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Chapter 2
Magnetotellurics: Basic Theoretical
Concepts

2.1 Introduction

The magnetotelluric method or magnetotellurics (MT) is an electromagnetic
geophysical exploration technique that images the electrical properties (distribu-
tion) of the earth at subsurface depths. The energy for the magnetotelluric tech-
nique is from natural source of external origin. When this external energy, known
as the primary electromagnetic field, reaches the earth’s surface, part of it is
reflected back and remaining part penetrates into the earth. Earth acts as a good
conductor, thus electric currents (known as telluric currents) are induced in turn
produce a secondary magnetic field.

Magnetotellurics is based on the simultaneous measurement of total electro-
magnetic field, i.e. time variation of both magnetic field B(t) and induced electric
field E(t). The electrical properties (e.g. electrical conductivity) of the underlying
material can be determined from the relationship between the components of the
measured electric (E) and magnetic field (B) variations, or transfer functions: The
horizontal electric (Ex and Ey) and horizontal (Bx and By) and vertical (Bz)
magnetic field components. According to the property of electromagnetic waves in
the conductors, the penetration of electromagnetic wave depends on the oscillation
frequency. The frequency of the electromagnetic fields development of the theory
determines the depth of penetration.

The basis for MT method is found by Tikhonov and Cagniard [1, 2]. In half a
century since its inception, important developments in formulation, instrumenta-
tion and interpretation techniques have yielded MT as a competitive geophysical
method, suitable to image broad range of geological targets.
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2.2 Source Field of MT Signals

The MT signals are generated from two sources:

1. At the lower frequencies, generally less than 1 Hz, or more than 1 cycle per
second, the source of the signal is originated from the interaction of the solar
wind with the earth’s magnetic field. As solar wind emits streams of ions, it
travels into space and disturbs the earth’s ambient magnetic field and produces
low-frequency electromagnetic energy that penetrates the earth (Fig. 2.1).

2. The high frequency signal is greater than 1 Hz or less than 1 cycle per second is
created by world-wide thunderstorm activity, usually near the equator. The energy
created by these storms travels around the earth in a wave guide between the
earth’s surface and the ionosphere, with part of the energy penetrates into the earth.

Both of these signal sources create time-varying electromagnetic waves.
Although the variations of electric and magnetic fields are small, they are mea-

surable. Since these signals vary in strength over hours, days, weeks and even over the
sunspot cycle (which is about 11 years and creates an increase in the number of solar
storms). Geophysicists measuring MT for greater depths have to measure for long
hours at each station in order to get good signal to ensure high-quality data. This is
especially true when measurements are required for low frequencies (about 0.001 Hz,
or 1 cycle per 1,000 s). At these low frequencies, we need to record for 16 min
(1,000 s) to get one sample of data! That means we really need to record for several
hours just to get many samples (25–50) for meaningful statistical average of the data.

2.3 Principles of MT

2.3.1 Maxwell’s Equations

The electromagnetic fields within a material of a non-accelerated reference frame
can be described by Maxwell’s equations. These can be expressed in differential
form with the International system of Units (SI) as:

Fig. 2.1 Distortion of the magnetosphere due to interaction of the solar wind
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r� E ¼ �ðoBÞ
ðotÞ Faraday’s law ð2:1Þ

r � H ¼ Jþ ðoDÞ
ðotÞ Ampere’s law ð2:2Þ

r � D ¼ qv Gauss’s law ð2:3Þ

r � B ¼ 0 Gauss’s lawfor magnetism ð2:4Þ

where E (V/m) and H (A/m) are the electric and magnetic fields, B is the magnetic
induction. D (C/m2) is the displacement current and q (C/m3) is the electric charge
density owing to free charges. J and qD/qt (A/m2) are the current density and the
varying displacement current respectively.

Maxwell’s equations can also be related through their constitutive relationship:

J ¼ rE; ð2:5Þ

D ¼ eE; ð2:6Þ

B ¼ lH; ð2:7Þ

r, e and l describe intrinsic properties of the materials through which the elec-
tromagnetic fields propagate. r (S/m) is the electrical conductivity (its reciprocal
being the electrical resistivity q = 1/r (X-m)), e (F/m) is the dielectric permittivity
and l (H/m) is the magnetic permeability. These magnitudes are scalar quantities
in isotropic media. In anisotropic materials they must be expressed in a tensorial.
In this work, it will be assumed that the properties of the materials are isotropic.

