
Chapter 2

Preliminaries

This chapter provides basic notations, definitions and properties needed throughout this

book. Whenever possible the notations and definitions are used as they appear in the liter-

ature [Comon et al. (2008); Engelfriet (1974); Hopcroft et al. (2001); Aho et al. (1986)].

This chapter can be skipped and referred to when necessary.

2.1 Basic Definitions and Notations

The formal language theory is used to study templates and describe their syntax. This

section provides definition for common concepts of formal languages. The definitions are

based on automata and language theory:

• A symbol is a syntactic entity without any meaning.

• An alphabet is a finite, non-empty set of symbols.

• The rank (or arity) of a symbol is the number of children.

• A ranked alphabet is a pair of an alphabet and ranking functions, where the rank func-

tion maps a symbol in the alphabet to a single rank.

• A string is a finite sequence of symbols from the given alphabet.

• A language is the set of all strings belonging to an alphabet, including the empty string.

• A terminal symbol is a symbol from which sentences are formed and it occurs literally

in a sentence, i.e. terminal symbols are elements of the alphabet.

• A nonterminal symbol is a variable representing a sequence of symbols and it can

replace a string of terminal symbols or a string existing of a combination of terminal

and nonterminal symbols.

Next to strings, the concept of tree is used throughout the book. The trees considered here

are finite (finite number of nodes and branches), directed (top-down), rooted (there is one

19

20 Code Generation with Templates

node, the root, with no branches entering it), ordered (the children of a node are ordered left

to right) and labeled (the nodes are labeled with symbols from a given alphabet) [Engelfriet

(1974)]. The following terminology is be used:

• A leaf is a node with rank 0.

• The top of a tree is its root.

• A path through a tree is a sequence of nodes connected by branches (“leading down-

wards”).

• A subtree of a tree is a tree determined by a node together with all (the subtrees of) its

children.

The following list presents the naming convention and basic definitions used throughout

the book.

• i, j and r are used for integer variables.

• Σ is used to denote an alphabet. For example, the binary alphabet Σ = {0,1}, and the

set of all lower-case letters Σ = {a,b, . . . ,z}.
• Σ ∗ denotes all strings over an alphabet Σ .

• σ and c for an alphabet symbol.

• N for nonterminal alphabets.

• n for a nonterminal symbol of N.

• y for sequences of alphabet symbols combined with nonterminal symbols (i.e. strings,

elements of (N∪Σ)∗).
• z for an alphabet symbol or a nonterminal symbol (z ∈ (N∪Σ)).

• ε is used for the empty string or null value.

• L for languages. A language contains all sentences defined by Σ ∗.
• s for a sentence of a language L defined by Σ ∗.
• r denotes the rank of a symbol and r ∈ N0. It is defined by the ranking function rσ =

rank(σ) where σ ∈ Σ . Each symbol in a ranked alphabet (see Definition 2.1.1) has a

unique rank.

• Σr for the set of symbols of rank r.

• Tr(Σ) denotes the set of trees over a ranked alphabet Σ , i.e. Σ including a set of ranking

functions over Σ .

• t for a tree (see Definition 2.1.2).

• a for an alphabet symbol with rank 0 (a ∈ Σ0).

• f for an alphabet symbol with rank greater than 0 (f ∈ Σr,where r > 0).

Preliminaries 21

• X is a set of symbols called variables, where it is assumed that the sets X and Σ0 are

disjoint.

• x is a variable x ∈ X and is not used for integer values.

• G for grammars.

Definition 2.1.1 (Ranked alphabet). An alphabet Σ is said to be ranked if for each non-

negative integer r a subset Σr of Σ is specified, such that Σr is nonempty for a finite number

of r’s only, and such that Σ =
⋃

r�0
Σr. If σ ∈ Σr, then σ has rank r.

Example 2.1.1 (Ranked alphabet). The alphabet Σ = {a,b,+,−,∗} is converted to a

ranked alphabet by specifying Σ0 = {a,b}, Σ1 = {−} and Σ2 = {+,∗}.

