
Chapter 2
Particle Interactions with Matter and Detectors

Problems

2.1. Atom number density. In the interaction of particles (or nuclei) with matter,
the number of collisions depends on the number of scattering centers per unit
volume. Often, the scattering centers are atomic nuclei. Consider for example
the case of carbon, which has an atomic mass number A = 12 and a density
(specific mass) ρ � 2.265 g cm−3. Determine:
(a) the number of atoms per cm3;
(b) the number of atoms per gram.
[See solutions]

2.2. α particle energy loss. An α particle with 7.4 MeV kinetic energy crosses a
target consisting of a thin copper foil 5 · 10−4 cm thick. Determine:
(a) the ionization energy loss in the copper foil;
(b) the particle kinetic energy and (c) the Coulomb multiple scattering angle

when going out of the foil.
Hint: see Supplement 2.1.
[See solutions]

2.3. Muon Energy loss. A muon of 100 GeV energy crosses without being ab-
sorbed a detector whose mass is mainly due to the hadronic calorimeter and
to the muon detector. The thickness of the crossed material can be considered
as a layer of 3 m of iron. Determine:
(a) what is the dominant energy loss process;
(b) the average energy loss of the muon inside the detector.
Hint: see Supplement 2.2.
[See solutions]
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2.4. Energy transferred. Calculate the maximum energy νmax transferred in elas-
tic scattering of a charged particle with mass M and energy E = T + Mc2 to
an electron at rest:
(a) in the non relativistic case (T � Mc2);
(b) in the relativistic case with M � me;
(c) in the general case.

[A: (c) νmax = 2mec
2(E2−M2c4)

M2c4+m2
ec

4+2Emec2 ]

2.5. Kinematics of the Compton effect. Using the energy and momentum conser-
vation, describe the kinematics of the Compton effect and derive Eq. (2.19) .

Calculate the maximum energy of the recoiling electron Eq. (2.21) .

2.6. Electromagnetic shower. Calculate the average number of particles in an
electromagnetic shower initiated by a 50 GeV photon, after 10, 13 and 20 cm
of crossed iron.
[See solutions]

2.7. Muon from pion decay. Consider a π+ at rest decaying in π+ → μ+νμ.
Calculate the μ+ kinetic energy and evaluate approximately the μ+ range in
liquid hydrogen (specific mass ρ = 0.07 g cm−3).
[See solutions]

2.8. Neutron discovery. In his Letter to the Editor of Nature of February 27, 1932
(Possible Existence of a Neutron), J. Chadwick described the observation of
protons emitted from a target containing hydrogen atoms. The hydrogenated
target was exposed to an unknown radiation of strong penetrating power emit-
ted by beryllium when bombarded by α-particles from polonium. See the
layout presented in Fig. 2.1. The protons (with mass mp) were emitted with
velocities up to a maximum of nearly 3 × 109 cm/s. Since the penetrating ra-
diation emitted by the beryllium was observed to be neutral, it could consist
either of photons or, according to Chadwick’s hypothesis, of neutral particles
with a mass similar to that of the proton, i.e., the neutrons. Assuming that
the neutral radiation emitted by the Be is composed of photons and that the
protons are emitted through the Compton effect induced by these incident
photons, calculate the photon energy Eγ . Discuss why this Eγ is inconsis-
tent with the observation. Finally, discuss the reasons that led Chadwick to
formulate the hypothesis of the neutron existence.
[See solutions]

2.9. Multiple Scattering-1. Calculate the Coulomb multiple scattering angle in
the plane θ0

plane for protons

(a) of 50 MeV/c momentum in 0.1 g cm−2 of aluminum;
(b) of 200 MeV kinetic energy in 2 mm of copper.
[See solutions]
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Fig. 2.1 Layout of Chadwick
experimental apparatus that
led to the neutron discovery.
A beryllium target is exposed
to high-energy α rays from a
polonium source. A strong
penetrating power radiation is
emitted from the Be and hits
the protons contained in the
paraffin layer. The emitted
protons are observed in the
cloud chamber on the right
[2w3]

2.10. Multiple Scattering-2. From considerations based on the Coulomb multiple
scattering on nuclei, determine when a target is thin or thick.
[See solutions]