The electrical conductivity of the Earth materials varies and has a wide spec-
trum up to several orders of magnitude and is sensitive to small changes in minor
constituents of the rock. Since conductivity of most rock materials is very low
(10-5 S/m), the conductivity of the rock unit depends in general on the inter-
connectivity of minor constituents (by way of fluids or partial melting) or the
presence of highly conducting materials such as graphite.

In a vacuum, the dielectric permittivity is e = e0 = 8.85 9 10-12 F/m. Within
the Earth, this value ranges from e0 (vacuum and air) to 80 e0 (water). It can also
vary depending on the frequency of the electromagnetic fields [3].

For most of the Earth materials and for the air, the magnetic permeability ‘‘l’’
can be approximated to its value in a vacuum, l0 = 4p 9 10-7 H/m. However, in
highly magnetized materials this value can be greater, for example, due to an
increase in the magnetic susceptibility below the Curie point temperature (Hop-
kinson effect, e.g. [4]).

Across a discontinuity between two materials, named 1 and 2, the boundary
conditions to be applied to the electromagnetic fields and currents described by
Maxwell’s equations are:

n� ðE2 � E1Þ ¼ 0; ð2:8Þ

2.3 Principles of MT 15



n� ðH2 � H1Þ ¼ Js; ð2:9Þ

n� ðD2 � D1Þ ¼ qs; ð2:10Þ

n� ðB2 � B1Þ ¼ 0; ð2:11Þ

n� ðJ2 � J1Þ ¼ 0; ð2:12Þ

where n is the unit vector normal to the discontinuity boundary, Js (A/m2) is the
current density along the boundary surface and qs (C/m2) is the surface charge
density. In the absence of surface currents, and considering constant values of e
and l, the tangential components of E and the normal components of J are con-
tinuous, where as the both tangential and normal components of B are continuous
across the discontinuity.

Due to the nature of the electromagnetic sources used in MT, the properties of
the Earth materials and the depth of investigations considered, two hypotheses are
applicable:

(a) Quasi-stationary approximation: Displacement currents (qD/qt) can be
neglected relative to conductivity currents (J) for the period range 10-5 to
105 s and for not extremely low conductivity values. Therefore, the propa-
gation of the electromagnetic fields through the Earth can be explained as a
diffusive process, which makes it possible to obtain responses that are volu-
metric averages of the measured Earth conductivities.

(b) Plane wave hypothesis: The primary electromagnetic field is a plane wave that
propagates vertically down towards the Earth surface (z direction) [5].

The searched solutions of the electromagnetic fields from Maxwell’s equation can
be expressed through a linear combination of harmonic wave:

E ¼ E0 � eiðwtþkrÞ ð2:13Þ

B ¼ B0 � eiðwtþkrÞ ð2:14Þ

where x (rad/s) is the angular frequency of the electromagnetic oscillations, t(s) is
the time; k(m-1) and r(m) are the wave and position vectors respectively. In both
expressions, the first term in the exponent corresponds to wave oscillations and the
second term represents wave propagation.

Using the harmonic expressions of the electromagnetic fields (Eqs. 2.13 and
2.14) and their constitutive relationships (Eqs. 2.5–2.7), Maxwell’s equations in
frequency domain for MT hypothesis (a quasi-stationary approximation) are
described as follows:

r� E = � ixB ð2:15Þ

r � H ¼ l0rE ð2:16Þ
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r � E ¼ qeð Þ
2 ð2:17Þ

r � B ¼ 0 ð2:18Þ

where the value of the magnetic permeability (l) is considered equal to the value
in a vaccum (l0).

In the absence of charges, the right term of Eq. 2.17 vanishes, and the electric
and magnetic field solutions depend solely upon angular frequency (x) and con-
ductivity (r).

Finally using the hypothesis (b) (plane wave) and applying the boundary
conditions (Eqs. 2.8–2.12) across discontinuities, the solutions of Maxwell’s
equations can be obtained.