Definition 2.1.2 (Tree). Given a ranked alphabet Σ , the set of trees over Σ , denoted by

Tr(Σ) is the language over the alphabet Σ ∪{[,]}, where Σ ∩{[,]}= /0, defined inductively

as follows.

(1) If σ ∈ Σ0, then σ ∈ Tr(Σ).

(2) For r � 1, if σ ∈ Σr and t1, . . . , tr ∈ Tr(Σ), then σ [t1 . . . tr] ∈ Tr(Σ).

Example 2.1.2 (Tree). Consider the ranked alphabet of Example 2.1.1. Then +[∗[a− [b]]a]

is a tree of this alphabet. This tree can be visualized as:

+[∗[a− [b]]a] =

+

∗

a −

b

a

Which on its turn represents the concrete expression (a∗ (−b))+a.

Definition 2.1.3 (Linear tree). A tree may contain variables, i.e. placeholders for subtrees.

A tree t ∈ Tr(Σ ∪X) is linear when each variable is at most used once in t.

Definition 2.1.4 (Substitution). A substitution (respectively a ground substitution) m is

a mapping from X into Tr(Σ ∪X) (respectively into Tr(Σ)) where there are only finitely

many variables not mapped to themselves. The domain of a substitution m is the subset of

22 Code Generation with Templates

variables x ∈ X such that m(x) �= x. The substitution {x1 ← t1, . . . ,xr ← tr} maps xi ∈ X on

ti ∈ Tr(Σ ∪X), for every index 1≤ i≤ r. A substitution is ground when all terms t1, . . . , tr
are ground terms, that is, when the terms do not contain variables.

Substitutions can be extended to Tr(Σ ∪X) in such a way that:

∀ f ∈ Σr,∀t1, . . . , tr ∈ Tr(Σ ∪X) m(f (t1, . . . , tr)) = f (m(t1), . . . ,m(tr)).

Example 2.1.3 (Substitution). Let Σ = { f (, ,),g(,),a,b} and X = {x1,x2}. Consider

the term t = f (x1,x1,x2). Consider the ground substitution m = {x1 ← a,x2 ← g(b,b)}
and the non-ground substitution m′ = {x1 ← x2,x2 ← b}. Then m(t) = t{x1 ← a,x2 ←
g(b,b)}= f (a,a,g(b,b)) and m′(t) = t{x1 ← x2,x2 ← b}= f (x2,x2,b).

Definition 2.1.5 (Tree homomorphism). Let Σ and Σ ′ be two, not necessarily disjoint,

ranked alphabets. For each r > 0 such that Σ contains a symbol of rank r, a set of variables

Xr = {x1, . . . ,xr} disjoint from Σ and Σ ′ is defined.

Let hΣ be a mapping which, with f ∈ Σ of rank r, associates a term t f ∈ Tr(Σ ′,Xr). The

tree homomorphism h : Tr(Σ)→ Tr(Σ ′) is determined by hΣ as follows:

• h(a) = ta ∈ Tr(Σ ′) for each a ∈ Σ of rank 0,

• h(f (t1, . . . , tn)) = t f {x1 ← h(t1), . . . ,xr ← h(tr)}
where t f {x1 ← h(t1), . . . ,xr ← h(tr)} is the result of applying the substitution {x1 ←
h(t1), . . . ,xr ← h(tr)} to the term t f .

hΣ is called a linear tree homomorphism when no t f contains two occurrences of the same

xr. Thus a linear tree homomorphism cannot copy trees.

Example 2.1.4 (Tree homomorphism). Let Σ = {g(, ,),a,b} and Σ ′ = { f (,),a,b}.
Consider the tree homomorphism h determined by hΣ defined by: hΣ (g) =

f (x1, f (x2,x3)),hΣ (a) = a,hΣ (b) = b. For instance: If t = g(a,g(b,b,b),a), then h(t) =

f (a, f (f (b, f (b,b)),a)).

