
Chapter 2
Time and Distance

Abstract An elementary geometric fact, stated as the intercept theorem, makes
an observed clock run visibly slower, if it moves away in the line of sight and to
run visibly faster by the inverse factor, if it approaches the observer with the same
velocity. This Doppler effect of light in the vacuum is particularly simple, because,
different from the Doppler effect of sound, it depends only on the relative velocity of
the light source and its observer. We employ a referee to determine whether moving
clocks are equal and how the times between pairs of events compare. This time
endows spacetime with a geometric structure, the distance, which is similar to but
also different from Euclidean distance. From the Doppler effect we determine the
addition of velocities, time dilation and length contraction and clarify the related
paradoxes.

2.1 Theorem of Minkowski

Consider as in Fig. 2.1 a clock C and an observer O with another clock. Both move
uniformly along straight worldlines and meet in the event O , the origin, where their
worldlines intersect. There both clocks are set to zero for simplicity, so that in the
following we can speak of times rather than of time differences. When the observer
O looks at the clock C , which moves away from him uniformly in the line of sight,
then he reads off the time tC which passed on C until the emission of the light. At
the moment of observation his own clock shows a time tO . This time of reception is
proportional to the time of emission1

tO = κ(O,C ) tC for tC > 0, (2.1)

1 κ and ν are the Greek letters kappa and nu.
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Fig. 2.1 Intercept theorem
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with a coefficient κ(O,C ) , which does not depend on tC [7]: if the observer later
reads off the time t ′C , then the triangle Ot ′C t ′O is similar to OtC tO and all distances
are enlarged by the same factor. Therefore the ratios tO/tC and t ′O/t ′C coincide.

If a quartz is carried along with the clock C and oscillates n times during the time
tC with a frequency νC = n/tC , then the observer O sees these oscillations while
on his own clock the time tO elapses. So he observes the frequency

νO = 1

κ(O,C )
νC . (2.2)

This visible change of frequency of the clock which moves in the line of sight is
the longitudinal Doppler effect. It is related to the Doppler effect of sound, which
one can hear as whining drop of the pitch of passing police cars or racing cars.

As one cannot distinguish rest from uniform motion, the Doppler factor κ(O,C )

only depends on the relative velocity of C and O and, contrary to the Doppler effect
of sound, not on the velocity with respect to a medium.

Moreover, κ depends on whether both clocks run equally fast. For two clocks at
rest this can be easily seen. For the moving clocks O and C this is more difficult.
One has to correct for the various and changing times which it takes light to run from
the clock to the observer who compares both clocks.

However, no correction is necessary for a referee R as in Fig. 2.2 who is always
in the middle of the clocks. Flashes of light which he emits at some time to O and
C are reflected and return in the same instant. Because the referee is always in the
middle, the runtimes of light to and from O and C are equal.
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Fig. 2.2 Comparison of
clocks
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Both clocks run the same if they show the referee equal times,

τ ′ = τ. (2.3)

This is the geometric definition of equal lengths on intersecting straight world-
lines of moving observers. Without exception the definition agrees with the physical
behavior of real equal clocks.

We continue the worldlines of the light rays, which are received and reflected by
C as it shows the time τ ′, to the worldline of the observer O and denote in Fig. 2.3
with t− and t+ the times shown by the clock of O as he emits the light ray to C and
receives it, respectively. Due to (2.1) the clock O shows the time

τ = κ(O,R)κ(R,O)t− (2.4)

when the light ray emitted at time t− and reflected by R arrives. This is because τ

is a multiple of the time at which the light ray was reflected by R, and this time is a
multiple of the time t− at which the light ray was emitted by O . By the same reason

t+ = κ(O,R)κ(R,O)τ. (2.5)

Thus, t+/τ = τ/t− and τ 2 = t+t− = t2 − r2 (1.6). Moreover, the equal clocks
show equal times, τ ′ = τ . This proves the

Theorem of Minkowski Let two observers O and C move linearly and uniformly
and meet in some event O , when they set their equal clocks to zero. Then the time τ ,

http://dx.doi.org/10.1007/978-3-642-28329-1_1
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Fig. 2.3 Theorem of
Minkowski
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which elapses on the clock C until an event E , is the geometric mean of the time t−
shown by the clock of the observer O when he emits light to E and the time t+ which
his clock shows when he receives light from E ,

τ 2 = t+t− = t2 − r2. (2.6)

This relation is as important for the geometry of spacetime as the Pythagorean
theorem c2 = a2+b2 for Euclidean geometry. According to the Pythagorean theorem
in Euclidean geometry all points on a circle are equally far away from the center. The
equation τ 2 = t2 − r2 implies that in spacetime points of equal temporal distance to
the origin O lie on hyperbolas.

Three Equal Clocks

The definition, that equal clocks show their referee equal times differences, is con-
sistent: the clock O3 equals the clock O1 if it equals the clock O2 and if the clock O2
equals the clock O1 (Fig. 2.4).

If the clocks move in the same direction and meet in a common event, then the
relation

t4 = t2+t2− = t++t+−t−+t−− (2.7)

holds. As in (2.4) one has
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Fig. 2.4 Three equal clocks
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Fig. 2.5 Geometric mean
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t−+ = κ(O1,O2)κ(O2,O1)t−− (2.8)

and
t++ = κ(O1,O2)κ(O2,O1)t+−. (2.9)

Therefore t4 = t2++t2−− and the clock of O3 equals the clock of O1. If two clocks
equal a third then they equal each other. This holds also, if the worldlines of the clocks
do not lie in a plane or do not intersect because the worldlines can be translated and
rotated without changing the clocks.

Construction of the Referee

To construct the worldline of the referee between two observers O and C one draws
the light rays through a point τ ′ on one worldline. They intersect the other worldline
in t+ and t− and determine the geometric mean τ of t+ and t−. The worldline of the
referee is the straight line through the intersection of the light rays through τ and τ ′.
This worldline also passes the origin O , because τ is the geometric mean of t+ and
t− (Fig. 2.5).