In the case of an homogeneous structure, the components of the electric and
magnetic fields take the form:

Ak ¼ Ak0: eiwt: e�iaz: e�az ð2:19Þ

with a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lrx=2
p

ðm�1Þ The first factor of the equation is the wave amplitude, the
second and third factor (imaginary exponentials) is sinusoidal time and depth vari-
ations respectively and the fourth is exponential decay. This decay can be quantified
by the skin depth, d, and the value of z for which this term decays to 1/e [6]:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2
l0

rx

s

� 500
ffiffiffiffiffiffi

qT
p

ðmÞ: ð2:20Þ

The skin depth permits the characterization of the investigation depth, which, as
can be seen, increases according to the square root of the product of medium
resistivity and period. Although it has been defined for homogeneous media, its
use can be extended to heterogeneous cases as well (e.g. geological structures).
The above text has been taken from the Telford et al. [7].

2.3.2 Assumptions of Magnetotellurics

The following are the considerable assumptions applicable in electromagnetic
induction in the earth (e.g., [2, 8]):

• The Earth does not generate electromagnetic (EM) energy, but only dissipates or
absorbs it.

• Maxwell’s electromagnetic (EM) equations are obeyed.
• All electromagnetic fields are treated as conservative and analytic away from

their sources.
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• The passive electromagnetic source fields, being generated by large-scale ion-
ospheric current systems that are relatively far away from the Earth surface, may
be treated as uniform, plane-polarized electromagnetic waves impinging on the
Earth at near vertical incidence.

• Accumulation of free charges can’t be expected to be sustained within a layered
Earth. However, in multi-dimensional earth, charges can accumulate along
discontinuities. Earth behaves as an Ohmic conductor and obeying the equation:
J = rE, Where, J is total electric current density (in Am-2), r is the conduc-
tivity of the medium (in Sm-1), and E is the electric field (in Vm-1).

• The time varying displacement currents (arising from polarization effects) are
negligible compared with time varying conduction currents and promotes the
treatment of electromagnetic induction in the Earth purely as a diffusion process.

• The variations in the magnetic permeabilities and electrical permitivities of
rocks are assumed negligible.

2.3.3 Skin Depth

The diffusion factor describes the penetration depths of the fields, the ‘‘skin depth’’
(d (x) m) in a homogeneous earth is defined as:

dðxÞ ¼ p2=jk2j ¼ p2=xlr; ð2:21Þ

This represents the exponential decay of the EM-field amplitude with depth. At
depth d (x), the amplitude of the EM-field drops by 1/e with respect to its value at
the surface. The skin depth is proportional to the square root of T (T = 2p/x,
infers that the skin depth increases with the period T. For a 1-D stratified Earth of
N layers the penetration depth of the EM-fields measured at the surface (C1 (x)) is
solved iteratively, with a recursive formula described by the EM-response func-
tion Ci (x) [9]. The index i refer to the EM-response measured at the top of the
layer i [10]:

CiðxÞ ¼ ½1� ri expð�2kidiÞ� =ki½1þ ri expð�2kidiÞ� ð2:22Þ

where i ¼ N � 1; N � 2; ; . . .1 and ri ¼ 1� ½kiCi þ 1ðxÞ =� ½1þ kiCiþ 1ðxÞ�:di

is the thickness of the layer i and ki = Hixlri the diffusion factor in the layer (of
conductivity r i).

2.3.4 Uniform Half Space

In this case Earth is treated as a conducting half space with a plane surface. The
assumptions usually made about the source field [2] are that it is homogeneous,
infinite in dimension and is located effectively at infinity so that plane EM waves
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impinging on the Earth surface. Under these conditions, there are no horizontal
variations of the EM field, i.e. qE/qx = qH/qx = qE/qy = qH/qy = 0. Hence
Hz = 0 = Ez for the X component, Eq. 2.7 reduces to

o2Ex

oZ2 ¼ K2Ex ð2:23Þ

where K2 = ilxr. From Maxwell’s equation,

Hy ¼ ð�i=xlÞ oEx

oZ
ð2:24Þ

Since the fields originate from a source above the earth, all the field quantities
must remain finite. At Z = ?. Hence the solution of Eq. 2.23 is

Ex ¼ Q e�KZ ð2:25Þ

where Q is a constant.
As seen from the foregoing an electromagnetic wave propagating into the earth

(linear, homogeneous and isotropic) has its electric and magnetic field wave
vectors orthogonal to each other, and the ratio of electric and magnetic field
intensity (E/H) termed as the impedance (Z) is a characteristic measure of the EM
properties of the sub surface medium, and constitutes the basic MT response
function.