2.2 Context-free Grammars

This book will focus on the generation of sentences of languages aimed to express programs

executed or interpreted by a computer. The rules for constructing valid sentences of these

languages can be specified by context-free grammars. The syntax1 of a language is its valid

1The syntax rules do not specify the meaning of a sentence; as a result a syntactical correct sentence can be

nonsense.

Preliminaries 23

set of sentences. Compilers or interpreters for most programming languages are based on

LL or LR parsers. LL or LR parsers can handle a subset of the context-free grammars,

which implies that these programming languages are context-free languages. A context-

free language L (G) is specified by a context-free grammar G. A sentence belonging to the

set of sentences specified by a context-free grammar is called a well-formed sentence. The

context-free grammar is defined as follows [Hartmanis (1967)]:

Definition 2.2.1 (Context-free grammar). A context-free grammar (CFG) is a four-tuple

〈Σ ,N,S,Prods〉 where

Σ is a finite set of terminal symbols, i.e. the alphabet.

N is a finite set of nonterminal symbols and N∩Σ = /0.

S is the start symbol, or axiom, and S ∈ N.

Prods is a finite set of production rules of the form n → y where n ∈ N and y ∈
(N∪Σ)∗.

Each context-free grammar Gcfg can be transformed into a Chomsky normal form without

changing the language generated by that grammar [Hotz (1980)]. A context-free grammar

of the Chomsky normal form only contains rules of the forms:

(1) n→ ε , where n ∈ N and A is the start symbol;

(2) n→ s, where n ∈ N and s ∈ Σ ∗;
(3) n→ n1n2, where n, n1, n2 ∈ N.

Example 2.2.1 shows a context-free grammar definition for a language based on boolean

algebra.

Example 2.2.1 (Context-free grammar). Let Gbool be a context-free grammar with, Σ =

{ ,\n, ˜,&, |, (,), true, false}, nonterminals N = {E, T, F, L, C}, start symbol S = E and rules

Prods =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E→ L T, F→ “˜” L F, L→ C L,

E→ E “|” L T, F→ “(” L E “)” L, L→ ε,
T→ F, F→ “true” L, C→ “ ”,

T→ T “&” L F, F→ “false” L, C→ “\n”

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The layout syntax is defined by the production rules for the nonterminal L. We assume that

this layout nonterminal is inserted after every terminal symbol in the grammar and before

the start nonterminal, in the case of the first production rule after nonterminal E [Johnstone

et al. (2011)].

24 Code Generation with Templates

A context-free grammar defines a set of sentences, i.e. the language L (G), where for each

s ∈ Σ a derivation exists S ∗
==⇒

G
s. If a sentence belongs to L (G), a parse tree can be

constructed using the grammar. This tree is derived by applying the production rules of the

grammar to construct the sentence and it is called the parse tree. Example 2.2.2 shows a

parse tree derived from a sentence of L (Gbool).

Example 2.2.2 (Parse tree). Let s be ~true & false | true, the parse tree of s using

the grammar G is:

dG(s) =

E

E

L

ε

T

T

F

˜ L

ε

F

true L

C L

ε

& L

C L

ε

F

false L

C L

ε

| L

C L

ε

T

F

true L

ε

A parse tree represents the hierarchical structure of the sentence expressed by the produc-

tion rules of its grammar. Normally such parse trees are automatically constructed from a

given sentence when a parser is used based on the grammar. A parser can, for instance, use

algorithms like LL [Aho et al. (1989)] and LR [Knuth (1965)].

The parse tree contains all necessary information to restore the original sentence. Consider

the parse tree of Example 2.2.2, and read the leaves from left to right, the original sentence

is visible. The yield function reconstructs the original string of a parse tree. It traverses

a parse tree in order to compute the original sentence from it by concatenating the leaves

(taking the leaf symbols as letters) from left to right.