The geometric mean
√

t+t− is constructed in Euclidean geometry by help of a
circle with a diameter, which consists of the line segments t+ and t−. Its radius is the
arithmetic mean t = (t+ + t−)/2, the line segment t+ is longer by r = (t+ − t−)/2,
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Fig. 2.6 Towards and away
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t+ = t + r , the line segment t− is shorter t− = t − r . The orthogonal line through
the endpoint of t+ cuts the circle with a segment of length τ = √

t2 − r2 = √
t+t−.

2.2 Addition of Velocities

In Fig. 2.3 the Doppler factor τ ′/t− = κ(C ,O) is the ratio of the time of reception
to the time of emission (2.1) of light rays sent from the observer O to C , and
t+/τ ′ = κ(O,C ) is the ratio for the way back. Both clocks are equal, τ = τ ′.
Therefore (2.4) and (2.5) state that the Doppler factor κ(O,C ), by which O sees
frequencies of C shifted, equals the Doppler factor κ(C ,O), by which C perceives
shifted frequencies of O

κ(C ,O) = κ(O,C ). (2.10)

On motion in the line of sight the Doppler shift is reciprocal.
From this reciprocity alone, from t+ = κτ together with τ = κt−, one can

conclude Minkowski’s theorem and the dependence of the Doppler factor on the
relative velocity,

κ2 = t+
t−

, τ 2 = t+t−. (2.11)

The relations t+ = t + r and t− = t − r (1.6) imply

κ2 = t + r

t − r
= 1 + r/t

1 − r/t
, τ 2 = t2 − r2 =

(
1 − r2

t2

)
t2, (2.12)

http://dx.doi.org/10.1007/978-3-642-28329-1_6
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Fig. 2.7 Addition of veloci-
ties
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and, because v = r/t is the velocity with which the clock C moves away from the
observer O ,

κ(v) =
√

1 + v

1 − v
= 1 + v√

1 − v2
, (2.13)

v = κ2 − 1

κ2 + 1
, (2.14)

τ =
√

1 − v2t. (2.15)

If the observer O emits a pulse of light at a time tE < 0, while the clock
moves towards him (recedes with negative velocity) then, as Fig. 2.6 shows, the
ratio κ(−v) = tR/tE of the times of reception and emission is the inverse of the
ratios of the times which the clocks show later, when they move away from each
other

κ(−v) = tR
tE

= tC
tO

= 1

κ(v)
. (2.16)

A clock, which moves away from an observer, appears slower, because it shows
him the time tC = tO/κ , when his own and equal clock shows tO and κ(v) is larger
than 1 for positive velocity v > 0.

On motion in the line of sight an approaching clock appears faster, because during
the approach the Doppler factor is inverse to the Doppler factor during recession.

With (2.14) one can determine the velocity v (as is routinely done by traffic
authorities) by measuring the Doppler shift κ . It retains its value, if one exchanges
observer and observed object. Therefore, two observers who move in the line of sight
measure the same relative velocity. We use (2.13) to determine the relative velocities
of several observers (Fig. 2.7).

If three observers, O1, O2 and O3, move in the same direction and register the
times on their clocks at which a light pulse passes then these times are proportional,

t2 = κ21t1, t3 = κ32t2, t3 = κ31t1. (2.17)

From κ31t1 = κ32κ21t1 one immediately concludes
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κ31 = κ32κ21. (2.18)

The Doppler factor κ31, by which O3 sees his clock run faster than the clock of O1,
is the product of the Doppler factor κ32, by which O3 observes his clock run faster
than the clock of O2 with the Doppler factor κ21 for the observer O2 and the clock
of O1.

In terms of velocities (2.13) and squared this means (in our units with c = 1)

1 + v31

1 − v31
= 1 + v32

1 − v32

1 + v21

1 − v21
(2.19)

or, solved for v31,

v31 = v32 + v21

1 + v32v21
. (2.20)

The velocity v31, with which O3 sees the observer O1 recede, is not the sum
v32 + v21 of the velocity v32, with which O3 observes O2 recede, and the velocity
v21, with which O2 perceives the recession of O1. The naive addition of velocities is
only approximately correct as long as in ordinary life v32 and v21 are small compared
to the speed of light, c = 1.

Up to the sign in the denominator velocities add like inclinations. If the bed of a
tipper lorry is inclined by an angle α, then on even ground it has the slope m1 = tan α.
If the truck drives a street with slope m2 = tan β then its bed has an overall angle
α + β to the horizontal and the overall inclination

m3 = sin(α + β)

cos(α + β)
= cos α sin β + sin α cos β

cos α cos β − sin α sin β
= tan α + tan β

1 − tan α tan β
= m1 + m2

1 − m1m2
.

(2.21)
We define the rapidity σ as the logarithm of the Doppler factor κ ,

σ = ln κ = 1

2
ln

1 + v

1 − v
, v = eσ − e−σ

eσ + e−σ
= tanh σ. (2.22)

To the addition of rapidities there corresponds the multiplication of the Doppler fac-
tors, κ = eσ . These rapidities, not the velocities, add on motion of several observers
in the same direction.

2.3 Time Dilation

If the time t elapses on a clock between two events O and E , then on a second equal
clock, which moves relative to the first one with a velocity v, the shorter time (2.15)

τ =
√

1 − v2t (2.23)
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Fig. 2.8 Reciprocal dilation
of time

τ
τ

t

t+

t

t

t– –t

O

E
E

+

goes by between the corresponding events which are simultaneous to O and E for
the first clock.

Time dilation is reciprocal. This can be deduced from Fig. 2.8 where we have
continued the light rays of Fig. 2.3 to the worldlines of the observers O and C .