2.11. Neutron moderation. Neutrons produced in nuclear reactors are emitted with
energies of order of a few MeV and must be slowed down to thermal energies
through elastic scattering on nuclei of a moderator. Determine the neutron
speed variation in each collision assuming that the moderator is (a) hydrogen;
(b) carbon; (c) iron. Show that a non-relativistic calculation is sufficient.
[See solutions]

Supplement 2.1: Multiple Scattering at Small Angles

A charged particle traversing a medium is deflected by many small-angle scatters.
This deflection is due to the superposition of many Coulomb scattering from indi-
vidual nuclei, and hence the effect is called multiple Coulomb scattering. When the
particle is a hadron, the strong interaction also contributes. The cumulative effect
(for thick targets) is a deflection as that shown in Fig. 2.2.

For small deflection angles, the Coulomb scattering distribution is well repre-
sented by a Gaussian distribution. At larger angles (i.e., larger than the angle θ0
defined below), the distribution shows larger tails and the behavior is more similar
to that of the Rutherford scattering. In many applications, scattering at large angles
is negligible and the Gaussian approximation for small angles describes well enough
the projected angle distribution, with a width [P10]:

θ0 = θrms
plane = 13.6 MeV

βcp
z

√
x

X0

[
1 + 0.038 ln(x/X0)

]
(2.1)

where p, βc, and z are respectively the momentum, velocity, and charge number
of the incident particle; x/X0 is the thickness of the scattering medium in units of
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Fig. 2.2 Quantities used to describe the multiple Coulomb scattering. The particle is incident from
the left in the plane of the figure. From [P10]

radiation length ( Eq. (2.15) ). The distribution of the angle in the space has width

θrms
space = √

2θrms
plane.

Supplement 2.2: Muon Energy Loss at High Energies

As for electrons (see Sect. 2.2.3 ), at sufficiently high energies, radiative processes
become more important than ionization for all charged particles. In particular for
muons, the critical energy occurs at several hundred GeV [2G01]. Radiative effects
dominate the energy loss of energetic muons found in cosmic rays or produced at
high energy accelerators. Radiative effects are characterized by small cross-sections,
hard spectra, large energy fluctuations, and generation of electromagnetic or (in the
case of photonuclear interactions) hadronic showers. Above the critical energy, the
treatment of energy loss as a uniform and continuous process is inadequate. It is
convenient to write the average muon energy loss rate as:

−dE/dx = a(E) + b(E)E (2.2)

where a(E) is the ionization energy loss, and b(E) is the sum of energy losses
due to e+e− pair production, bremsstrahlung, and photonuclear processes. In most
approximations, the quantities a, b can be considered constant and independent of
the muon energy E. In this case, the mean range x0 of a muon with initial energy E

is obtained by integrating Eq. (2.2):∫ x0

0
dx =

∫ 0

E

dE/(a + bE) −→ x0 � (1/b) ln(1 + E/Eμ
c ) (2.3)

where E
μ
c = a/b. b(E) can be computed for different materials; it changes only very

slowly with energy. In water, b ranges between (2÷4) · 10−6 g−1 cm2 for muon
energies between 102÷107 GeV. In standard rock, b is 20%÷30% higher than in
water. Since a(E) ∼ 2 MeV g−1 cm2, the critical energy E

μ
c = a/b ∼ 500 GeV

and the radiative losses dominate above several hundred GeV. The rates of energy
loss for positive muons in copper as a function of βγ = p/Mc over nine orders of
magnitude in momentum is reported in Fig. 2.3.
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Fig. 2.3 Total energy loss −(dE/dx) (solid curves) for positively charged muons in copper as a
function of the muon momentum [P10]

Solutions

Problem 2.1 If the scattering centers are the material atoms (or atomic nuclei),
one has:(

Nc = scattering centers

cm3

)
=

(
Na = atoms

cm3

)
=

[
n. of gram-molecule

cm3
· NA · H

]

where H is the number of atoms per molecule, NA is Avogadro’s number, i.e., the
number of molecules in a gram-molecule. The number of atoms per cm3 is Na =
m
M

1
vNAH = ρ

M
NAH , where m is the mass in gram; M is the molecular weight

in gram, v is the volume in cm3 and ρ = m/v is the specific mass. In the case of a
monatomic element, for which H = 1 and M = A (A = atomic mass), one has Na =
ρNA/A. In the case of carbon for example, one has A = 12 and ρ � 2.265 g cm−3,
and the number of atoms per cm3 is:

Na = ρNA

A
� 2.265 · 6.03 · 1023

12

g

cm3

molecule

g moles
= 1.137 · 1023 carbon atoms

cm3
.

