)φ(h), h−1). (2.5)

Now suppose that H is a permutation group acting on Ω = {1, . . . , n}.
Define Gn = G × G × · · · × G = {(g1, . . . , gn) | gi ∈ G}, the direct product of
n copies of G, and let H act on Gn by permuting the n subscripts. That is
φ : H → Aut(Gn) is defined by

φ(π−1) : (g1, . . . , gn) �→ (g1π , . . . , gnπ ). (2.6)

Then the wreath product G �H is defined to be Gn:φH. For example, if H ∼= Sn

and G ∼= Sm then the wreath product Sm �Sn can be formed by taking n copies
of Sm, each acting on one of the sets Ω1, . . . , Ωn of size m, and then permuting
the subscripts 1, . . . , n by elements of H. This gives an imprimitive action of
Sm � Sn on Ω =

⋃n
i=1 Ωi, preserving the partition of Ω into the Ωi. More

generally, any (transitive) imprimitive group can be embedded in a wreath
product: if the blocks of a system of imprimitivity for G are Ω1, . . . , Ωk, then
clearly all the Ωi have the same size, and G is a subgroup of Sym(Ω1) � Sk.
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2.3 Simplicity

2.3.1 Cycle types

An alternative notation for a permutation π is obtained by considering the
cycles of π. These are defined by taking an element a ∈ Ω, which maps under
π to aπ: this in turn maps to aπ2

, which maps to aπ3
and so on. Because Ω is

finite, eventually we get a repetition aπj

= aπk

and therefore aπj−k

= a. Thus
the first time we get a repetition is when we get back to the start of the cycle,
which can now be written (a, aπ, aπ2

, . . . , aπk−1
), where k is the length of the

cycle. Repeating this with a new element b not in this cycle, we get another
cycle of π, disjoint from the first. Eventually, we run out of elements of Ω, at
which point π is written as a product of disjoint cycles.

The cycle type of a permutation is simply a list of the lengths of the cycles,
usually abbreviated in some way. Thus the identity has cycle type (1n) and a
transposition has cycle type (2, 1n−2). Note, incidentally, that a cycle of even
length is an odd permutation, and vice versa. Thus a permutation is even if
and only if it has an even number of cycles of even length.

If ρ ∈ Sn is another permutation, then πρ = ρ−1πρ maps aρ via a and
aπ to aπρ. Therefore each cycle (a, aπ, aπ2

, . . . , aπk−1
) of π gives rise to a

corresponding cycle (aρ, aπρ, aπ2ρ, . . . , aπk−1ρ) of πρ. So the cycle type of πρ is
the same as the cycle type of π. Conversely, if π and π′ are two permutations
with the same cycle type, we can match up the cycles of the same length, say
(a, aπ, aπ2

, . . . , aπk−1
) with (b, bπ′

, bπ′2
, . . . , bπ′k−1

). Now define a permutation
ρ by mapping aπj

to bπ′j
for each integer j, and similarly for all the other

cycles, so that π′ = πρ. Thus two permutations are conjugate in Sn if and
only if they have the same cycle type.

By performing the same operation to conjugate a permutation π to itself,
we find the centraliser of π. Specifically, if π is an element of Sn of cycle type
(c1

k1 , c2
k2 , . . . , cr

kr ), then the centraliser of π in Sn is a direct product of r
groups Cci � Ski (see Exercise 2.25).

2.3.2 Conjugacy classes in the alternating groups

Next we determine the conjugacy classes in An. The crucial point is to de-
termine which elements of An are centralised by odd permutations. Given an
element g of An, and an odd permutation ρ, either gρ is conjugate to g by an
element π of An or it is not. In the former case, g is centralised by the odd
permutation ρπ−1, while in the latter case, every odd permutation maps g into
the same An-conjugacy class as gρ, and so no odd permutation centralises g.

If g has a cycle of even length, it is centralised by that cycle, which is
an odd permutation. Similarly, if g has two cycles of the same odd length
(possibly of length 1!), it is centralised by an element ρ which interchanges
the two cycles: but then ρ is the product of an odd number of transpositions,
so is an odd permutation.
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On the other hand, if g does not contain an even cycle or two odd cycles
of the same length, then it is the product of disjoint cycles of distinct odd
lengths, and every element ρ centralising g must map each of these cycles to
itself. The first point in each cycle can be mapped to an arbitrary point in
that cycle, but then the images of the remaining points are determined. Thus
we obtain all such elements ρ as products of powers of the cycles of g. In
particular ρ is an even permutation.

This proves that g is centralised by no odd permutation if and only if g
is a product of disjoint cycles of distinct odd lengths. It follows immediately
that the conjugacy classes of An correspond to cycle types if there is a cycle
of even length or there are two cycles of equal length, whereas a cycle type
consisting of distinct odd lengths corresponds to two conjugacy classes in An.

For example, in A5, the cycle types of even permutations are (15), (3, 12),
(22, 1), and (5). Of these, only (5) consists of disjoint cycles of distinct odd
lengths. Therefore there are just five conjugacy classes in A5.

2.3.3 The alternating groups are simple

It is easy to see that a subgroup H of G is normal if it is a union of whole
conjugacy classes in G. The group G is simple if it has precisely two normal
subgroups, namely 1 and G. Every non-abelian simple group G is perfect,
i.e. G′ = G.

The numbers of elements in the five conjugacy classes in A5 are 1, 20, 15,
12 and 12 respectively. Since no proper sub-sum of these numbers including
1 divides 60, there can be no subgroup which is a union of conjugacy classes,
and therefore A5 is a simple group.

We now prove by induction that An is simple for all n � 5. The induction
starts when n = 5, so we may assume n > 5. Suppose that N is a non-trivial
normal subgroup of An, and consider N ∩An−1, where An−1 is the stabiliser
in An of the point n. This is normal in An−1, so by induction is either 1 or
An−1. In the second case, N � An−1, so contains all the elements of cycle type
(3, 1n−3) and (22, 1n−4) (since it is normal). But it is easily seen that every
even permutation is a product of such elements, so N = An. Therefore we can
assume that N ∩ An−1 = 1, which means that every non-identity element of
N is fixed-point-free (i.e. fixes no points). Thus |N | � n, for if x, y ∈ N map
the point 1 to the same point then xy−1 fixes 1 so is trivial.

But N must contain a non-trivial conjugacy class of elements of An, and
it is not hard to show that if n � 5 then there is no such class with fewer
than n elements. We leave this verification as an exercise (Exercise 2.10).
This contradiction proves that N does not exist, and so An is simple. (An
alternative proof of simplicity of An is given in Exercise 3.4.)
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2.4 Outer automorphisms

2.4.1 Automorphisms of alternating groups

If n � 4 then An has trivial centre, so that An
∼= Inn(An) � Aut(An). More-

over, each element of Sn induces an automorphism of An, by conjugation in
Sn, so Sn is (isomorphic to) a subgroup of Aut(An). It turns out that for
n � 7 it is actually the whole of Aut(An). We prove this next. (I am grateful
to Chris Parker for supplying this argument.)

First we observe that, since (a, b, c)(a, b, d) = (a, d)(b, c), the group An

is generated by its 3-cycles. Indeed, it is generated by the 3-cycles (1, 2, 3),
(1, 2, 4), . . . , (1, 2, n). Also note that for n � 5, An has no subgroup of index
k less than n—for if it did there would be a homomorphism from An onto a
transitive subgroup of Ak, contradicting the fact that An is simple. We next
prove:

Lemma 2.2. If n � 7 and An−1
∼= H � An, then H is the stabiliser of one

of the n points on which An acts.