For a plane wave, we have

Z ¼ Ex
Hy
¼ ixl

k
ð2:26Þ

where Z is the characteristic impedance, Ex the electric field intensity (north) in
mv/km and Hy the magnetic field intensity (east) in c (10-5 Oe)

Z ¼ p ixl=rð Þ ð2:27Þ

From the above equation it may be deduced that in a homogeneous and isotropic
half-space, the magnetic field lags behind the electric field by p/4 rad.

The true resistivity of the half-space is

q ¼ 1
r
¼ jZj

2

lx

q ¼ T
2pl
jZj2 where T is the period: ð2:28Þ

with the EM system of units, [2] has obtained the following equation as

q ¼ 0:2 T
jExj2

jHyj2
ð2:28aÞ
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where
q = resistivity in X-m
E = the horizontal electric field in mv/km
H = the orthogonal horizontal magnetic field in gamma and
T = period in seconds

When the earth resistivity is non-uniform, the right hand sides of Eq. 2.28a
provide apparent resistivities (instead of true resistivity), qa, which are frequency
(period) dependent, as is the case with 1-D, 2-D, or 3-D situations.

In a homogeneous and isotropic earth, the true resistivity of the earth is related
to the characteristic impedance ‘‘Z’’ through the relation:

qa ¼ 0:2 T jZj2 ¼ 0:2 T
jEj2

jHj2
ð2:29Þ

Where Z ¼ E=H Note: Z ¼ E=H
Zxy ¼ Ex=Hy
Zyx ¼ Ey=Hx

where q is the resistivity in X-m and T is the period in sec.

And phase of Zxy; u ¼ tan�1
ðimag:½Ex

Hy�Þ
ðReal½Ex

Hy
�Þ ð2:30Þ

2.4 Dimensionality Models

The MT transfer functions, and particularly the relationship between their com-
ponents, are reduced to specific expressions depending on the spatial distribution
of the electrical conductivity being imaged. These spatial distributions, known as
geo-electric dimensionality, can be classified as 1-D, 2-D or 3-D. Other particular
expressions of the transfer functions can be obtained when data are affected by
galvanic distortion, a phenomenon caused by minor scale (local) inhomogeneities
near Earth’s surface.

This section presents a summary of the characteristics of the different types of
geo-electric dimensionality, regarding its geometry, the behavior of the electro-
magnetic fields through them and expressions of the related transfer functions.
Galvanic distortion is also explained along with the type of transfer functions
associated with this phenomenon.
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2.4.1 1-D Earth

In this case the conductivity distribution is depth dependent only (r = r (z) = 1/q
(z)) and Maxwell’s equations can be analytically solved by properly applying the
boundary conditions. The solutions are electromagnetic waves, with the electro-
magnetic field always orthogonal to the magnetic field, that travel perpendicular to
the surface of the Earth in a constant oscillation direction. They attenuate with
depending on their period and conductivity values. As a result, the MT transfer
functions are independent of the orientation of the measured axes and are a
function only of the frequency.

In the case of horizontally layered earth (1-D earth), the true resistivity 0q0 in
Eq. 2.29 becomes an apparent resistivity (qa), and is given by

qa ¼ 0:2T
jExj2

jHyj2
ð2:31Þ

because of the symmetry of the problem, estimates of characteristic impedance for
either a homogeneous or a layered earth do not depend on orientation of measuring
axes in the horizontal plane, so that the north and east electric field components are
related to the orthogonal magnetic field components through the following linear
equations:

Ex ¼ ZHy and Ey ¼ �ZHx ð2:32Þ

Thus in this case at any particular period, an electric field component is linearly
related to its orthogonal magnetic field component through a single valued com-
plex scalar transfer functions. Equation 2.31 was formulated for the first time by
Cagniard and is known as the Cagniard relation [2]. The conditions under which
Eq. 2.31 is valid are called the Cagniard conditions; viz., the incidence electro-
magnetic fields are plane waves at the earth’s surface and that the earth consists of
parallel layers.

With regard to the tipper, there is no net component of the vertical magnetic
field, Bz, due to the assumption that the incidence of the electromagnetic fields is
perpendicular to the Earth’s surface, and fact that in a 1-D models these fields do
not change direction with depth. Therefore, the two components of the tipper, Tx
and Ty are zero.