Definition 2.2.2 (Yield). The yield function is defined by the following two rules:

• yield(a) = a if a ∈ Σ0;

• yield(f (t1, . . . , tr))= yield(t1)· . . . ·yield(tr) if f ∈Σr and ti ∈Tr(Σ∪N), where · denotes

the string concatenation.

Preliminaries 25

2.3 Regular Tree Grammars

A regular tree language is a set of trees generated by a regular tree grammar. The definition

of regular tree grammars is:

Definition 2.3.1 (Regular tree grammar). A regular tree grammar (RTG) is a four-tuple

〈Σ ,N,S,Prods〉, where:

Σ is a finite set of terminal symbols with rank r ≥ 0.

N is a finite set of nonterminal symbols with rank r = 0 and N∩Σ = /0.

S is a start symbol and S ∈ N.

Prods is a finite set of production rules of the form n → t, where n ∈ N and t ∈
Tr(Σ ∪N).

Example 2.3.1 shows a regular tree grammar (taken from [Cleophas (2008)]).

Example 2.3.1 (Regular tree grammar). Let G be the regular tree grammar with Σ =

{a(,),b(),c}, nonterminals N = {E,W}, start symbol E, and rules

Prods = {
E→W,

W→ b(W),

W→ b(a(c,c))

}
The language of this grammar is

L (Grtg) = {b(a(c,c)),b(b(a(c,c))),b(b(b(a(c,c)))), . . .}.

The parse steps of the term b(b(a(c,c))) are E ⇒W ⇒ b(W)⇒ b(b(a(c,c))), where⇒ is

a derivation step.

Regular tree languages have a number of properties [Cleophas (2008)], the one being im-

portant for this book is recognizability of regular tree languages. Recognizable tree lan-

guages are the languages recognized by a finite tree automaton. Regular tree languages are

recognizable by (non)-deterministic bottom up finite tree automata and non-deterministic

top-down tree automata [Comon et al. (2008)]. The set of languages recognizable by deter-

ministic top-down tree automata is limited to the class of path-closed tree languages [Virágh

(1981)], a subset of regular tree languages (see Section 3.3).

26 Code Generation with Templates

2.4 Relations between CFL and RTL

A number of relations can be defined between context-free languages and regular tree lan-

guages [Cleophas (2008)]. Amongst others, a tree can be represented as a term. These

terms can be parsed using a context-free grammar, since printing a (sub)tree to text does

not depend on the sibling nodes of that (sub)tree. This context-free grammar of the used

term representation is given in Figure 2.4. For example the tree of Example 2.2.1 can be

represented by the term

E(

E(L(ε),

T (T (F(˜,L(ε),F(true,L(C(),L(ε))))),

&,L(C(),L(ε)),F(false,L(C(),L(ε))))),

|,L(C(),L(ε)),T (F(true,L(ε)))

)

The goal of this book is the formal definition of code generators based on templates. For

this purpose, the relation between regular tree languages and the parse trees of context-

free languages is relevant. The parse function takes a string and a grammar and returns

the parse tree of that string when the string can be produced by that grammar. The way

parse algorithms create a parse tree shows regularity, which suggests that the parse trees

are indeed regular. A proof that the set of parse trees of a context-free grammar is a regular

tree language can be found in [Comon et al. (2008)]. The following definition shows the

derivation of the regular tree grammar L (Gpt) defining the set of parse trees of a context-

free grammar L (Gc f g).

Definition 2.4.1 (Regular tree grammar for parse trees). Let Gc f g = 〈Σ ,N,S,Prods〉 be

a context-free grammar. The regular tree grammar Gpt = 〈Σ ′,N′,S′,Prods′〉 defining the

parse trees of Gc f g is derived by the following rules:

• The start symbol of both grammars is equal: S = S′,
• The set of nonterminals of both grammars is equal: N = N′,
• The alphabet of Gpt is derived by the following rule: Σ ′ = Σ ∪ {ε} ∪ {(n,r) | n ∈

N, ∃n→ y ∈ Prods with r equal to the number of symbols of y}. In parse trees, a sym-

bol can normally have a different number of children, when alternative production rules

have a different pattern length. In tree languages a symbol must have a fixed rank, so

Preliminaries 27

the symbol (n,r) is introduced for each n ∈ N such that there is a rule n→ y where y

has r symbols.