The number of atoms per gram is:

Na

ρ
� 1.137 · 1023

2.265

atoms

g
= 5.02 · 1022 carbon atoms

g
.

Problem 2.2 Consider the energy loss given in Eq. (2.9) :

−dE

dx
= 4πz2e4

mev2
Ne ln

γ 2mev
3

ze2ν
. (2.4)
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Taking into account that Ne = NAZρ/A and that re = e2/mec
2, Eq. (2.4) can be

rewritten as:

−dE

dx
= 4πr2

e mec
2 NAZρ

A

z2

β2
ln

mec
2β2γ 2

I
= Cρ

Z

A

z2

β2
ln

mec
2β2γ 2

I
(2.5)

where C = 4πr2
e mec

2NA is a constant numerically equal to C = 0.30 MeV/g cm−2

and I is the average ionization potential that may be parameterized as I =
13.6 · Z eV (13.6 eV is the hydrogen ionization potential). In Eq. (2.5), the en-
ergy loss is factorized in three terms: the constant C, the term (ρ Z

A
) which depends

on the crossed material, the term ( z2

β2 ) which depends on the particle charge and β

times a logarithmic term which slightly depends on the particle βγ .
For copper, one has ρCu = 8.9 g cm−3, Z = 29, A = 64. For the considered α

particle, one must determine the γ and β values from its known kinetic energy
T = E − mα . For c = 1, one has (in natural units):

βγ = p

mα

=
√

E2 − m2
α

mα

�
√

2T

mα

=
√

2 · 7.4

3700
= 0.064.

It is straightforward to verify that γ = E/mα � 1. Placing these values in Eq. (2.5),
one obtains:

−dE

dx
= Cρ

Z

A

z2

β2
ln

mec
2β2γ 2

I
= 0.30 · 8.9

29

64

22

0.0642
ln

0.511 · 106 · 0.0642 · 12

13.6 · 29

= 4.84 MeV/cm

0.0642
ln(5.14) = 1997 MeV/cm. (2.6)

When passing through a thickness of 5 · 10−4 cm, the total energy loss is:

	E = 1997 MeV/cm × 5 · 10−4 = 1.0 MeV.

(b) T ′ = T − 1.0 = 6.4 MeV
(c) Let us use Eq. (2.1) and take into account that the radiation length of copper

( Table 2.1 ) corresponds to a path of 1.43 cm. The particle momentum is:

p =
√

(T + mα)2 − m2
α � √

2T mα = 234 MeV/c.

Therefore (in the plane perpendicular to the motion), one has:

θ0 = 13.6 MeV

0.064 · 234 MeV
· 2 ·

√
5 · 10−4

1.43
(1 − 0.30) = 23 mrad

and θ
space

0 = √
2θ0 = 32 mrad.

Problem 2.3

(a) As shown in Fig. 2.3, at the momentum of 100 GeV/c (remember that in
the relativistic range E = pc) the dominant energy loss process is still that
of excitation-ionization, with dE/dx ∼ 3 MeV cm2/g in the case of copper
(Z = 29, A = 64). Since the energy loss depends only on the ratio Z/A of the
crossed medium, it does not change for iron (Z = 26, A = 56).
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(b) The density of iron is 7.87 g/cm3, and then the muon energy loss in 3 m of iron
is on average

	E = 0.003 [GeV cm2/g] · 7.87 [g/cm3] · 300 [cm] = 7.1 GeV.

Problem 2.6 The processes considered here are the e+e− pair creation from pho-
tons, and the bremsstrahlung of electrons and positrons (i.e., the radiation of a high
energy photon and the consequent energy decreases of the electron or positron). In
both cases (see Fig. 4.7 ), the pair production and bremsstrahlung processes can
be approximated as a process corresponding, on average, to the production of two
particles sharing half the energy of the parent particle. The process stops when the
particle energy drops below the critical energy. From that point on, the particles do
not lose energy by pair production or bremsstrahlung (with increasing number of
particles), but through the excitation and ionization processes.