The events are denoted by the times on the clocks which the observers carry along.
All the time the referee R is in the middle of O and C and sees both clocks show

equal times. Therefore the times t− and t ′− coincide as do τ and τ ′ and also t+ and t ′+,
because light from each pair of events in which the clocks show these times reaches
the referee in the same instant.

For the observer O the event E ′, in which the moving clock C shows the time
τ ′ = τ , is simultaneous to the event, in which his own clock shows the arithmetic
mean t = (t+ + t−)/2 of the time t−, which it shows, when light to E ′ starts and
the time t+, at which the reflected light returns. So for O the event E ′ occurs at time
t , but the moving clock shows less time, τ = √

t+t− = √
1 − v2t (2.15), which is

smaller than the arithmetic mean t (given that the velocity v does not vanish).
For C the event in which his clock shows the time t ′ = (t ′+ + t ′−)/2 = t is

simultaneous to the event E , when the clock of O , which moves with respect to C ,

shows the time τ =
√

t ′+t ′− = √
1 − v2t . So for C the clock of O runs slower just

as well.
Time dilation is reciprocal because the observers do not agree on which events

are simultaneous. In Euclidean geometry the corresponding fact is commonplace: if
you look in horizontal direction from a lighthouse at sea level to a second lighthouse
of identical construction also at sea level some miles away then the other lighthouse
does not reach the height of the first one because the surface of the earth is curved.
Height depends on which direction is horizontal and the horizontal directions of both
lighthouses do not coincide.
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Fig. 2.9 Twins
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Twin Paradox

Reciprocal time dilation appears to be contradictory, if for example one considers
twins. The first twin, the traveller T , departs in an event A with a velocity v for
Mars and turns back with velocity v′ after the arrival in event M . The other twin, the
stay-at-home S , waits calmly the time t + t ′ until the return of his brother. Which
twin, if any, is younger in the end E? For each twin, the other has moved. Does this
imply the contradiction, that each twin has aged less than the other?

It is often tacitly insinuated that the observations of both twins agree up to the
short acceleration at Mars and that from their observations one cannot distinguish
the traveller from the stay-at-home. This is wrong.

Each twin sees the other redshifted during the travel to Mars and blueshifted on
the way back. In the first period each twin sees the clock of his brother run slower,
in the second faster, than his own clock by a Doppler factor which agrees with the
Doppler factor of his brother. But the stay-at-home sees the traveller longer redshifted
(and age slower) and shorter blueshifted (and age faster) than the traveller sees the
stay-at-home. Both twins see the stay-at-home age more than the traveller.

On arrival at Mars M the traveller T sees his clock show the travel time τ and a
redshifted light ray from the stay-at-home S show the time t−, which has elapsed
on the clock of S since the start A. The travel time is larger by a Doppler factor κ

(2.1), τ = κ t−.
During the return trip the traveller observes on his clock the time τ ′ go by while

blueshifted light shows him that the time t + t ′ − t− passes on the clock of the stay-
at-home until the end E , τ ′ = κ ′(t + t ′ − t−). Altogether, he sees the stay-at-home
age by
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Fig. 2.10 Equal phases of
acceleration
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while he has grown older by τ + τ ′.
The stay-at-home sees the traveller redshifted during the time t+ = κτ , which is

longer than τ , and blueshifted during the rest of the waiting time t + t ′ − t+ = κ ′τ ′,
which is shorter than τ ′. Altogether, S ages by

t + t ′ = κτ + κ ′τ ′ (2.25)

while he observes the traveller grow older by τ + τ ′. This agrees with (2.24) as one
confirms with (2.13, 2.15) and with the relation vt +v′t ′ = 0 that the traveller returns.
Both equations imply

t + t ′ = τ

2

(
1

κ
+ κ

)
+ τ ′

2

(
1

κ ′ + κ ′
)

= τ√
1 − v2

+ τ ′
√

1 − v′2 . (2.26)

The waiting time t + t ′ is longer than the travel time τ + τ ′.
“Who rests, rusts” and “Travelling keeps young” correctly states the relativistic

effect.
The worldline of the traveller differs from the one of the stay-at-home by the

acceleration on arrival at Mars M . Such an acceleration is necessary if the second
worldline through the two events A and E is to differ from the straight worldline of
the first twin because in flat spacetime there is only one straight line through two
points.
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But the traveller does not become younger during the acceleration. Even if both
twins undergo identical phases of acceleration they can age differently, as Fig. 2.10
shows. There both twins travel together until event A where the stay-at-home S
brakes. The traveller T brakes later to reach M , there he accelerates to return.

After a fitting waiting time the stay-at-home accelerates in exactly the same way
and joins the traveller in E from where both continue their joint flight. Between A
and E the twins age differently though their acceleration consisted of equal phases.
During these phases they age the same, but the remaining pieces of their worldlines
constitute the sides of the triangle AM E in Fig. 2.9 and there S ages more.

Time is what clocks show. The clocks of the twins show different times on return.
Therefore, time between two events does not only depend on these events but also
on the worldline which the clock passes in between; just as in Euclidean geometry
the path length between two points of a curve depends on the path which connects
both points. Clocks are like mileage counters.

In a spacetime diagram the different aging of the twins is as paradoxical as in
Euclidean geometry the statement that in a triangle each side is shorter than the sum
of the other two sides. In order to understand triangles one does not need differential
geometry of curved spaces, even if one deals with circles and corners, i.e. with curved
trajectories. Similarly, the general theory of relativity is not needed for the solution
of the twin paradox. It can be used, but gives the same explanation and the same
answer as the special theory of relativity: between every two sufficiently adjacent
events on the worldline of every free-falling observer there elapses more time than
on all other timelike worldlines connecting these two events.