• The set of productions Prods′ of Gpt is derived by the following rules:

if n→ ε ∈ Prods then n→ (n,0)(ε) ∈ Prods′.
if (n→ n1 . . .nr) ∈ Prods then n→ (n,r)(n1, . . . ,nr) ∈ Prods′.

Example 2.4.1 (Regular tree grammar for parse trees). Since normally in parse trees

a symbol can have different number of children, an updated version of the parse tree dis-

played in Example 2.2.2 is given: dG(s) =

(E, 4)

(E, 2)

(L, 1)

ε

(T, 4)

(T, 1)

(F, 3)

˜ (L, 1)

ε

(F, 2)

true (L, 2)

(C, 1) (L, 1)

ε

& (L, 2)

(C, 1) (L, 1)

ε

(F, 2)

false (L, 2)

(C, 1) (L, 1)

ε

| (L, 2)

(C, 1) (L, 1)

ε

(T, 1)

(F, 2)

true (L, 1)

ε

Using the definition given above, the Gpt defining the language of parse trees of Gbool

can be derived. The result of the derivation is a regular tree grammar Gpt with, Σ =

{ ,\n, ˜,&, |, (,), true, false}, nonterminals N = {(E,4), (E,2), (T,4), (T,1), (F,5), (F,3),
(F,2), (L,2), (L,1), (C,1)}, start symbol S = E and rules

Prods =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(E,2)→ L T, (F,3)→ “˜” L F, (L,2)→ C L,

(E,4)→ E “|” L T, (F,5)→ “(” L E “)” L, (L,1)→ ε,
(T,1)→ F, (F,2)→ “true” L, (C,1)→ “ ”,

(T,4)→ T “&” L F, (F,2)→ “false” L, (C,1)→ “\n”

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

The following statements hold for context-free grammars and regular tree grammars:

• L (Gpt) = parse(L (Gc f g))

• L (Gc f g) = yield(L (Gpt))

Hence, also

28 Code Generation with Templates

• L (Gc f g) = yield(parse(L (Gc f g)))

• L (Gpt) = parse(yield(L (Gpt)))

Sentences can be mapped to a parse tree and back to the original sentence. This is a result

of the fact that the parse function does not throw away information, but it builds a tree with

the original sentence distributed over its leaves.

2.5 Abstract Syntax Trees

The set of abstract syntax trees of a language is called the abstract syntax and this abstract

syntax is defined by a regular tree grammar. These abstract syntax trees are considered as

the abstract representation of well-formed sentences [Donzeau-Gouge et al. (1984)]. The

abstract syntax representation of a sentence is unique, while the textual representation is

usually cluttered with optional and semantically irrelevant details such as blanks and line

feeds. These optional and semantically irrelevant details are called syntactic sugar.

The abstract syntax tree is a representation of a sentence without superfluous nodes, such

as nodes corresponding to keywords and Chain rules [Koorn (1994)]. A chain rule is a

grammar rule of the form n1 → n2, where both n1 and n2 are nonterminals.

Example 2.5.1 (Abstract syntax tree). An example of an abstract syntax tree of the sen-

tence s given in Example 2.2.2 is:

AST(s) =

Or

And

Not

True

False

True

It can also be represented as a term

AST(s) = Or(And(Not(True),False),True).

Preliminaries 29

b e g i n d e c l a r e i n p u t : n a t u r a l ,

2 o u t p u t : n a t u r a l ,

r e p n r : n a t u r a l ,

4 r e p : n a t u r a l ;

i n p u t := 1 4 ;

6 o u t p u t := 1 ;

w h i l e i n p u t − 1 do

8 r e p := o u t p u t ;

r e p n r := i n p u t ;

10 w h i l e r e p n r − 1 do

o u t p u t := o u t p u t + r e p ;

12 r e p n r := r e p n r − 1

od ;

14 i n p u t := i n p u t − 1

od

16 end

Fig. 2.1 A PICO program.