The residual energy of a particle which has crossed a section of material of thick-
ness x is given in Eq. (2.14) . The radiation length and the path length of particles in

iron (given in Table 2.1 ) are respectively 13.84 g cm−2 and 1.76 cm. After 10 cm
of iron, the average energy of each particle is:

E10 = E0e
−x/Lrad = (5 × 104) · e−10/1.76 = 170.4 MeV

higher than the critical energy Ec = 27.4 MeV in iron (see again Table 2.1 ). Since
(on average) all particles have the same energy, the number of particles in the shower
is:

n10 = E0/E = 5 × 104

170.4
= 293.

Applying the same calculation after 13 cm of iron, one finds E13 = 31.0 MeV. This
value is slightly larger than the critical energy, and the corresponding number of
particles is n13 = 1613. For an iron thickness larger than 13.2 cm, the average energy
of the particles becomes smaller than Ec. The multiplicative process becomes less
important with respect to the continuous energy loss mechanism. At a distance of
20 cm, the number of “surviving” particles is less than n13.

Problem 2.7 The four-vector of the particles involved in the π+ → μ+νμ decay
at rest are:

(mπ ,0) → (Eμ,pμ) + (pν,pν).

The neutrino mass is null (or completely negligible at this energy scale), and
Eν = pν . The condition for the momenta of the final state particles is simply:

|pν | = |pμ|
while for the energy, one has:

mπ = Eμ + Eν = Eμ + |pν | = Eμ + |pμ| −→ |pμ| = mπ − Eμ.

Finally, Eμ can be calculated using the mass-energy-momentum relation:

m2
μ = E2

μ − p2
μ = E2

μ − (mπ − Eμ)2
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from which, one finds:

Eμ = m2
μ + m2

π

2mπ

= (105)2 + (138)2

2 × 138
= 109 MeV.

The momentum of the emitted muon is:

pμ = mπ − Eμ = 138 − 109 = 29 MeV/c.

Figure 2.3 allows to determine the range of particles with known momentum.

In fact, in this case, one has:

βγ = pμ/mμ = 29/105 � 0.3

which corresponds to a value of R/M = R/mμ = 1 g cm−2 GeV−1 (from in-
spection of the figure). Taking into account the specific mass of liquid hydrogen
(ρ = 0.07 g cm−3) and the muon mass (mμ = 0.105 GeV), one has:

range = R/mμ

ρ
· mμ = 1 × 0.105

0.07
� 1.5 cm.

Problem 2.8 Protons emitted by the hydrogenated target have maximum velocity
β = v/c = 0.1 and maximum momentum (in natural units, c = 1) pp = mpβ =
938 × 0.1 � 94 MeV. The maximum kinetic energy Tp of the proton is:

E = Tp + mp =
√

m2
p + p2

p =
√

9382 + 942 = 942.7 MeV → Tp = 4.7 MeV.

Let us assume that the protons in the hydrogenated target are extracted through
Compton elastic scattering from photons coming from the beryllium. The pho-
ton energy hν can be derived from the kinematics of the Compton effect given in
Eq. (2.21) . The maximum energy of the scattered particle is:

Tp = hν
2Γ

1 + 2Γ
with Γ = hν

mp

.

Therefore, one can write:

Tp = 2(hν)2

mp + 2hν
.

Denoting hν ≡ x, this corresponds to a second degree equation:

2x2 − 2xTp − mpTp = 0 → x =
2Tp ±

√
4T 2 + 4 · 2 · mpTp

4
.

The solution with the negative sign must be excluded because it gives negative x.
Thus, one has:

x ≡ hν =
2T +

√
4T 2 + 4 · 2 · mpTp

4
� 9.4 + √

8 · 938 · 4.7

4
= 51 MeV.
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Using energy and momentum conservation laws, Compton concluded that the radi-
ation emitted by the beryllium is incompatible with the hypothesis of photons. The
γ radiation emitted by exited nuclei is indeed below 10 MeV.