If the two events are not sufficiently adjacent, then gravity can cause the compli-
cation that different world lines of free-falling observers connect these events and
that on these worldlines different times go by, even though none of the observers has
experienced a sensible acceleration. For instance, a space station may orbit the earth
in free fall and a second station launched vertically from the earth may fly past the
first in free fall during the motion upwards. If the apogee of the second space station
is suitably chosen, it can meet the first space station again on the way downwards
after the first station has orbited the earth. During the vertical fall more time has
elapsed between the two encounters than in the space station orbiting the earth.

The different aging of the twins can be measured with atomic clocks flying around
the earth [14] such that for one twin his velocity adds to the revolution of the earth
and subtracts for the other twin. In addition, the gravity on ground and during the
flight differs and influences the clocks, just as gravity and motion influence the clocks
of GPS satellites. There these relativistic effects are routinely accounted for.

Clocks at sea level, which are carried along with the rotating earth, run equally
fast. The rotation does not only lead to different velocities, which depend on the
longitude, but also to a flattening of the globe, such that the clocks which move
faster are further away from the center. Taken together, the different gravity and the
different velocity compensate their effects on the clocks at sea level exactly.
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Fig. 2.11 Contraction of moving rods

2.4 Length Contraction

Two moving measuring rods have the same length, if they are equally long for a
referee R, who, just as in the left Fig. 2.11 is always in their middle [23]. The
beginning of each rod traverses the worldline of the corresponding observer C and
O , the end traverses a parallel worldline. As the referee R confirms, the rods of C
and O have the same length, because in the events τ and τ ′, which are simultaneous
for him and equally far away, both ends of both rods coincide.

A moving rod is shorter than an equal rod at rest by the same factor
√

1 − v2 by
which a moving clock runs slower than an equal clock at rest. This can be deduced
from the middle of Fig. 2.11. There we have omitted all auxiliary lines and shown
the segment from t to τ ′ which consists of events which occur simultaneously for
the observer C . At this moment, his measuring rod extends from t to τ ′ and the right
ends of both rods coincide. The moving rod is shorter, its left end intersects the line
segment from t to τ ′ in the event q.

The triangles t O τ ′ and t τ q are similar, therefore the length lv of the segment
τ ′q relates to the length l of the segment τ ′t as the length of Oτ to the length of Ot .
But τ = √

1 − v2t is the length of Oτ and t the length of Ot . Therefore, a measuring
rod which moves uniformly with a velocity v has the shorter length

lv =
√

1 − v2l, (2.27)

if compared to an equal measuring rod of length l at rest.
As the right in Fig. 2.11 shows, length contraction is reciprocal. For the observer

O the events τ and t ′ occur simultaneous and the measuring rod of C is shorter.
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Fig. 2.12 Accelerated
Rockets
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Equally Accelerated Rockets

We consider two rockets which we idealize as points. Initially they rest in a distance
L , later they are accelerated in an equal way such that, as in Fig. 2.12, their worldlines
are related by a translation by L . For an observer at rest both rockets have a distance L
at all times. After the acceleration the rockets follow straight worldlines with velocity
v. If the crews of the rockets then measure the mutual distance with measuring rods
which they carry along, they obtain some value l. For the observer at rest, this rod is
moving and contracted and has length L = √

1 − v2l, because it reaches from one
rocket to the other. So l is larger than L .

A rope as considered in [5, Chap. 9], initially spanned between the rockets and
stretched to rupture, snaps immediately, if the rockets and the rope are accelerated
equally.

This is also what the crews of both rockets observe. For them the rocket in front
reaches the final velocity earlier and veers away from the rear rocket.

If one wants to accelerate the constituents of the rope, which rest initially until
a time t = 0, to a velocity v, such that their distances, as seen by the constituents,
remain unchanged, then one has to accelerate the pieces in the rear more but for a
shorter time than the pieces in front such that all points at r , 0 ≤ r ≤ L traverse
worldlines x(t) = √

(r + R)2 + t2 − R during the times 0 ≤ t ≤ v(r + R)/
√

1 − v2

and move straight and uniformly afterwards. Here 1/R is the acceleration of the last
point in the rear.

Length Paradox

Just as time dilation leads to the twin paradox, length contraction seemingly leads to
a contradiction, if one considers whether a car with high speed fits into a garage of
equal length. For the owner of the garage it is at rest and the moving car is shorter,
therefore the car fits into the garage. Seen from the driver, however, the garage is
shorter and does not fit the car.

http://dx.doi.org/10.1007/978-3-642-28329-1_9
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The situation is depicted in the spacetime Fig. 2.11, where C and the parallel
worldline represent the owner at the gate and the rear wall of the garage while O and
the parallel worldline correspond to the front and rear fender of the car.

Consider a red flash of light, emitted by a photo sensor in the event τ ′, when the
front fender hits the garage wall, and a green flash of light, which is emitted in the
event τ , when the rear fender passes the gate. The referee sees both flashes in the
same instant and, because he is in the middle of the gate and the wall and the runtimes
of light from τ and τ ′ to him are equal, confirms that the garage and the car have
equal length.

The owner of the garage C observes the red flash from τ ′ after the green one. If
he accounts for the runtime of light, he concludes that the front bumper had hit the
garage wall in the event τ ′ at the time t after the event τ , in which the rear fender
passed the gate. For him, the car had fitted into the garage at time t , the car war
shorter.

The driver O sees the green flash of light from the rear of his car τ later than the
red flash. If he account for the runtime of light he concludes that the green flash τ

had been emitted at the time t ′ after the red flash. For him, the front fender had hit
the wall before the rear fender had passed the gate. So he concludes that the garage
is shorter than the car.

This in not a contradiction and not a paradox. Observers, who move relative to
each other, do not have to agree on the order of events which are not cause and effect
as in the case under consideration. The passage of the rear fender through the gate
does not cause the crash of the front fender on the wall and vice versa.