Proof. By the above remark, H cannot act on a non-trivial orbit of length less
than n−1, so if it is not a point stabiliser then it must act transitively on the
n points. For n = 7 this is impossible, as 7 does not divide the order of A6. For
n > 8, each element of H which corresponds to a 3-cycle of An−1 centralises a
subgroup isomorphic to An−4, with n − 4 � 5, so again by the above remark
this subgroup must have an orbit of at least n − 4 points. Therefore the ‘3-
cycles’ of H can move at most four points, so must act as 3-cycles on the
n points. The same is true for n = 8, as the 3-cycles centralise A5, which
contains C2×C2, whereas the elements of cycle type (32, 12) do not centralise
C2 × C2 in A8.

Now the elements of H corresponding to (1, 2, 3) and (1, 2, 4) in An−1

generate a subgroup isomorphic to A4, and therefore map to cycles (a, b, c)
and (a, b, d) in An. Similarly, the elements corresponding to (1, 2, j) must all
map to (a, b, x). It follows that the images (a, b, x) of the n − 3 generating
elements of H together move exactly n − 1 points. Therefore H is one of the
point stabilisers isomorphic to An−1, as required.

Now we are ready to prove the theorem:

Theorem 2.3. If n � 7 then Aut(An) ∼= Sn.

Proof. Any automorphism of An permutes the subgroups, and in particular
permutes the n subgroups isomorphic to An−1. But these subgroups are in
natural one-to-one correspondence with the n points of Ω, and therefore any
automorphism acts as a permutation of Ω, so is an element of Sn.

The theorem is also true for n = 5 and for n = 4 (see Exercise 2.16).
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2.4.2 The outer automorphism of S6

Of all the symmetric groups, S6 is perhaps the most remarkable. One manifes-
tation of this is its exceptional outer automorphism. This is an isomorphism
from S6 to itself which does not correspond to a permutation of the underly-
ing set of six points. What this means is that there is a completely different
way for S6 to act on six points.

To construct a non-inner automorphism φ of S6 we first note that φ must
map the point stabiliser S5 to another subgroup H ∼= S5. However, H cannot
fix any of the six points on which S6 acts, so H must be transitive on these
six points.

Thus our first job is to construct a transitive action of S5 on six points.
This may be obtained in a natural way as the action of S5 by conjugation
on its six Sylow 5-subgroups. (If we wish to avoid using Sylow’s theorems at
this point we can simply observe that the 24 elements of order 5 belong to six
cyclic subgroups 〈(1, 2, x, y, z)〉, and that these are permuted transitively by
conjugation by elements of S5.)

Going back to S6, we have now constructed our transitive subgroup H of
index 6. Thus S6 acts naturally (and transitively) on the six cosets Hg by
right multiplication. More explicitly, we can define a group homomorphism
φ : S6 → Sym({Hg | g ∈ S6}) ∼= S6. The kernel of φ is trivial, since S6

has no non-trivial normal subgroups of index 6 or more. Hence φ is a group
isomorphism, i.e. an automorphism of S6.

But φ is not an inner automorphism, because it maps the transitive sub-
group H to the stabiliser of the trivial coset H, whereas inner automorphisms
preserve transitivity. [A more sophisticated version of this construction is given
in Section 3.3.5 in the discussion of PSL2(5). An alternative construction of
the outer automorphism of S6 is given in Section 4.2.]

This is the only outer automorphism of S6, in the sense that S6 has index 2
in its full automorphism group. Indeed, we can prove the stronger result that
the outer automorphism group of A6 has order 4. For any automorphism maps
the 3-cycles to elements of order 3, which are either 3-cycles or products of two
disjoint 3-cycles. Therefore it suffices to show that any automorphism which
maps 3-cycles to 3-cycles is in S6. But this follows by the same argument as
in Lemma 2.2 and Theorem 2.3 (see Exercise 2.18).

2.5 Subgroups of Sn

There are a number of more or less obvious subgroups of the symmetric groups.
In order to simplify the discussion it is usual to (partly) classify the maximal
subgroups first, and to study arbitrary subgroups by looking at them as sub-
groups of the maximal subgroups. In this section we describe some important
classes of (often maximal) subgroups, and prove maximality in a few cases.
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The converse problem, of showing that any maximal subgroup is in one of
these classes, is addressed in Section 2.6.

The first two classes are the intransitive subgroups and the transitive im-
primitive subgroups. The other four are types of maximal primitive subgroups
of Sn which are ‘obvious’ to the experts, and are generally labelled the prim-
itive wreath product, affine, diagonal, and almost simple types. We shall not
prove that any of these are maximal, and indeed sometimes they are not.

2.5.1 Intransitive subgroups

If H is an intransitive subgroup of Sn, then it has two or more orbits on the
underlying set of n points. If these orbits have lengths n1, . . . , nr, then H is a
subgroup of the subgroup Sn1 ×· · ·×Snr consisting of all permutations which
permute the points in each orbit, but do not mix up the orbits. If r > 2, then
we can mix up all the orbits except the first one, to get a group Sn1×Sn2+···+nr

which lies between H and Sn. Therefore, in this case H cannot be maximal.
On the other hand, if r = 2, we have the subgroup H = Sk × Sn−k

of Sn, and it is quite easy to show this is a maximal subgroup, as long as
k �= n− k. For, we may as well assume k < n− k, and that the factor Sk acts
on Ω1 = {1, 2, . . . , k}, while the factor Sn−k acts on Ω2 = {k + 1, . . . , n}. If g
is any permutation not in H, let K be the subgroup generated by H and g.
Our aim is to show that K contains all the transpositions of Sn, and therefore
is Sn.

Now g must move some point in Ω2 to a point in Ω1, but cannot do this
to all points in Ω2, since |Ω2| > |Ω1|. Therefore we can choose i, j ∈ Ω2 with
ig ∈ Ω1 and jg ∈ Ω2. Then (i, j) ∈ H so (ig, jg) ∈ Hg � K. Conjugating this
transposition by elements of H we obtain all the transpositions of Sn (except
those which are already in H), and therefore K = Sn. This implies that H is
a maximal subgroup of Sn. Note that we have now completely classified the
intransitive maximal subgroups of Sn, so any other maximal subgroup must
be transitive. For example, the intransitive maximal subgroups of S6 are S5

and S4 × S2.

2.5.2 Transitive imprimitive subgroups

In the case when k = n− k, this proof breaks down, and in fact the subgroup
Sk × Sk is not maximal in S2k. This is because there is an element h in
S2k which interchanges the two orbits of size k, and normalises the subgroup
Sk × Sk. For example we may take h = (1, k + 1)(2, k + 2) · · · (k, 2k). Indeed,
what we have here is the wreath product of Sk with S2. This can be shown
to be a maximal subgroup of S2k by a similar method to that used above (see
Exercise 2.27).

More generally, if we partition the set of n points into m subsets of the
same size k (so that n = km), then the wreath product Sk �Sm can act on this
partition: the base group Sk × · · · ×Sk consists of permutations of each of the
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m subsets separately, while the wreathing action of Sm acts by permuting the
m orbits of the base group. It turns out that this subgroup is maximal in Sn

also (see Exercise 2.28). Thus we obtain a list of all the transitive imprimitive
maximal subgroups of Sn. These are the groups Sk � Sm where k > 1, m > 1
and n = km. For example, the transitive imprimitive maximal subgroups of
S6 are S2 �S3 (preserving a set of three blocks of size 2, for example generated
by the three permutations (1, 2), (1, 3, 5)(2, 4, 6) and (3, 5)(4, 6)) and S3 � S2

(preserving a set of two blocks of sise 3, for example generated by the three
permutations (1, 2, 3), (1, 2) and (1, 4)(2, 5)(3, 6)).