A more likely solution is that the neutral radiation incoming to the hydrogenated
target is made of neutral particles with a mass similar to that of the proton. The
elastic scattering between two particles with equal mass (one moving and one at
rest) allows the transfer of the whole kinetic energy of the moving particle to the
particle at rest (see Problem 2.11). Therefore, a neutron (the neutral counterpart of
the proton) emitted from the Be target with a kinetic energy of ∼4.7 MeV is able to
transfer such an energy to a proton at rest.

Problem 2.9

(a) The deflection of charged particles due to the multiple scattering is discussed
in Supplement 2.1. According to Table 2.1 , the radiation length of Aluminum
is XAl

0 = 24.0 g cm−2. Here, x = 0.1 g cm−2. The width of the projected angle
distribution is given in Eq. (2.1). To evaluate βpc, remember that p = mβcγ ;
E = mc2γ and thus pc/E = β . The energy for a p = 50 GeV/c proton is

E =
√

p2 + m2
pc4 � mpc2 = 938 MeV −→ β = pc

E
= 50

938
= 0.053.

This corresponds to βpc = 0.053 × 50 MeV = 2.66 MeV.
The width of the projected angle is equal to:

θa
0 = 13.6

2.66

√
0.1

24.0
(1 − 0.208) = 5.1 × 0.064 × 0.79 = 0.26 rad.

(b) According to Table 2.1 , the radiation length of Copper is XCu
0 = 12.9 g cm−2.

The Copper density is ρCu = 8.96 g cm−3. Thus, 2 mm of Copper corresponds
to x = 0.2 × 8.96 = 1.79 g cm−2. The energy of the protons with kinetic en-
ergy T = 200 MeV is E = T + mpc2 = 1138 MeV. The corresponding mo-

mentum is pc =
√

E2 − m2
pc4 = 644 MeV. The relativistic factor β = pc/E =

644/1138 = 0.56 and βpc = 644 × 0.56 = 365 MeV.
The width of the projected angle distribution is:

θb
0 = 13.6

365

√
1.79

12.9

(
1 + 0.038 ln

1.79

12.9

)
= 0.037 × 0.37 × 0.925 = 0.013 rad.

Problem 2.10 Equation (2.1) depends on three factors: (i) a kinematic factor
∼(βpc)−1 which does not depend from the characteristic of the target; (ii) the fac-
tor z which depends on the particle electric charge; and (iii) the factor

√
x/X0(1 +

0.038 lnx/X0). This is the only term which depends on the material. The condition
of a thin target corresponds to x � X0. Remember that ( Table 2.1 ) X0 = 36; 24.0;
12.9; 13.8 g cm−2 in air, aluminum, copper and iron, respectively. Considering their
respective densities, the values correspond to a path length of 300 m in air, 8.9 cm
in Al, 1.43 cm in Cu, 1.76 cm in Fe.
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Problem 2.11 Let us consider the collision in the system in which the nucleus is at
rest. It can be considered that the nucleus mass is M � mnA. The incoming neutron
has a mass mn and its velocity is v, v′, before and after the collision, respectively.
After the collision, the nucleus has a velocity V . By imposing the non-relativistic
energy and momentum conservation laws, one has:

1

2
mnv

2 = 1

2
mnv

′2 + 1

2
(mnA)V 2 (2.7)

mnv = mnv
′ + (mnA)V (2.8)

The non-relativistic formulae are valid because the neutron kinetic energy T is of

the order of a few MeV and β = p/M �
√

2T
mn

� O(0.1).

Solving the system by eliminating V , one obtains a second order equation which
admits two solutions. One of the two (v′ = v) should be eliminated, because it pre-
dicts a behavior independent of A corresponding to a non-physical solution. The
other solution is:

v′ = v
1 − A

1 + A
(2.9)

For the different nuclei considered here, one has:

(a) Hydrogen (A = 1), v′ = 0. All the energy of the neutron is transferred to the
proton (the small difference in mass between n and p is neglected).

(b) Carbon (A = 12), v′ = −0.85v. The percentage variation in speed (in absolute
value) is: 	v/v = |v − v′|/v = 15%.

(c) Iron (A = 56), v′ = −0.965v. The percentage variation in speed is: 	v/v =
3.5%.

The best moderators are therefore the elements with an atomic number A as small
as possible.
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