Both observers agree that a fast, slim car can pass a slim garage of equal length
if the car in addition has some transverse velocity, just as one can thread long yarn
through the narrow eye of a needle.

With some transverse velocity of the car the worldlines of the front and rear fender
no longer lie in the plane of the Fig. 2.11. They can intersect the plane in the events q
and τ . For the garage owner these events are simultaneous, before them the car was
on one side and afterwards it is on the other: the car has passed the garage, which
is longer than the car. Also the driver observes his car pass the garage, though it is
shorter than his car. He first drives around the wall with his front fender and later
passes the gate with his rear.

Whether a fast car fits through a garage does not only depend on the length but
also on the temporal sequence of the events just as it depends on the direction of a
long ladder whether it fits through a low door.

2.5 Doppler Effect

If a clock C moves with a velocity v in direction e at an angle θ to the line of sight,
then its distance to an observer O changes by dr = v cos θdt during the short time
dt . The changed distance cause a changed runtime of light and light rays l and l from
two events on the clock which started with a time difference dt reach the observer
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Fig. 2.13 Doppler effect
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(in units with c = 1) with a time difference

τO = dt + v cos θ dt. (2.28)

In this consideration we use times, velocities and angles as determined by the
observer O .

On the moving clock C the time τC = √
1 − v2dt elapses between the emission of

the two flashes of light. This follows from (2.13), because spacetime is homogeneous
and time flows between the origin (0, 0, 0, 0) and (t, x, y, z) the same as between
(t0, x0, y0, z0) and (t0 + dt, x0 + vx dt, y0 + vydt, z0 + vzdt)

Consequently the observer O sees the time

τC =
√

1 − v2

1 + v cos θ
τO (2.29)

pass by on the moving clock while on his own, equal clock the time τO passes.
Equation (2.13), τO = κτC , is the special case in which the clock recedes in the line
of sight with cos θ = 1.2

If an oscillator is carried along with the clock and oscillates n-times with a fre-
quency νC = n/τC , the the observer sees these n oscillations while the time τO
passes on his own clock. He observes the frequency νO = n/τO ,

νO =
√

1 − v2

1 + v cos θ
νC . (2.30)

2 Figure 2.13 depicts the worldlines of the observer O and the clock C in a plane. However, we
consider the general case in which the worldline of the observer is parallel to the plane and does
not intersect the worldline of the clock. Note that in spacetime diagrams the frequency of light is
not a property of a light ray but pertains to the distance of two events on parallel light rays.
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If v cos θ >
√

1 − v2 − 1, then the clock is seen slower and the frequency of light
from the clock is shifted to smaller values of red light, it is redshifted.

Otherwise, if v cos θ <
√

1 − v2 − 1 and the clock moves towards the observer,
then it appears faster and its light is blueshifted. This change of the perceived fre-
quency is the Doppler effect. It is commonly used to measure velocities.

On motion crosswise to the line of sight, cos θ = 0, the transversal Doppler
effect τC = √

1 − v2τO directly shows the slowdown of moving clocks, because the
distance between source and observer just does not change.

The Doppler shift is usually time dependent (because the direction changes) and
reciprocal only for motion in the line of sight. If the observer O sends two flashes of
light with a delay of dt = τ̂O to the clock then the second flash reaches the clock later
by dt ′ = dt + v cos θdt ′ that is dt ′ = τ̂O/(1 − v cos θ). During this interval the time
τ̂C = √

1 − v2dt ′ elapses on the moving clock. Seen from the clock, frequencies
from O are shifted to

ν̂C = 1 − v cos θ√
1 − v2

ν̂O . (2.31)

This agrees with ν̂C = √
1 − v2/(1 + v cos θ ′)ν̂O (2.30) because θ ′ is the angle to

the line of sight, changed by aberration (3.19), with which C sees O move.

Apparent Superluminal Velocity

A jet of gas streams out of the quasar 3c273 with a measurable angular velocity [17,
Chap. 11]. If one multiplies the observed angular velocity with the known distance
one obtains a velocity of seven times the speed of light for the crosswise motion. The
quasar seems to emit particles with superluminal velocity.

This conclusion is wrong, the product of the distance with the observed angular
velocity is not the velocity transverse to the line of sight.

The clock C in Fig. 2.13 moves by v sin θ dt = r dθ within the short time dt
transverse to the line of sight, where r denotes its present distance. The flashes of
light l and l reach the observer with a difference angle dθ and a time difference
τO = dt + v cos θ dt because l starts later by dt and has to pass a distance which
is larger by dr = v cos θ dt . So the observed angular velocity ωO = dθ/τO and the
apparent transverse velocity u = r ωO are

ωO = v sin θ

r(1 + v cos θ)
, u = v sin θ

1 + v cos θ
. (2.32)

This velocity u becomes maximal for the angle cos θ = −v between the direction
of motion and the line of sight and in this case has the value v/

√
1 − v2. This value

can be arbitrary large though |v| is smaller than c = 1, the speed of light.

http://dx.doi.org/10.1007/978-3-642-28329-1_3
http://dx.doi.org/10.1007/978-3-642-28329-1_11
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Fig. 2.14 Spherical Coordi-
nates
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2.6 Spacetime Coordinates

We can denote the events E in spacetime simply by the values3 (t+, t−, θ, ϕ), the
light coordinates of E , which an observer O determines as he sends light to E and
receives it from E . He reads the times of emission, t−, and reception, t+, from his
clock and determines the direction of the outgoing light ray by means of, say, two
angles θ and ϕ.

Primarily coordinates only have to denote the events uniquely, at least in some
range of their values. Other coordinates, which are invertible functions of the light
coordinates, are equally conceivable. In particular, light coordinates are related in
a simple way to inertial coordinates (t, x, y, z), in which particles, which move
uniformly on straight lines, traverse straight coordinate lines (Fig. 2.14).