2.5.3 Primitive wreath products

We have completely classified the imprimitive maximal subgroups of Sn, so all
the remaining maximal subgroups of Sn must be primitive. To see an example
of a primitive subgroup of Sn, consider the case when n = k2, and arrange the
n points in a k×k array. Let one copy of Sk act on this array by permuting the
columns around, leaving each row fixed as a set. Then let another copy of Sk

act by permuting the rows around, leaving each column fixed as a set. These
two copies of Sk commute with each other, so generate a group H ∼= Sk ×Sk.
Now H is imprimitive, as the rows form one system of imprimitivity, and
the columns form another. But if we adjoin the permutation which reflects
in the main diagonal, so mapping rows to columns and vice versa, then we
get a group Sk � S2 which turns out to be primitive. For example, there is a
primitive subgroup S3 �S2 in S9, which however turns out not to be maximal.
In fact the smallest case which is maximal is the subgroup S5 � S2 in S25.

Generalising this construction to an m-dimensional array in the case when
n = km, with k > 2 and m > 1, we obtain a primitive action of the group
Sk � Sm on km points. To make this more explicit, we identify Ω with the
Cartesian product Ω1

m of m copies of a set Ω1 of size k, and let an element
(π1, . . . , πm) of the base group Sk

m act by

(a1, . . . , am) �→ (a1
π1 , . . . , am

πm) (2.7)

for all ai ∈ Ω1. The wreathing action of ρ−1 ∈ Sm is then given by the natural
action permuting the coordinates, thus:

ρ−1 : (a1, . . . , am) �→ (a1ρ , . . . , amρ). (2.8)

This action of the wreath product is sometimes called the product action,
to distinguish it from the imprimitive action on km points described in Sec-
tion 2.5.2 above. We shall not prove maximality of these subgroups in Sn or
An, although they are in fact maximal in An if k � 5 and km−1 is divisible
by 4, and maximal in Sn if k � 5 and km−1 is not divisible by 4.

2.5.4 Affine subgroups

The affine groups are essentially the symmetry groups of vector spaces. Let p
be a prime, and let Fp = Z/pZ denote the field of order p (for more on finite
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fields see Section 3.2). Let V be the vector space of k-tuples of elements of Fp.
Then V has pk elements, and has a symmetry group which is the semidirect
product of the group of translations ta : v �→ v + a, by the general linear
group GLk(p) consisting of all invertible k × k matrices over Fp. This group,
sometimes denoted AGLk(p), and called the affine general linear group, acts
as permutations of the vectors, so is a subgroup of Sn where n = pk. The
translations form a normal subgroup isomorphic to the additive group of the
vector space, which is isomorphic to a direct product of k copies of the cyclic
group Cp. In other words it is an elementary abelian group of order pk, which
we denote Epk , or simply pk. With this notation, AGLk(p) ∼= pk:GLk(p).

An example of an affine group is the group AGL3(2) ∼= 23:GL3(2), which
acts as a permutation group on the 8 vectors of F2

3, and so embeds in S8.
Indeed, it is easy to check that all its elements are even permutations, so
it embeds in A8. Another example is AGL1(7) ∼= 7:6 which is a maximal
subgroup of S7. Note however that its intersection with A7 is a group 7:3 which
is not maximal in A7. These groups 7:6 and 7:3 are examples of Frobenius
groups, which are by definition transitive non-regular permutation groups in
which the stabiliser of any two points is trivial. Other examples of Frobenius
groups are the dihedral groups D2n

∼= n:2 of symmetries of the regular n-gon.

2.5.5 Subgroups of diagonal type

The diagonal type groups are less easy to describe. They are built from a
non-abelian simple group T , and have the shape

T k.(Out(T ) × Sk) ∼= (T � Sk).Out(T ). (2.9)

Here there is a normal subgroup T � Sk, extended by a group of outer auto-
morphisms which acts in the same way on all the k copies of T . This group
contains a subgroup Aut(T ) × Sk consisting of a diagonal copy of T (i.e. the
subgroup of all elements (t, . . . , t) with t ∈ T ), extended by its outer automor-
phism group and the permutation group. This subgroup has index |T |k−1, so
the permutation action of the group on the cosets of this subgroup gives an
embedding of the whole group in Sn, where n = |T |k−1.

The smallest example of such a group is (A5 × A5):(C2 × C2) acting on
the cosets of a subgroup S5 × C2. This group is the semidirect product of
A5 × A5 = {(g, h) | g, h ∈ A5} by the group C2 × C2 of automorphisms
generated by α : (g, h) �→ (gπ, hπ), where π is the transposition (1, 2), and
β : (g, h) �→ (h, g). The point stabiliser is the centraliser of β, generated by α,
β and {(g, g) | g ∈ A5}. Therefore an alternative way to describe the action
of the group on 60 points is as the action by conjugation on the 60 conjugates
of β.

2.5.6 Almost simple groups

Finally, there are the almost simple primitive groups. A group G is called
almost simple if it satisfies T � G � Aut(T ) for some simple group T . Thus
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it consists of a simple group, possibly extended by adjoining some or all of
the outer automorphism group. If M is any maximal subgroup of G, then
the permutation action of G on the cosets of M is primitive, so G embeds
as a primitive subgroup of Sn, where n = |G : M |. The class of almost
simple maximal subgroups of Sn is chaotic in general, and to describe them
completely would require complete knowledge of the maximal subgroups of
all almost simple groups—a classic case of reducing an impossible problem to
an even harder one!

However, a result of Liebeck, Praeger and Saxl [120] states that (subject
to certain technical conditions) every such embedding of G in Sn is maximal
unless it appears in their explicit list of exceptions. It is also known that as n
tends to infinity, for almost all values of n there are no almost simple maximal
subgroups of Sn or An.

2.6 The O’Nan–Scott Theorem

The O’Nan–Scott theorem gives us a classification of the maximal subgroups
of the alternating and symmetric groups. Roughly speaking, it tells us that
every maximal subgroup of Sn or An is of one of the types described in the
previous section. It does not tell us exactly what the maximal subgroups are,
but it does provide a first step towards writing down the list of maximal
subgroups of An or Sn for any particular reasonable value of n.

Theorem 2.4. If H is any proper subgroup of Sn other than An, then H is
a subgroup of one or more of the following subgroups:

(i) an intransitive group Sk × Sm, where n = k + m;
(ii) an imprimitive group Sk � Sm, where n = km;
(iii) a primitive wreath product, Sk � Sm, where n = km;
(iv) an affine group AGLd(p) ∼= pd:GLd(p), where n = pd;
(v) a group of shape Tm.(Out(T ) × Sm), where T is a non-abelian simple

group, acting on the cosets of a subgroup Aut(T )×Sm, where n = |T |m−1;
(vi) an almost simple group acting on the cosets of a maximal subgroup of

index n.

Note that the theorem does not assert that all these subgroups are maximal
in Sn, or in An. This is a rather subtle question. As we noted in Section 2.5.6,
the last category of subgroups also requires us to know all the maximal sub-
groups of all the finite simple groups, or at least those of index n. In practice,
this means that we can only ever hope to get a recursive description of the
maximal subgroups of An and Sn.