2.6 Used Languages and Formalisms

This section discusses the syntax of the formalisms used throughout the book. The lan-

guage PICO is also presented here. PICO is used for illustrating purposes.

2.6.1 The PICO Language

The goal of PICO [Bergstra et al. (1989)] is to have a simple language, large enough to

illustrate the concepts of parsing, type checking and evaluation. Informal, the PICO lan-

guage is the language of while-programs. The main features of PICO are:

• Two types: natural numbers and strings.

• Variables must be declared in a separate section.

• Expressions can be made of constants, variables, addition, subtraction and concatena-

tion.

• Statements: assignment, if-then-else and while-do.

A PICO program consists of declarations followed by statements. Variables must be de-

clared before they can be used in the program. Statements and expressions can be used in

the body of the program. An example PICO program that computes the factorial function

is given in Figure 2.12.

2Example borrowed from http://www.meta-environment.org/doc/books/extraction-transformation/

language-definitions/language-definitions.html (accessed on December 18, 2011)

30 Code Generation with Templates

2.6.2 Syntax Definition Formalism

Template grammars, as presented in Chapter 5, can easily become ambiguous and dealing

with ambiguities is a primary requirement for parsing templates. The Scannerless General-

ized LR (SGLR) algorithm, and its implementation the SGLR parser [Visser (1997)], can

deal with these ambiguities. Grammars for the SGLR parser are defined using the Syntax

Definition Formalism (SDF) [Heering et al. (1989)], which is the main reason for using

SDF in this book.

In contrast with other parser algorithms, such as LL or LALR, and their used BNF-

like [Backus et al. (1960)] grammar formalisms, SDF supports the complete class of

context-free grammars. This enables the support for modular grammar definitions. Pieces

of grammar can be embedded in modules and imported by other modules. Modules may

have formal symbol parameters, which can be bound by actual symbols using imports.

The syntax of module parameters is: module <ModuleName> [<Symbol>+]. When

the module is imported, all occurences of the formal parameters will be substituted by the

actual parameters The modularity enables combining and reusing of grammars.

The core of an SDF module consists of the elements of the mathematically four-tuple defi-

nition of a context-free grammar as defined in Section 2.2. In SDF nonterminals are called

sorts and declared after the similar keyword sorts. Symbols is the global name for literals,

sorts and character classes and form the elementary building blocks of SDF syntax rules.

Start symbols are declared after the keyword context-free start-symbols. Produc-

tion rules are declared in sections context-free syntax and lexical syntax. The

productions rules contain a syntactical pattern at the left-hand side and a resulting sort at

the right-hand side. This left-hand side pattern is based on a combination of symbols, i.e.

terminals in combination with nonterminals. Symbols can be declared as optional via a

postfix question mark. In the context-free syntax section a LAYOUT sort is automati-

cally injected between every symbol in the left-hand side of a production rule. The LAYOUT

sort is an SDF/SGLR embedded sort for white spaces and line feeds. This mechanism dif-

fers from the earlier presented approach, where the layout nonterminal should be present

explicitly in the production rules. To illustrate SDF, the SDF module shown in Figure 2.2

defines the PICO language.

SDF also supports concise declaration of associative lists. A list is declared by its ele-

ments and a postfix operator * or +, with the respectively meaning of at least zero times

or at least one time. Lists may contain a separator, which are declared via the pattern

{Symbol Literal}*, where Symbol defines the syntax of the elements and Literal de-

Preliminaries 31

module l a n g u a g e s / p i c o / s y n t a x / P i co

2

i m p o r t s b a s i c / NatCon

4 i m p o r t s b a s i c / S t rCon

i m p o r t s b a s i c / Whi t e space

6

h i d d e n s

8 c o n t e x t−f r e e s t a r t −symbols

PROGRAM

10

e x p o r t s

12 s o r t s PROGRAM DECLS ID−TYPE STATEMENT EXP TYPE PICO−ID

14 c o n t e x t−f r e e s y n t a x

” b e g i n ” DECLS {STATEMENT” ; ” }∗ ” end ”