2.4.2 2-D Earth

In a two dimensional Earth the conductivity is constant along one horizontal
direction while changing both along the vertical and the other horizontal direction
along which the conductivity is constant is known as the geo-electric strike or
strike. Considering a right handed Cartesian coordinate system (X, Y, Z), in the
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2-D case, the conductivity (or it’s reciprocal, the resistivity) varies along two
directions- one horizontal direction say Y and the other along the vertical direction
(depth). Along the other horizontal direction (X-direction) the resistivity does not
change and this direction is called the strike direction. Unlike in the 1-D case,
analytical solutions for 2-D structures are cumbersome, owing to coupling between
the field components.

The two equations for E and H fields are,

r2H ¼ ixlrE ð2:33Þ

And

r2E ¼ ixlr2H �rr� ðr � HÞ ð2:34Þ

where ‘9’ denotes multiplication sign.
In the case of 2-D structures, a general 2-D field satisfying Eqs. 2.18 and 2.19

can be separated into two distinct modes, and these are generally referred to as E
and H polarizations. The two modes corresponding to E and H polarizations have
their E and H fields polarized parallel to the strike direction respectively. The
impedances corresponding to these polarizations are not only different from each
other, but also depend on the location of measurement sites.
For the E-polarization case

E ¼ Ex; H ¼ i
xl

Y
oE
oZ
� Z

oE
oY

� �

with
oHz
oY
� oHy

oZ
¼ rEx ð2:35Þ

For H polarization

H ¼ Hx; E ¼ 1
r

Y
oH
oZ
� Z

oH
oY

� �

with
oEx
oY
� oEy

oy
¼ ixlHx ð2:36Þ

where x, y and z are unit vectors along the coordinate axes.
In a more complicated structure, the coupling between electric and magnetic

fields is more complex. The electric fields are strongly distorted near a lateral
inhomogenity whereas magnetic fields may be relatively less distorted. The
electric field is then locally polarized at some angle other than 90� to the regional
magnetic field. At each point in the vicinity of the lateral discontinuity, this result
in the linear coupling of each of the electric field component and the relationship is
expressed in the form:

Ex ¼ aHx þ bHy ð2:37Þ
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where a and b are called coupling coefficients which depend upon position,
coordinate direction, period, geometry and the electric properties of the lateral
inhomogenity. In such case an impedance tensor [Z] can be defined as:

Z½ � ¼ Zxx Zxy

Zyx Zyy

� �

ð2:38Þ

where Zxx, Zxy, Zyx and Zyy are the impedance tensor elements. And we may write
for general case

E ¼ ½Z�½H� or

Ex ¼ ZxxHx þ ZxyHy and

Ey ¼ ZyxHx þ ZyyHy

9

>

=

>

;

ð2:39Þ

2.5 MT Response Functions

2.5.1 Impedance Tensor

The electrical impedance Z [mV/T] is the ratio between the electric and magnetic
field components, which comes from the matrix form relation: E = ZB. In a
homogeneous media, the ratio of the orthogonal components is

Z ¼ ix=k ð2:40Þ

In a general 3-D earth, the impedance is expressed in matrix form in Cartesian
coordinates (x, y horizontal and z positive downwards):

Ex
Ey

� �

¼ Zxx Zxy

Zyx Zyy

� �

Bx
By

� �

ð2:41Þ

Thus each tensor element is Zij = Ei/Bj (i, j = x, y). In a 2-D earth the diagonal
elements of Z vanish: Zxx = Zyy = 0. For a 2-D Earth, the conductivity varies
along one horizontal direction as well as with depth, Zxx and Zyy are equal in
magnitude, but have opposite sign, whilst Zxy and Zyx differ, i.e.:

Zxx ¼ �Zyy

ZxyB ¼ �Zyx

)

2-D ð2:42Þ

For a 2-D Earth with the x- or y-direction aligned along electromagnetic strike, Zyy

and Zyy are again zero. Mathematically, a 1-D anisotropic Earth is equivalent to a
2-D Earth.
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Being a tensor, Z also contains information about dimensionality and direction.
For a 1-D Earth, wherein conductivity varies only with depth, the diagonal ele-
ments of the impedance tensor, Zyy and Zyy (which couple parallel electric and
magnetic field components) are zero, while the off-diagonal components (which
couple orthogonal electric and magnetic field components) are equal in magnitude,
but have opposite signs, i.e.,: in 1-D situation,

Zxx ¼ Zyy ¼ 0

Zxy ¼ �Zyx

)