In view of the fundamental importance of the O’Nan–Scott Theorem, we
shall give a proof. However, this proof is not easy, and could reasonably be
omitted at a first reading.
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2.6.1 General results

In this section we collect a number of general facts about (finite) groups which
will be useful in the proof of the O’Nan–Scott theorem, as well as being of
more general importance. Throughout this section we assume that H acts
faithfully on a set Ω.

Lemma 2.5. Every non-trivial normal subgroup N of a primitive group H is
transitive.

Proof. Otherwise the orbits of N form a system of imprimitivity for H.

A normal subgroup N of a group H is called minimal if N �= 1 and N
contains no normal subgroup of H except 1 and N .

Lemma 2.6. Any two distinct minimal normal subgroups N1 and N2 of any
group H commute.

Proof. By normality, [N1, N2] � N1 ∩ N2 � H, so by minimality

[N1, N2] = N1 ∩ N2 = 1.

A subgroup K of a group N is called characteristic if it is fixed by all
automorphisms of N . The following is obvious:

Lemma 2.7. If K is characteristic in N and N is normal in H then K is
normal in H.

A group K �= 1 is called characteristically simple if K has no proper non-
trivial characteristic subgroups. Thus Lemma 2.7 is saying that any minimal
normal subgroup of H is characteristically simple.

Lemma 2.8. If K is characteristically simple then it is a direct product of
isomorphic simple groups.

Proof. If T is any minimal normal subgroup of K, then so is Tα for any
α ∈ AutK. So by the proof of Lemma 2.6 either Tα = T or T ∩Tα = 1. In the
latter case TTα = T × Tα is a direct product. Since K is characteristically
simple, it is generated by all the Tα. By induction we obtain that K is a direct
product of a certain number of such Tα. But then any normal subgroup of T
is normal in K, so by minimality of T , T is simple.

Corollary 2.9. Every minimal normal subgroup N of a finite group H is a
direct product of isomorphic simple groups (not necessarily non-abelian).

Proof. By minimality, N is characteristically simple.

A group N is called regular on Ω if for each pair of points a and b in Ω,
there is exactly one element of N mapping a to b. In particular N is transitive
and |N | = |Ω|, and every non-identity element of N is fixed-point-free.
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Lemma 2.10. If H is primitive, and N is a non-trivial normal subgroup of
H, then either CH(N) is trivial, or CH(N) is regular and |CH(N)| = |Ω|.

Proof. Clearly CH(N) is normal in H, so by Lemma 2.5, if CH(N) �= 1 then
both N and CH(N) are transitive. Moreover, if 1 �= x ∈ CH(N) has any fixed
points, then the set of fixed points of x is preserved by N . This contradiction
implies that every element of CH(N) is fixed-point-free. This means that
CH(N) is regular.

This has a number of important consequences.

Corollary 2.11. If H is primitive, and N1 and N2 are non-trivial normal
subgroups of H, and [N1, N2] = 1, then N2 = CH(N1) and vice versa. In
particular, H contains at most two minimal normal subgroups, and if it has
an abelian normal subgroup then it has only one minimal normal subgroup.

Proof. By Lemma 2.5, N1 is transitive, and by Lemma 2.10, CH(N2) is reg-
ular. But N1 ⊆ CH(N2), and therefore N1 and CH(N2) have the same order
and are equal.

Corollary 2.12. With the same notation, N1
∼= N2.

Proof. The result is trivial if N1 = N2, so assume N1 �= N2, and therefore
N1 ∩N2 = 1. Fix a point x ∈ Ω, and let K be the stabiliser of x in the group
N1N2. Then K ∩ N1 = K ∩ N2 = 1 as N1 and N2 are regular. Therefore
KN1 = KN2 = N1N2, and by the third isomorphism theorem

K ∼= K/(K ∩ N1) ∼= KN1/N1 = N2N1/N1
∼= N2/(N1 ∩ N2) ∼= N2

and similarly K ∼= N1.

Lemma 2.13. Suppose that H is primitive and N is a non-trivial normal
subgroup of H. Let K be the stabiliser in H of a point. Then KN = H.

Proof. By Lemma 2.5, N is transitive, so the result follows by the orbit–
stabiliser theorem.

The following result is called the Dedekind modular law and although it is
very easy to prove it is surprisingly useful.

Lemma 2.14. If K, X and N are subgroups of a group G and X � N , then
N ∩ (KX) = (N ∩ K)X.

Proof. It is obvious that (N ∩ K)X � N ∩ (KX). Conversely, if k ∈ K and
x ∈ X satisfy kx ∈ N , then also k ∈ N , so kx ∈ (N ∩ K)X.

A subgroup X of H is called K-invariant if K � NH(X).

Lemma 2.15. Suppose that H is primitive and N is a minimal normal sub-
group of H. Let K be the stabiliser in H of a point. Then K ∩ N is maximal
among K-invariant proper subgroups of N .
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Proof. If K ∩ N < X < N and K � NH(X) then KX is a subgroup of H.
Moreover, X contains elements (of N) not in K, so K < KX; and H contains
elements (of N) not in X, so N ∩ (KX) = (N ∩K)X = X < N and therefore
KX < KXN = KN = H. This contradicts the maximality of K in H.

2.6.2 The proof of the O’Nan–Scott Theorem

With this preparation we are ready to embark on the proof of the theorem.
Let H be a subgroup of Sn not containing An, and let N be a minimal normal
subgroup of H. Let K be the stabiliser in H of a point.

Reduction to the case N unique and non-abelian.

Certainly H is either intransitive (giving case (i) of the theorem), or transitive
imprimitive (giving case (ii) of the theorem), or primitive. So we may assume
from now on that H is primitive.

If N is abelian, then by Corollary 2.9 it is an elementary abelian p-group,
and by Lemma 2.10 it acts regularly, and by Corollary 2.11, N = CH(N).
Therefore H is affine (case (iv) of the theorem).

Otherwise, all minimal normal subgroups of H are non-abelian. If there is
more than one minimal normal subgroup, say N1 and N2, then by Corollar-
ies 2.11 and 2.12 N1

∼= N2 and both N1 and N2 act regularly on Ω.
Thus N1 and N2 act in the same way on the n points, so there is an element

x of Sn conjugating N1 to N2. Moreover, by Corollary 2.11, N2 = CH(N1).
Therefore x conjugates N2 to N1, and 〈H, x〉 has a unique minimal normal
subgroup N = N1 × N2. So this case reduces to the case when there is a
unique minimal normal subgroup.

The case N unique and non-abelian.

From now on, we can assume that H has a unique minimal normal subgroup,
N , which is non-abelian. If N is simple, then CH(N) = 1 and so we are
in case (vi) of the theorem. Otherwise, N is non-abelian, non-simple, say
N = T1 × · · · × Tm with Ti

∼= T simple for all 1 � i � m, and m > 1, and
H permutes the Ti transitively by conjugation. Also, by Lemma 2.13 we have
KN = H, where K is the stabiliser in H of a point.

For each i, let Ki be the image of K∩N under the natural projection from
N to Ti. In particular, K ∩ N � K1 × · · · × Km. We divide into two cases:
either Ki �= Ti for some i (and therefore for all i) or Ki = Ti for all i.

Case 1: Ki �= Ti.

Now K normalises K1 × · · · × Km, so that, in this case, by maximality
(Lemma 2.15), we have K ∩ N = K1 × · · · × Km, and K permutes the Ki

transitively since H = KN . Let k be the index of Ki in Ti. Then H is evi-
dently contained in the group Sk � Sm acting in the product action (case (iii)
of the theorem).
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Case 2: Ki = Ti.