16 −> PROGRAM { cons (” program ”)}
” d e c l a r e ” {ID−TYPE ” , ” }∗ ” ; ”

18 −> DECLS { cons (” d e c l s ”)}
PICO−ID ” : ” TYPE −> ID−TYPE { cons (” d e c l ”)}

20

PICO−ID ” : = ” EXP −> STATEMENT { cons (” a s s i g n m e n t ”)}
22 ” i f ” EXP ” t h e n ” {STATEMENT ” ; ” }∗

” e l s e ” {STATEMENT ” ; ” }∗ ” f i ”

24 −> STATEMENT { cons (” i f ”)}
” w h i l e ” EXP ” do ” {STATEMENT ” ; ” }∗ ” od ”

26 −> STATEMENT { cons (” w h i l e ”)}

28 PICO−ID −> EXP { cons (” i d ”)}
NatCon −> EXP { cons (” n a t c o n ”)}

30 StrCon −> EXP { cons (” s t r c o n ”)}
EXP ”+” EXP −> EXP { cons (” add ”)}

32 EXP ”−” EXP −> EXP { cons (” sub ”)}
EXP ” | | ” EXP −> EXP { cons (” c o n c a t ”)}

34 ” (” EXP ”) ” −> EXP { cons (” b r a c k e t ”)}

36 ” n a t u r a l ” −> TYPE { cons (” n a t u r a l ”)}
” s t r i n g ” −> TYPE { cons (” s t r i n g ”)}

38

l e x i c a l s y n t a x

40 [a−z] [a−z0−9]∗ −> PICO−ID { cons (” p i c o i d ”)}

42 l e x i c a l r e s t r i c t i o n s

PICO−ID −/− [a−z0−9]

Fig. 2.2 The PICO grammar in SDF.

fines the separator syntax, for example: {STATEMENT ";" }*. This kind of lists are called

separated lists.

The production rules can be annotated with a list of properties between curling brackets at

the right-hand side of the rule. The parser includes these annotations in the parse tree at

32 Code Generation with Templates

the node produced by the production rule. Tools processing the parse tree can use these

annotations.

For example, an abstract syntax for an SDF grammar can be specified using annotations.

The label of the abstract syntax representation of a production rule is assigned by a so-

called constructor value. This constructor value is used during desugaring to instantiate

the nodes of the abstract syntax tree. The constructor is declared via a cons value. SDF

requires that a constructor is unique for a given sort, and in that way suffices the first

uniqueness requirement of the desugar function of Definition 3.1.1. It does not require that

a constructor is only used for a fixed rank and thus SDF does not satisfy the requirements

to generate a legal regular tree language. Production rules can also annotated with the

keyword reject. The reject annotation specifies that strings specified by the rule is

rejected for that nonterminal. Rejects should only used for nonterminals defining lexical

syntax. The rejects are used to specify the lexical disambiguation rule “prefer keywords”.

Besides these core features of SDF, it supports modularization of grammar definitions. Ev-

ery grammar definition file is declared as a module with a name, which can be imported by

other modules. Modules are imported via the imports keyword followed by the name(s)

of imported modules. Sections of a grammar module can be declared hidden or visible via

the keywords hiddens and exports to prevent unexpected collisions between grammar

modules result in undesired ambiguities. Exported sections are visible in the entire gram-

mar, while hidden sections are only visible in the local grammar module. Although the

namespace of a nonterminal is global, adding a new alternative to a nonterminal, which

is defined in an imported module, does not change the recognized language of imported

module. This is because per module an LR parse table is generated, based on the mod-

ule dependency graph. SDF also provides syntax to define priorities and associativity to

express disambiguation rules in a grammar.