The time t and the distance r = √
x2 + y2 + z2, at which the event E occurs, are

the arithmetic mean and half the difference of the light coordinates t+ and t− (1.4,
1.5),

t = t+ + t−
2

, r = t+ − t−
2

. (2.33)

The direction of the outgoing light ray from O to the event E is opposite to the
incident direction of the light ray from E because the observer does not rotate but
uses reference directions that do not change in time.

The angles θ and ϕ of the light ray to E and the distance r are the spherical
coordinates and define the cartesian spatial coordinates of the event by

x =
⎛
⎝ x

y
z

⎞
⎠ = reθ,ϕ = r

⎛
⎝ sin θ cos ϕ

sin θ sin ϕ

cos θ

⎞
⎠ . (2.34)

For events on the worldline of the observer O one has t+ = t−, hence x = 0. In
particular, the origin O has coordinates (0, 0, 0, 0).

If O emits a light ray at time t0 in the direction eθ,ϕ , then the light ray passes
events for which t−, θ and ϕ are constant

t = t+ + t0
2

, x(t) = t+ − t0
2

eθ,ϕ, (2.35)

3 θ and ϕ are the Greek letters theta and phi.
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or, if we express the variable t+ in terms of t , then the light ray is given by the map

Γ : t �→ (
t, x(t)

) = (
t, eθ,ϕ ·(t − t0)

)
. (2.36)

This is a worldline parameterized by t , which at the time t0 intersects the worldline
of the observer. In the coordinates (t, x, y, z) it is a straight worldline which is
traversed with the speed of light c = 1, since the speed v = dx

dt is a unit vector.
The equations also holds for t < t0 for a light pulse incident from the opposite
direction −eθ,ϕ . For such a light ray t+ = t0 is constant and t = (t0 + t−)/2 and
x = −eθ,ϕ(t0 − t). While light coordinates (t+, t−, θ, ϕ) of a passing light ray are
discontinuous in the event, in which it intersects the worldline of the observer, inertial
coordinates are continuous.

Displacing the light ray by x0 + eθ,ϕ t0 yields more generally the light ray which
passes x0 at the time t = 0,

Γ : t �→ (
t, x(t)

) = (
t, eθ,ϕ ·t + x0

)
. (2.37)

If the worldline of a linearly and uniformly moving particle passes the origin O
at time t = 0, the observer O sees afterwards all events on this worldline from the
same direction. The angles θ and ϕ are constant, except at t = 0. The particle departs
into the opposite of the direction from which it approached and the angles change
discontinuously from θ to = π − θ and from ϕ to ϕ + π at t = 0.

According to (2.11) one has t+ = κ2t− for events on the straight worldline of the
particle. For its coordinates this means

t = (κ2 + 1)
t−
2

, x = (κ2 − 1)
t−
2

eθ,ϕ , (2.38)

or, if we express t− in terms of t and use (2.14), the worldline is given by

Γ : t �→ (
t, x(t)

) = (
t, v t

)
with v = dx

dt
= κ2 − 1

κ2 + 1
eθ,ϕ. (2.39)

Translating the worldline by x0 one obtains more generally the worldline of an
uniformly moving particle which passes the point x0 at time t = 0 ,

Γ : t �→ (
t, x(t)

) = (
t, v·t + x0

)
. (2.40)

So the coordinates (t, x, y, z) which we have constructed from the light coordi-
nates t+, t−, θ and ϕ are inertial coordinates in which particles, which move straight
and uniformly, traverse straight coordinate lines.
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2.7 Scalar Product and Length Squared

Together, the time and the spatial coordinates of each event constitute an ordered set
(t, x, y, z) of four real numbers, and each such four-tuple corresponds to one and
only one event. In Special Relativity spacetime, the set of all events, is R

4. We denote
the components of the four-tuple which corresponds to a particular event E either by
tE , xE , yE and zE or we use a name like u for the four-tuple u = (u0, u1, u2, u3) and
enumerate the components with a superscript. It depends on the context whether the
superscript denotes an exponent (rarely) or enumerates a footnote or a component.

The homogeneity of spacetime makes it a vector space. If one shifts all events u =
(u0, u1, u2, u3), which participate in some physical process, by s = (s0, s1, s2, s3)

in space and time, then the events

u + s = (u0 + s0, u1 + s1, u2 + s2, u3 + s3) (2.41)

can participate in an equally possible process.
The scaled versions of spacetime diagrams consist of events

au = (au0, au1, au2, au3) (2.42)

scaled by a common factor a. However, elementary physical processes are not scale
invariant. While scaled diagrams of physical processes with free pointlike particles
correspond to equally possible physical processes, this is not true for interacting
particles, for example, one has never observed an enlarged hydrogen atom (electron
and proton bound by electromagnetic interactions).

The set R
4, equipped with the operations of addition and multiplication by a scale

factor, is a four-dimensional vector space. Its elements are called four-vectors.4

On an uniformly moving clock, which passes the two events (t0, x0, y0, z0) and
(t0 + t, x0 + x, y0 + y, z0 + z), there elapses the time

τ 2 = t2 − x2 − y2 − z2. (2.43)

This follows from (2.13), because spacetime is homogeneous and time flows
between the origin (0, 0, 0, 0) and the event (t, x, y, z) the same as between
(t0, x0, y0, z0) and (t0 + t, x0 + x, y0 + y, z0 + z).

The time between two events does not depend on the details of the clock used to
measure it. The time is a measure for distance, i.e. a geometric structure, in spacetime.