This is the hardest case. For the purposes of this proof define the support of
an element (t1, . . . , tm) ∈ T1 × · · · ×Tm = N to be the set {i | ti �= 1}. Let Ω1

be a minimal (non-empty) subset of {1, . . . ,m} such that K ∩ N contains an
element whose support is Ω1. Then the subgroup of all elements of K∩N with
support Ω1 still maps onto Ti, for each i ∈ Ω1, since it maps onto a normal
subgroup and Ti is simple. Now if Ω2 is another such set, intersecting Ω1 non-
trivially, then there are elements x and y in K ∩ N such that [x, y] �= 1 has
support contained in Ω1∩Ω2. Minimality of Ω1 implies that Ω1∩Ω2 = Ω1. In
other words, Ω1 is a block in a block system invariant under K, and therefore
under H = KN .

The blocks cannot have size 1, for then K contains N , a contradiction.
Now

n = |Ω| = |H : K| = |N : N ∩ K| (2.10)

since H = KN and KN/N ∼= K/N ∩ K. If the block system is non-trivial,
with l blocks of size k, say, and l > 1, then N ∼= T kl and N ∩ K ∼= T l so
n = |T |(k−1)l. Thus we see that H lies inside Sr � Sl, in its product action,
where r = |T |k−1. This is case (iii) of the theorem again.

Otherwise, the block system is trivial, so K ∩ N is a diagonal copy of T
inside T1 × · · · × Tm, and we can choose our notation such that it consists of
the elements (g, g, . . . , g) for all g ∈ T . Also n = |T |m−1, and the n points can
be identified with the n conjugates of K ∩ N by elements of N . The largest
subgroup of Sn preserving this setup is as in case (v) of the theorem. This
concludes the proof of the O’Nan–Scott Theorem.

2.7 Covering groups

2.7.1 The Schur multiplier

We have seen that the alternating groups arise as (normal) subgroups of the
symmetric groups, such that Sn/An

∼= C2. They also arise as quotients of
bigger groups 2.An, by a subgroup C2, so that 2.An/C2

∼= An. Under the
natural quotient map, each element π of An comes from two elements of
2.An. We label these two elements +π and −π, but it must be understood
that there is no canonical choice of which element gets which sign: your choice
of signs may be completely different from mine. To avoid confusion, we write
the cycles in 2.An with square brackets instead of round ones.

This group 2.An is called the double cover of An. More generally, if G is
any finite group, we say that G̃ is a covering group of G if Z(G̃) � G̃′ and
G̃/Z(G̃) ∼= G. If the centre has order 2, 3, etc., the covering group is often
referred to as a double, triple, etc., cover as appropriate. It turns out that
every finite perfect group G has a unique maximal covering group Ĝ, with
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the property that every other covering group is a quotient of Ĝ. This is called
the universal cover, and its centre is called the Schur multiplier of G. On the
other hand, if G is not perfect there may be more than one maximal covering
group. For example, the group C2 × C2 has four: one is isomorphic to the
quaternion group Q8 and the other three are isomorphic to the dihedral group
D8. [The quaternion group Q8 consists of the elements ±1,±i,±j,±k and the
multiplication is given by i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,
and ki = −ik = j.]

2.7.2 The double covers of An and Sn

To define 2.An it suffices to define the multiplication. One way to do this
is to define a double cover of the whole symmetric group, as follows. First
choose arbitrarily the element [1, 2], mapping to the transposition (1, 2) of Sn.
Then define all the elements [i, j] inductively by the rule [i, j]±π = −[iπ, jπ]
if π is an odd permutation. Then define the elements mapping to cycles
(ai, ai+1, . . . , aj) by [ai, ai+1, . . . , aj ] = [ai, ai+1][ai, ai+2] · · · [ai, aj ].

Finally, all elements are obtained by multiplying together disjoint cycles
in the usual way. However, we must be careful not to permute the cycles, or
start a cycle at a different point, as this may change +π into −π. For example,
our rules tell us that

[1, 2] = [1, 2][1,2] = −[2, 1]

while

[1, 2][3,4] = −[1, 2]
⇒ [1, 2][3, 4] = −[3, 4][1, 2]. (2.11)

Any product can now be computed using these rules, by first writing each
cycle as a product of transpositions, and then simplifying. However, it is not
obvious that if we compute the same product in two different ways, then we
get the same answer. You will have to take this on trust for now. [A proof
can be obtained by embedding the symmetric group in an orthogonal group,
and using the construction of the double cover of the orthogonal group in
Section 3.9.]

For example, consider the case n = 4. There are 6 transpositions in S4,
lifting to 12 elements ±[i, j] in the double cover. These elements square to
±1, but they are all conjugate, so either they all square to 1 or they all
square to −1. Let us suppose for simplicity that [i, j]2 = 1 for all i and
j. Next there are some elements like [1, 2][3, 4]. We have already seen that
[3, 4][1, 2] = −[1, 2][3, 4] and therefore

[1, 2][3, 4][1, 2][3, 4] = −[3, 4][1, 2][1, 2][3, 4]
= [3, 4][3, 4]
= −1. (2.12)
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Similarly the elements ±[1, 3][2, 4] and ±[1, 4][2, 3] square to −1, so together
these elements form a copy of the quaternion group of order 8. The method
for multiplying elements together can best be demonstrated by an example,
such as the following.

[2, 1, 3][3, 1, 4] = [2, 1][2, 3][3, 1][3, 4]
= [2, 1][3, 1][2,3][2, 3][3, 4]
= −[2, 1][2, 1][2, 3][3, 4]
= [2, 1][2, 1][3, 2][3, 4]
= [3, 2, 4]

In this way we obtain two double covers of Sn: the first one, denoted 2.S+
n ,

is the one in which the elements [i, j] have order 2. The second one, in which
the elements [i, j] square to the central involution −1, is denoted 2.S−

n . Both
contain the same subgroup of index 2, the double cover 2.An of An.

See Section 3.3.1 for an explicit representation of 2.S4 as GL2(3). See also
Sections 5.6.8 and 5.6.1, and Exercises 2.35 and 2.37, for descriptions of 2.A4

and 2.A5 as groups of unit quaternions.

2.7.3 The triple cover of A6

The double covers of the alternating groups, described in Section 2.7.2, are
in fact the only covering groups of An for n � 8, and for n = 4 or 5, but
A6 and A7 have exceptional triple covers as well. These can both be seen as
the groups of symmetries of certain sets of vectors in complex 6-space. We let
ω = e2πi/3 = (−1 +

√
−3)/2 be a primitive (complex) cube root of unity, and

consider the vectors (0, 0, 1, 1, 1, 1), (0, 1, 0, 1, ω, ω) and their multiples by ω
and ω = ω2. Then take the images of these vectors under the group S4 of coor-
dinate permutations generated by (1, 2)(3, 4), (3, 4)(5, 6), (1, 3, 5)(2, 4, 6) and
(1, 3)(2, 4) (that is, the stabiliser in A6 of the partition {{1, 2}, {3, 4}, {5, 6}},
which we shall write as (12 | 34 | 56) for short). These vectors come in triples
of scalar multiples, and there are 15 such triples. Indeed, each triple consists
of the three vectors whose zeroes are in a given pair of coordinates.