Considering again the SDF module shown in Figure 2.2. The nonterminals and production

rules are declared in the exported section. The start symbol is PROGRAM, which is the root

sort for a PICO program. In the PICO module the start symbol is declared hidden to prevent

automatic propagation to modules importing this grammar. The annotation feature of SDF

is also used in the PICO module to specify the abstract syntax tree. The definition for the

sorts NatCon and StrCon, and a module defining white space (spaces, tabs, and new lines)

are imported.

The grammar of Figure 2.2 is used to parse PICO programs, like Figure 2.1. The abstract

syntax tree, result of parsing the program and desugaring the parse tree is shown in Fig-

Preliminaries 33

1 program (

d e c l s ([

3 d e c l (” i n p u t ” , n a t u r a l) ,

d e c l (” o u t p u t ” , n a t u r a l) ,

5 d e c l (” r e p n r ” , n a t u r a l) ,

d e c l (” r e p ” , n a t u r a l)

7]) ,

[

9 a s s i g n m e n t (” i n p u t ” , n a t c o n (14)) ,

a s s i g n m e n t (” o u t p u t ” , n a t c o n (1)) ,

11 w h i l e (sub (i d (” i n p u t ”) , n a t c o n (1)) , [

a s s i g n m e n t (” r e p ” , i d (” o u t p u t ”)) ,

13 a s s i g n m e n t (” r e p n r ” , i d (” i n p u t ”)) ,

w h i l e (sub (i d (” r e p n r ”) , n a t c o n (1)) , [

15 a s s i g n m e n t (” o u t p u t ” , add (i d (” o u t p u t ”) ,

i d (” r e p ”))) ,

17 a s s i g n m e n t (” r e p n r ” , sub (i d (” r e p n r ”) ,

n a t c o n (1)))

19]) ,

a s s i g n m e n t (” i n p u t ” , sub (i d (” i n p u t ”) ,

21 n a t c o n (1)))

])

23]

)

Fig. 2.3 Abstract syntax tree of PICO program of Figure 2.1.

ure 2.3. The tree is displayed in the ATerm format, to be discussed in Section 2.6.3.

2.6.3 ATerms

The syntax for terms used in this book is based on a subset of the ATerms syntax [van den

Brand et al. (2000)]. ATerms have support for lists, which are not directly supported by

the presented regular tree grammars. Lists must be binary trees to stay fully compatible

with the regular tree grammars. The serialized term notation of the list is only a shorthand

notation for these binary trees, i.e. the list

["a", "b", "c"]

has the internal representation

["a", ["b", ["c" , []]]].

Since the lists of ATerms are internally stored as binary trees, where the left branch is the

element and right branch the list or empty list, the use of ATerms meets this requirement.

The subset of the ATerm language is defined by the SDF definition of Figure 2.4.

34 Code Generation with Templates

module ATerms

2

i m p o r t s St rCon

4 IdCon

6 e x p o r t s

s o r t s AFun ATerm

8

c o n t e x t−f r e e s y n t a x

10 StrCon −> AFun

IdCon −> AFun

12 AFun −> ATerm

AFun ” (” {ATerm ” ,”}+ ”) ” −> ATerm

14 ” [” {ATerm ” ,”}∗ ”] ” −> ATerm

Fig. 2.4 Subset of ATerm syntax used in this book.

The IdCon and StrCon are respectively defined as the following character classes

[A-Za-z][A-Za-z\-]*3 and ["]~[\0-\31\n\t\"\\]*["].

3The original character class for IdCon allows numeric symbols in the tail. These characters are not allowed to

prevent ambiguities in the tree path queries presented later on.

	2 Preliminaries
	2.1 Basic Definitions and Notations
	2.2 Context-free Grammars
	2.3 Regular Tree Grammars
	2.4 Relations between CFL and RTL
	2.5 Abstract Syntax Trees
	2.6 Used Languages and Formalisms
	2.6.1 The PICO Language
	2.6.2 Syntax Definition Formalism
	2.6.3 ATerms