4 Without mentioning it explicitly we shall consider different copies of R
4, e.g. spacetime or the

set of four-velocities, four-momenta or four-accelerations. Vectors from different spaces cannot be
added, because they differ in units. e.g. a velocity v cannot be added to a position x. What can be
added is the image vt of a velocity v under the linear map t , which maps it to the space of positions.
Though vectors from different four-spaces cannot be added, their directions can be compared,
because, as we shall see, the Lorentz group acts on each of these spaces and the x-direction, for
example, is the set of vectors which is invariant under rotations around the x-axis and under boosts
in y- and z-directions (also compare page 89).
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Events with equal temporal distance one does not find in a plane t = const as in
nonrelativistic physics or on a sphere x2 + y2 + z2 = r2 = const as in Euclidean
geometry, but on an hyperboloid t2 − x2 − y2 − z2 = τ 2 = const. The square of the
temporal distance between two events is not subject to the Pythagorean theorem but
to the theorem of Minkowski.

The clock does not depend on which observer determines coordinates for the
events. If another observer measures light coordinates t ′+,t ′−, θ ′ and ϕ′ and converts
them into spacetime coordinates (t ′0, x ′

0, y′
0, z′

0) and (t ′0 + t ′, x ′
0 + x ′, y′

0 + y′, z′
0 + z′)

of the two events, then the sums of squares appearing in (2.43) have to agree

t2 − x2 − y2 − z2 = t ′2 − x ′2 − y′2 − z′2. (2.44)

The sum of squares plays a central role in relativistic physics. We introduce the related
scalar product of four-vectors like u = (u0, u1, u2, u3) and w = (w0, w1, w2, w3)

u·w := u0w0 − u1w1 − u2w2 − u3w3. (2.45)

As length squared of a four-vector w we define5

w2 = w·w = (w0)2 − (w1)2 − (w2)2 − (w3)2. (2.46)

In this notation, the time τ between events u and w is given by

τ 2 = (u − w)2. (2.47)

The scalar product (2.45) maps each pair of four-vectors to a real number and is
symmetric and linear in each argument, (a denotes an arbitrary real factor)

v·w = w·v, (2.48)

u·(v + w) = u·v + u·w, v·(a w) = a (v·w), (2.49)

but, different from Euclidean geometry, not definite. Lightlike vectors have length
squared zero though they do not vanish. The scalar product is nondegenerate, i.e.
the scalar product of a vector v vanishes with all other vector if and only if v = 0
vanishes.

The scalar product of two vectors u and v can be written as the difference of
lengths squared

u·v = 1

4
((u + v)2 − (u − v)2). (2.50)

Since different observers determine different coordinates but the same lengths
squared of differences of four-vectors (2.44), scalar products of difference vectors

5 The reader has to deduce from the context whether the length squared or the y-component of a
vector is meant.
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do not depend on the coordinate system of the respective observer either,

u·v = u′·v′. (2.51)

If the length squared w2 is positive we call w timelike, if it is negative we call w
spacelike, if w2 = 0, w �= 0, w is called lightlike. A timelike or lightlike vector w is
future directed, if its component w0 is positive, otherwise it is past directed.

Two events A and B are mutually spacelike if the corresponding difference vector
from B to A

wAB = (tA − tB, xA − xB, yA − yB, z A − zB) (2.52)

is spacelike. Correspondingly we define lightlike or timelike pairs of events.
An event B can cause an effect A only, if wAB is future directed timelike or

lightlike.
Events on a light ray are mutually lightlike.
Events on the worldline of an observer are mutually timelike since each observer is

slower than light. If his worldline is straight then the length squared of the difference
vector of two of his events is the square of the time which passes on his clock between
the two events.

Orthogonal

To construct the line O⊥, which orthogonally intersects the line O in the point t , one
chooses two points on O , t+ and t−, which are equally far away from t , and determines
a second point E which is equally far away from t+ and t−. The orthogonal line O⊥
is the line through t and E .

This is true in Euclidean geometry and in spacetime. In spacetime, however, the
distance is given by τ (2.43). If t− and t+ are two events on the worldline of the
observer O and if t is in their middle then the intersections E and E ′ of the light rays
through t− and t+ lie on the orthogonal line through t , because E and E ′ are equally
far away from t− and from t+, to wit the distance vanishes because the separations
are lightlike (Fig. 2.15).

The worldline O consists of events which are equilocal for the observer. The
events on O⊥ are equitemporal for him (Fig. 1.6). The lines of equilocal events are
orthogonal to the lines of equitemporal events.

Using the vector v from t− to t and from t to t+ and the vector w from t to E , the
light ray from t− to E is v + w. The vector v − w is the light ray back from E to t+.
The length squared of the lightlike vectors v + w and v − w vanishes,

0 =(v + w)2 = v2 + 2v·w + w2,

0 =(v − w)2 = v2 − 2v·w + w2. (2.53)

http://dx.doi.org/10.1007/978-3-642-28329-1_6


2.7 Scalar Product and Length Squared 43

Fig. 2.15 Orthogonal vectors
with hyperbola
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Therefore v2 = −w2 and the scalar product of the orthogonal vectors vanishes,

v·w = 0. (2.54)

The length squared v2 is the square of the time between the events t− and t
on the worldline of the observer O . This is the runtime of light and therefore the
distance from O to the event E . Because v2 = −w2 the square of the distance of two
simultaneous events, which are separated by the spacelike vector w, is −w2.

Orthogonal: The vector w from an event t on the worldline of a uniformly moving
observer to an event E , which occurs simultaneously for him, is orthogonal in terms
of the scalar product (2.45) to his worldline. The negative length squared −w2 is
the square of the distance between E and the observer.

The hyperbola H through t around t− is defined to consist of points which are
obtained from t− by equally long translations u(s)

u(s) =
√

1 + s2v + sw, u(s)2 = v2, (2.55)

where s varies in the real numbers. In particular, the point t on the hyperbola corre-
sponds to s = 0 . In terms of the length squared of spacetime, all points of H are
equally far away from t−.

Each vector from t− to a point A on the orthogonal line O⊥ is of the form x(s) =
v + sw, where s is some real number. Because of v·w = 0 it is as long as the vector
−v + sw from t+ to A.