In addition to the above coordinate permutations, this set of 45 vectors is
invariant under other monomial elements (that is, products of permutations
and diagonal matrices). For example, it is a routine exercise to verify that the
set is invariant under (1, 2, 3)diag(1, 1, 1, 1, ω, ω), i.e. the map

(x1, . . . , x6) �→ (x3, x1, x2, x4, ωx5, ωx6). (2.13)

This group G of symmetries now acts on the 6 coordinate positions, in-
ducing all even permutations. Thus we obtain a homomorphism from G onto
A6, whose kernel consists of diagonal matrices. But any element of the kernel
must take each of the 45 vectors to a scalar multiple of itself (since it does
not move the zeroes), so is a scalar. Hence the kernel is the group of scalars
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{1, ω, ω} of order 3. Thus we have constructed a group G of order 1080 with
Z(G) ∼= C3 and G/Z(G) ∼= A6.

Finally notice that (4, 5, 6)diag(ω, ω, 1, 1, 1, 1) is also a symmetry, and its
commutator with (1, 2, 3)diag(1, 1, 1, 1, ω, ω) is diag(ω, . . . , ω), so the scalars
are inside G′. Therefore G = G′, since A6 is simple, so G is perfect.

This group, written 3.A6, can be extended to a group 3.S6 by adjoining
the map which interchanges the last two coordinates and then replaces every
coordinate by its complex conjugate.

This construction of 3.A6 and 3.S6 is of fundamental importance for the
sporadic groups, as well as for much of the exceptional behaviour of small
classical and exceptional groups. Compare for example Section 5.2.1 on the
hexacode, used for constructing the Mathieu group M24, Sections 3.12.2 and
3.12.3 on exceptional covers of PSU4(3) and PSL3(4), and Section 5.6.8 on
the exceptional double cover of G2(4).

2.7.4 The triple cover of A7

Now the groups 3.A7 and 3.S7 can be described by extending the above set
of 45 vectors to a set of 63 by adjoining the 18 images of (2, 0, 0, 0, 0, 0) under
3.A6. There are now some new symmetries, such as

1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 0 0 0 0 0
0 0 1 1 1 1
0 1 0 1 ω ω
0 1 1 0 ω ω
0 1 ω ω 1 0
0 1 ω ω 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (2.14)

Indeed there are just 7 ‘coordinate frames’ consisting of 6 mutually orthog-
onal vectors (up to scalar multiplication) from the set of 63. We label the
standard coordinate frame with the number 7, and the frame given by the
rows of the above matrix with the number 1. Similary we obtain frames 2 to
6 containing the vectors (0, 2, 0, 0, 0, 0), . . . , (0, 0, 0, 0, 0, 2) respectively. With
this numbering, the matrix (2.14) corresponds to the permutation (1, 7)(5, 6)
of A7.

This gives a map from our group onto the group A7 of permutations of
the 7 coordinate frames. The kernel K of this map fixes each of the 7 frames,
and therefore fixes the intersection of every pair of frames. But each of the 21
triples {v, ωv, ωv} of vectors is the intersection of two frames, so each triple
is fixed by K, and the argument given above for 3.A6 shows that K consists
of scalars.

Therefore the group G we have constructed satisfies K = Z(G) ∼= C3 and
G/Z(G) ∼= A7, as well as G = G′. This group is denoted 3.A7.
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2.8 Coxeter groups

2.8.1 A presentation of Sn

We have looked at the symmetric groups as groups of permutations of points,
but for many purposes we want to use linear algebra, so it is convenient
to consider the points as basis vectors in a vector space. More formally, let
V = R

n be the canonical real vector space of dimension n, and let {e1, . . . , en}
be the canonical basis, so that e1 = (1, 0, 0, . . . , 0) and so on. Let Sn act on
this vector space by permuting the basis vectors in the natural way, that is
ei

π = eiπ . (Here we write linear maps as superscripts rather than as functions,
for conformity with our notation for permutations. Note that π−1, not π, maps
the general vector

∑n
i=1 λiei to

∑n
i=1 λiπei.)

Now the transpositions (i, j) have a single eigenvalue −1, and all other
eigenvalues 1: specifically, ei − ej is an eigenvector with eigenvalue −1, while
ei + ej and ek for i �= k �= j are linearly independent eigenvectors with
eigenvalue 1. Such linear maps are called reflections, because they fix a space
of dimension n − 1, and ‘reflect’ across this subspace by negating all vectors
in the orthogonal 1-space. We call Sn a reflection group since it is generated
by these reflections.

The symmetric group Sn can be generated by the n−1 fundamental trans-
positions (i, i + 1), or by the corresponding fundamental reflections acting on
V . Obviously, these reflections have order 2, and commute if they are not
adjacent, while if they are adjacent, their product (i, i + 1)(i + 1, i + 2) =
(i, i + 2, i + 1) has order 3. What is not so obvious is that these relations are
all that you need to work in Sn. To make this more precise, we define a presen-
tation for a group G, written G ∼= 〈X | R〉, to consist of a set X of generators
and a set R of relations, which are equations in the generators, sufficient to
define the entire multiplication table of G. For example the dihedral group
has a presentation

D2n
∼= 〈a, b | a2 = b2 = (ab)n = 1〉. (2.15)

Thus we are asserting that Sn is defined by the so-called Coxeter presentation

〈r1, . . . , rn−1 | ri
2 = 1, (rirj)2 = 1 if |i − j| > 1, (riri+1)3 = 1〉. (2.16)

To prove this, by induction on n, note first that it works for n = 2. Now
assume n > 2, and we prove that the subgroup H generated by r1, . . . , rn−2

has index at most n. But r = rn−1 commutes with K = 〈r1, . . . , rn−3〉, which
by induction has index at most n − 1 in H. Therefore r has at most n − 1
images under conjugation by H. Moreover, every element in H ∪ HrH is in
one of the cosets Hx, where x is either the identity or one of these (at most)
n − 1 conjugates of r.

We need to show that G = H ∪ HrH. To do this we show that

(H ∪ HrH)g ⊆ H ∪ HrH (2.17)
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for all g ∈ G. Then, as 1 ∈ H ∪ HrH, we have

G ⊆ H ∪ HrH. (2.18)

Plainly, if g ∈ H, then the claim (2.17) holds. So, as G = 〈H, r〉, we may
assume that g = r. By induction we assume that H = K ∪ KqK where
q = rn−2. We have Hr ⊆ HrH and, as every element of K commutes with r

HrHr = Hr(K ∪ KqK)r
= H(Kr2 ∪ KrqrK)
= H(K ∪ KqrqK)
⊆ H(K ∪ HrH)
= H ∪ HrH. (2.19)

This proves the claim.

2.8.2 Real reflection groups

The idea of a reflection group, introduced in Section 2.8.1 for the symmetric
groups, turns out to be extremely important in many areas of mathematics.
The finite real reflection groups were investigated and completely classified by
Coxeter. We do not have space here to prove this classification, so we shall
merely state it.

Every finite reflection group in n-dimensional real orthogonal space (so-
called Euclidean space) can be generated by n reflections, and is defined by the
angles between the reflecting vectors (by which we mean vectors in the −1-
eigenspaces of the generating reflections). Notice that two reflections generate
a dihedral group: if the order of this group is 2k, then the reflecting vectors
can be chosen to be at an angle π − π/k to each other—that is, as near to
being opposite as possible. Indeed, it turns out that we can always choose the
generating reflections so that every pair has this property, in an essentially
unique way.

We draw a diagram consisting of nodes representing the n generating (or
fundamental) reflections, joined by edges labelled k whenever the product of
the two reflections has order k > 2. Any labels which are 3 are usually omitted,
for simplicity.

If this diagram is disconnected, it means that all the reflections in one
component commute with all the reflections in all the other components, so
the reflection group is a direct product of smaller reflection groups. Thus we
only really need to describe the connected components of the diagrams. The
ones which occur are shown in Table 2.1. The last column of this table gives
some indication of the structure of the corresponding reflection groups, which
will be explained in more detail in Section 3.12.4.

We saw in Section 2.8.1 that the diagram for An gives a presentation for
the group Sn+1, by taking abstract generators of order 2 corresponding to
the nodes of the diagram, and specifying that their products have order 2
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Table 2.1. The Coxeter diagrams

Name Diagram Group

An (n � 1) � � � �. . . Sn+1

Bn (n � 2) � � � �
4. . . C2 � Sn

Dn (n � 4) � � � �

�

. . . Cn−1
2 Sn

E6 � � � � �

�

SO−
6 (2)

E7 � � � � � �

�

SO7(2) × 2

E8 � � � � � � �

�

2.SO+
8 (2)

F4 � � � �
4

21+4:(S3 × S3)

H3 � � �
5

2 × A5

H4 � � � �
5

2.(A5 × A5):2

I2(k) (k � 5) � �
k

D2k

if the nodes are not joined, and order 3 if the nodes are joined. In fact this
generalises to all the Coxeter groups, where an edge labelled k denotes that
the corresponding product of reflections has order k. Thus for example the
diagram of type H3 in Table 2.1 indicates that 2 × A5 has a presentation

〈a, b, c | a2 = b2 = c2 = (ac)2 = (ab)3 = (bc)5 = 1〉. (2.20)

2.8.3 Roots, root systems, and root lattices

In some contexts it turns out that only some of these reflection groups arise.
For example, the dihedral groups are the symmetry groups of the regular k-
gons, but these k-gons only tessellate the plane if k = 3, 4, or 6. If we put
this restriction onto all the non-abelian dihedral groups in our diagram (this
is called the crystallographic condition), we obtain a shorter list of groups. In
this context, only the labels 3 (usually omitted), 4 and 6 arise, and it is usual
(following Dynkin) to replace an edge labelled 4 by a double edge, and an
edge labelled 6 by a triple edge.

The importance of the crystallographic condition is that by choosing the
lengths of the reflecting vectors suitably, the Z-span of these vectors is a
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discrete subgroup of the additive group R
n, as well as spanning R

n as a
vector space. Such a subgroup is called a lattice. We call the reflecting vectors
roots, and the lattice is the corresponding root lattice. The term root system
is used here to denote the set of roots as a subset of the ambient Euclidean
space, although in the literature it often has a more abstract definition. The
roots corresponding to the vertices of the diagram are called the fundamental
or simple roots.

For vertices joined by a single edge, corresponding to the symmetries of
a triangle, we can take the vectors defining the reflections to be all the same
length. For vertices joined by a double edge, corresponding to symmetries of
a square, the vectors may be taken as the vertices of the square together with
the midpoints of the edges: the fundamental reflections must then be one of
each type, so that one vector is

√
2 times as long as the other. We put an arrow

on the double edge pointing from the long vector to the short one. [Dynkin
originally used open circles for the long roots, and filled circles for the short
roots.] Now the diagram Bn comes in two varieties: Bn with the arrow pointing
outwards and Cn with the arrow pointing inwards.

Similarly in the case of triple edges, corresponding to symmetries of a
regular hexagon, one vector is

√
3 times as long as the other, and again we

put an arrow pointing from the long vector to the short one.
The root systems are of types An (n � 1), Bn (n � 2), Cn (n � 3), Dn

(n � 4), E6, E7, E8, F4 and G2, this last being another name for I2(6). The
corresponding diagrams are called Dynkin diagrams.

2.8.4 Weyl groups

The crystallographic reflection groups arise in many contexts, where they are
usually called Weyl groups. The Weyl group of type An is just the symmetric
group Sn+1, while that of type Bn (and Cn) is S2 � Sn and that of type Dn is a
subgroup of index two in the latter. For G2 = I2(6) we get a dihedral group of
order 12, and for F4 a group of order 1152. The Weyl groups of types E6, E7 and
E8 are especially interesting groups which we shall meet again later. Writing
W (Xn) for the Weyl group of type Xn, we have the following descriptions of
exceptional Weyl groups in terms of orthogonal groups (see Chapter 3).

W (F4) ∼= GO+
4 (3) ∼= 21+4:(S3 × S3),

W (E6) ∼= GO−
6 (2) ∼= U4(2):2,

W (E7) ∼= GO7(2) × 2 ∼= Sp6(2) × 2,
W (E8) ∼= 2.GO+

8 (2) ∼= 2.Ω+
8 (2):2. (2.21)

In a similar vein, the reflection group of type H4 is a subgroup of index 2 in
GO+

4 (5). More details concerning the exceptional Weyl groups are given in
Section 3.12.4.
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Further reading

For a comprehensive modern treatment of permutation groups at an intro-
ductory level I would recommend the book ‘Permutation groups’ by Dixon
and Mortimer [53]. There one can find a detailed proof of the O’Nan–Scott
Theorem, and a construction of the Mathieu groups (see Chapter 5) by build-
ing up one step at a time from PSL3(4) via M22 and M23 to M24, and from
PSL2(9) via M11 to M12. An older classic which still has a lot to offer is
Wielandt’s book ‘Finite permutation groups’ [170]. Another classic text is
Passman’s book ‘Permutation groups’ [145], which develops the subject from
the beginning with the study of multiply-transitive groups as one of its prin-
cipal aims. Highlights are elucidation of the structure of Frobenius groups,
that is, transitive permutation groups in which the stabiliser of two points is
trivial but the stabiliser of one point is not (or more generally, 3/2-transitive
groups, defined as transitive groups in which all non-trivial orbits of the point
stabiliser have the same length), and a construction of the Mathieu groups
by Witt’s method. Another more modern advanced treatment, which covers
a variety of diverse topics, including the O’Nan–Scott Theorem, and infinite
permutation groups, is ‘Permutation groups’ by Cameron [19].

For a more specialised treatment of the symmetric groups and their rep-
resentation theory, see ‘The representation theory of the symmetric group’
by James and Kerber [97], or ‘The symmetric group’ by Sagan [151]. A
full and approachable account of the classification of finite real reflection
groups (i.e. Coxeter groups) is given by Benson and Grove in ‘Finite reflection
groups’ [73]. For a more advanced treatment of Coxeter groups and related
topics see Humphreys ‘Reflection groups and Coxeter groups’ [85]. For presen-
tations in general see Coxeter and Moser ‘Generators and relations for discrete
groups’ [40] or Johnson ‘Presentations of groups’ [103].

Exercises

2.1. For a permutation π ∈ Sn define

ε(π) =
∏

1�i<j�n

i − j

iπ − jπ
∈ Q.

Show that ε(π) = ±1 and that ε is a group homomorphism from Sn onto
C2 = {1,−1}. Hence obtain another proof that the sign of a permutation is
well-defined.

2.2. Let G < Sn act transitively on Ω = {1, . . . , n} and let H be the point
stabiliser {g ∈ G | ag = a} for some fixed a ∈ Ω. Prove that φ : ag �→ Hg is a
bijection between Ω and the set G : H of right cosets of H in G.

Prove also that Hg = {x ∈ G | ax = ag}.
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2.3. Prove that the orbits of a group H acting on a set Ω form a partition of
Ω.