Because
√

1 + s2 > 1 for s �= 0 , all points of H apart from t lie on the side
of O⊥ which is opposite to t−, one has u(s) = x(s) + a(s)v with a positive a(s).
In addition, t belongs to both O⊥ and H . Therefore both curve touch each other at
t and the straight line O⊥ is tangent to the hyperbola H in the point t . The tangent
at t is orthogonal to the vector from t− to t .
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Fig. 2.16 Rotated measuring
rods
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The same conclusion is obtained by differentiating u(s)2 with respect to s . The
tangential vector t (s) = du

ds (s) is orthogonal to the position vector u(s),

u(s)·u(s) = constant ⇒ du

ds
·u = 0. (2.56)

2.8 Perspectives

If one takes bearing in horizontal direction from a lighthouse at sea level to a second
lighthouse of identical construction also at sea level some miles away then the other
lighthouse does not reach the same height because the surface of the earth is curved
(see Fig. 2.16). Height is a perspective quantity. It depends on which direction is
horizontal and the horizontal directions of both lighthouses do not coincide.

Perspective shortening is physically relevant, Because one can change the height
of a ladder by rotation, it may pass a low door though the ladder is longer than the
height of the door and though rotations leave the sizes of the door and the ladder
unchanged.

The Fig. 2.16 depicts the perspective height of two measuring rods M0 and Mα in
Euclidean geometry which are rotated with respect to each other. The circle consists
of points of equal distance to the center; each tangent vector is orthogonal to the
position vector.

The measuring rods intersect in the point O . For an observer, who measures height
with M0, all point on the straight line through B, which is orthogonal to M0, are
equally high. In particular the point E is as high as B and higher as the end point of
Mα . Rotated measuring rods reach less high.
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Fig. 2.17 Time dilation
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The perspective shortening of height is reciprocal. Judged from Mα the rotated
rod M0 is lower.

If one replaces in Fig. 2.16 the circle by a hyperbola, one obtains the geometric
relations in spacetime.

In Fig. 2.17 the hyperbola H consists of events with equal temporal distance τ

to the origin O (2.43). Equal uniformly moving clocks of observers O0 and Ov, who
pass the origin, show the same laps of time, τ , when their worldlines intersect the
hyperbola.

The tangents in B and B ′ are orthogonal to the worldlines of the observers O0 and
Ov respectively (2.56). Therefore they consist of events which occur simultaneously
for O0 or Ov. The tangents intersect the worldline of the other observer before the
time τ has elapsed on it.

If the time τ elapses on a clock between two events, then the shorter time τE O =
τE ′O = √

1 − v2τ (2.13) passes between the simultaneous events on a moving clock,
just as two points on a vertical ladder have a shorter distance than equally high points
on a tilted ladder. The perspective relations in spacetime are reciprocal as in Euclidean
geometry.

The abbreviated summary “moving clocks run slower” suppresses the specifica-
tions of the segments O E and O B or O E ′ and O B ′ the duration of which is to be
compared. The abbreviation is the reason for misunderstandings, because “running
slower” is an order relation and the clock of O0 cannot run slower and also faster
than the clock of Ov. In fact, both clocks are equal as confirmed by the referee in
Fig. 2.2.

Contraction of moving measuring rods can be read of Fig. 2.18 which is the mir-
rored version of Fig. 2.17. The beginning and the end of uniformly moving measuring
rods of observers O0 and Ov traverse pairs of parallel straight worldlines. Both rods
have the length l, because the left ends coincides in O and the right ends B and B ′ lie
on the auxiliary hyperbola, which consists of points P which satisfy −wP O

2 = l2.
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Fig. 2.18 Contraction of
moving rods
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Fig. 2.19 Twin paradox
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The segments O B and O B ′ are orthogonal to the worldlines of the observers and
Ov, because they are position vectors and parallel to tangent vectors of the hyperbola
(page 43).

Therefore the events O , E ′ and B are simultaneous for O0. At this moment, the
left ends coincide, but the right end of the moving rod only reaches to E ′, so the
moving rod is shorter than the own rod which reaches until B.

For Ov the events O , E and B ′ are simultaneous. Then the left ends coincide in O
and the rod, which moves relative to Ov only reaches to E and is shorter than the
own rod which reaches until B ′.
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In Fig. 2.19 the waiting time and the travel times of the twin paradox are not
determined from the Doppler factors as in Fig. 2.9 but compared by the auxiliary
hyperbola from M to τ ′ with origin at A and the hyperbola from M to τ ′′ with origin
at E .

The line segments from A to τ ′ and from τ ′′ to E on the worldline of the stay-
at-home S last as long as for the traveller T the travel to and from Mars. The
stay-at-home has aged in addition during the time which passed between τ ′ and
τ ′′. On the straight worldline of the stay-at-home more time has passed than on the
worldline of the traveller with a kink.

The tangents Mt ′ and Mt ′′ of the hyperbolas consist of events, which are simul-
taneous to the arrival at Mars for an uniformly moving observer Oto, who also flies
to Mars respectively for an uniformly moving observer Ofrom, who flies back. The
tangents intersect the worldline of S in t ′ and t ′′ confirming that for observers who
fly to or from Mars the clock of the stay-at-home shows less time than simultaneously
on their own clocks.

But the events t ′ and t ′′ do not coincide, they are simultaneous to the arrival at
Mars for different observers. Between t ′ and t ′′ the stay-at-home ages so much that
in the end he has grown older than the traveller.


	2 Time and Distance
	2.1 Theorem of Minkowski
	2.2 Addition of Velocities
	2.3 Time Dilation
	2.4 Length Contraction
	2.5 Doppler Effect
	2.6 Spacetime Coordinates
	2.7 Scalar Product and Length Squared
	2.8 Perspectives