2.4. Show that An is not (n − 1)-transitive on {1, 2, . . . , n}.

2.5. Let G act transitively on Ω. Show that the average number of fixed points
of the elements of G is 1, i.e.

1
|G|

∑

g∈G

|{x ∈ Ω | xg = x}| = 1.

2.6. Verify that the semidirect product G:φH defined in Section 2.2 is a group.
Show that the subset {(g, 1H) | g ∈ G} is a normal subgroup isomorphic to
G, and that the subset {(1G, h) | h ∈ H} is a subgroup isomorphic to H.

2.7. Suppose that G has a normal subgroup A and a subgroup B satisfying
G = AB and A ∩ B = 1. Prove that G ∼= A:φB, where φ : B → AutA is
defined by φ(b) : a �→ b−1ab.

2.8. Prove that if the permutation π on n points is the product of k disjoint
cycles (including trivial cycles), then π is an even permutation if and only if
n − k is an even integer.

2.9. Determine the number of conjugacy classes in A8, and write down one
element from each class.

2.10. Show that if n � 5 then there is no non-trivial conjugacy class in An

with fewer than n elements.

2.11. Prove that Inn(G) � Aut(G).

2.12. Write down all the elements of Aut(C2 × C2). To which well-known
group is it isomorphic?

2.13. Calculate Inn(G) when G = D8. Show that Aut(G) ∼= D8.

2.14. Show that Aut(Q8) ∼= S4, where Q8 = 〈i, j | i2 = j2 = (ij)2〉 is the
quaternion group of order 8.

2.15. Show that if p is an odd prime then

Aut(Cpn) ∼= Cpn−pn−1 ∼= Cpn−1 × Cp−1.

2.16. Prove that Aut(A4) ∼= S4 and Aut(A5) ∼= S5.

2.17. Use Lemma 2.2 to show that if n � 6 then An cannot act transitively
on a set of n + 1 points.

2.18. Use the argument of Lemma 2.2 and Theorem 2.3 to show that any
automorphism of A6 which maps 3-cycles to 3-cycles is realised by an element
of S6.
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2.19. Construct the outer automorphism of S6 combinatorially, as follows.
From the 6 ‘points’, show that there are 15 ‘duads’ (pairs of points), and 15
‘synthemes’ (partitions of the 6 points into three duads), and 6 ‘synthematic
totals’ (partitions of the 15 duads into five synthemes). [Thus S6 permutes
the 6 synthematic totals.]

Show that any two synthematic totals intersect in a unique syntheme, that
any partition of the synthematic totals into three pairs determines a unique
duad, and that any ‘synthematic total’ on the synthematic totals corresponds
to a point in a natural way.

2.20. Let S5 act on the 10 unordered pairs {a, b} ⊂ {1, 2, 3, 4, 5}. Show that
this action is primitive. Determine the stabiliser of one of the 10 pairs, and
deduce that it is a maximal subgroup of S5.

2.21. The previous question defines a primitive embedding of S5 in S10. Show
that this S5 is not maximal in S10.

[Hint: construct a primitive action of S6 on 10 points, extending this action
of S5.]

2.22. If k < n
2 , show that the action of Sn on the

(
n
k

)

unordered k-tuples

is primitive.

2.23. If G acts k-transitively on {1, 2, . . . , n} for some k > 1, and H is the
stabiliser of the point n, show that H acts (k − 1)-transitively on the subset
{1, 2, . . . , n − 1}.

2.24. Let G be the group of permutations of 8 points {∞, 0, 1, 2, 3, 4, 5, 6}
generated by (0, 1, 2, 3, 4, 5, 6) and (1, 2, 4)(3, 6, 5) and (∞, 0)(1, 6)(2, 3)(4, 5).
Show that G is 2-transitive. Show that the Sylow 7-subgroups of G have order
7, and that their normalisers have order 21. Show that there are just 8 Sylow
7-subgroups, and deduce that G has order 168. Show that G is simple.

2.25. Let x be an element in Sn of cycle type (c1
n1 , . . . , ck

nk), where c1, . . . , ck

are distinct positive integers. Show that the centraliser of x in Sn is isomorphic
to (Cc1 � Sn1) × · · · × (Cck

� Snk
).

2.26. Show that if H ∼= AGL3(2) ∼= 23:GL3(2) is a subgroup of S8, and
K = Hg where g is an odd permutation, then H and K are not conjugate in
A8.

2.27. Prove that Sk � S2 is maximal in S2k for all k � 2.

2.28. Prove that Sk � Sm is maximal in Skm for all k, m � 2.

2.29. Prove that the ‘diagonal’ subgroups of Sn constructed in Section 2.5.5
are primitive.
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2.30. Show that if H is abelian and transitive on Ω, then it is regular on Ω.

2.31. Use the O’Nan–Scott theorem to write down as many maximal sub-
groups of S5 as you can. Can you prove your subgroups are maximal?

2.32. Do the same for A5.

2.33. Let G be a simple group, H a maximal subgroup of G, and K a minimal
normal subgroup of H. Prove that H = NG(K) and that K is characteristi-
cally simple.

2.34. Use Exercise 2.33 to determine the maximal subgroups of A5 from first
principles.

2.35. The real quaternion algebra H (see Section 4.3.1) is made by linearising
the quaternion group Q8, identifying the central element i2 of Q8 with the
real number −1, and extending the multiplication bilinearly. Show that the
quaternion ω = 1

2 (−1+i+j+k), where k = ij, satisfies ω3 = 1 and ω−1iω = j.
Deduce that the group generated by i and ω is a double cover of A4, permuting
the four coordinate axes 〈1〉, 〈i〉, 〈j〉, 〈k〉.

2.36. Prove the following presentations:

(i) 〈x, y | x2 = y3 = (xy)3 = 1〉 ∼= A4;
(ii) 〈x, y | x2 = y3 = (xy)4 = 1〉 ∼= S4;
(iii) 〈x, y | x2 = y3 = (xy)5 = 1〉 ∼= A5.

2.37. Show that the subgroup of the unit quaternions generated by i and
1 +σi + τj, where σ = 1

2 (
√

5− 1) and τ = 1
2 (
√

5+1), is a double cover of A5.
[Hint: show that modulo −1 these elements satisfy the relations given in

Exercise 2.36(iii).]

2.38. Use the outer automorphism of S6 to prove that the two double covers
2.S+

6 and 2.S−
6 of S6 are isomorphic.

2.39. Write down the 15 vectors which are images of (0, 0, 1, 1, 1, 1) and
(0, 1, 0, 1, ω, ω) under the group S4 generated by the coordinate permutations
(1, 2)(3, 4), (1, 3, 5)(2, 4, 6) and (1, 3)(2, 4).

Verify that the map (x1, . . . , x6) �→ (x3, x1, x2, x4, ωx5, ωx6) preserves this
set of vectors up to scalar multiplication by ω and ω.

2.40. Show that the reflection group of type A3 is the group of symmetries of
a regular tetrahedron.

2.41. Show that the reflection group of type B3 is the group of symmetries of
the cube/octahedron, and is isomorphic to C2 × S4.

2.42. Show that the reflection group of type H3 is the group of symmetries of
the dodecahedron/icosahedron, and is isomorphic to C2 × A5.
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2.43. Show that the root system of type B3 consists of the midpoints of the
edges and faces of a cube.

2.44. Show that the root system of type C3 consists of the vertices and the
midpoints of the edges of a regular octahedron.

2.45. Show that the long roots of the Bn root system (or the short roots of
the Cn root system) form a root system of type Dn. What type of root system
do the short roots of the Bn root system (or the long roots of the Cn root
system) form?
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