1-D ð2:43Þ

The tensor Z can be rotated to any other coordinate system by an angle h with the
rotationmatrix R:

Zm ¼ RZRT where R ¼ cos h sin h
� sin h cos h

� �

ð2:44Þ

with positive h describing a c.w. rotation from the coordinate system of Zm.
With measured data, it is often not possible to find a direction in which the

condition that Zxx = Zyy = 0 is satisfied. This may be due to distortion (or) 3-D
induction (or) both. Generally, the dimensionality evinced by data is scale depen-
dent. Consider any generalized, homogeneous, 3-D conductive anomaly embedded
in an otherwise uniform Earth. For short MT sounding periods, corresponding to
electromagnetic skin depths that are small compared to the shortest dimensions of the
anomaly, the transfer function should appear as 1-D. As the sounding period
increases further, the inductive scale length will eventually extend sufficiently to
encompass at least one edge of the anomaly, and the transfer functions appear 2-D.
As the sounding period increases further, edge effects from all sides of the anomaly
will eventually be imposed on the transfer functions, resulting in transfer functions
that are evidently 3-D. For sufficiently long periods, such that the electromagnetic
skin depth is very much greater than the dimensions of the anomaly, the inductive
response of the anomaly become weak, but a non-inductive response persists. The
non-inductive response of the anomaly creates a frequency-independent distortion of
MT transfer functions that can be stripped away.

Impedance phase
The phase of the impedance element describes the phase shift between the electric
and magnetic field components:

Z ¼ Ei

Bj

�

�

�

�

�

�

�

�

ei;

where ; ¼ WEi�WBi ¼ arctan
ðimag:ðZijÞ
ðRealðZijÞ

where i, j = x, y and Ei, Bj is the phase of the electric and magnetic field,
respectively. In a homogeneous earth, the impedance phase (Eq. 2.40) is:
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Z ¼ ix
k
¼

ffiffiffiffiffiffiffiffiffiffi

x
ðlrÞ

r

ffiffi

i
p
! p=4

This means that the electric field precedes the magnetic field by 45�, given by the
diffusive process of the EM plane wave’s propagation.

In a 1-D layered earth, the phase increases over 45� when the EM-response
penetrates into a higher conductivity media. By analogy, the phase decays below
45�. For the EM-response penetrating into a less conductive media. This means
that by the diffusive process the phase shift between the orthogonal electric and
magnetic field components attenuates when the fields penetrate into a less con-
ductive media:

In the 1-D/2-D case the phases lie in I or III quadrant ([0, p/2] or [p, 3p/2]),
which means that the real and imaginary parts of Zxy (or Zyx) have equal sign. This
is due to the principle of causality of the interaction between electric and magnetic
fields induced in the earth; i.e., any secondary field induced due to a conductivity
contrast should necessarily postdate the primary incident field (the initial source).

By convention, the element Zxy is defined as positive and therefore Zyx is
negative, implying an impedance phase in I and III quadrant, respectively.

The principle of causality should be generally satisfied in a 3-D earth. There can
be particular conductivity structures, however, which can violate this principle, as
was discussed for the first time by Egbert [11].

2.5.2 Directionality Parameter: Strike

The direction in which the conductivity of a 2-D structure does not vary is termed
the strike direction (principle conductivity axis). The angle between the principle
conductivity axis and the x-axis is called the angle of strike. The axis parallel and
perpendicular to the strike are the principle (preferred directions). With reference
to the later axis, the impedance tensor is given by

Z ¼ 0 Z1

Z2 0

� �

ð2:45Þ

where the Z1 and Z2 are the impedances parallel and perpendicular to the strike
direction respectively.

The angle of strike h0 is obtained from the measured impedances by maxi-
mizing some suitable functions of Zxy and Zyx under rotation of the axis. Two

main functions in use are Z 0xy

�

�

�

�

�

�

2
[12] and Z 0xy

�

�

�

�

�

�

2
þ Z 0yx

�

�

�

�

�

�

2
[13].

h0 ¼ 1=4 arctan
Zxx� Zyyð Þ Zxyþ Zyxð Þ� þ Zxx� Zyyð Þ� Zxyþ Zyxð Þ

jZxx� Zyyj2 � jZxy� Zyxj2
ð2:46Þ

Where * denotes the complex conjugate.
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For the above angle, Z0xx are Z0yy are zero for a 2-D structure. However, owing
to the ever present noise in the measured data, Zxx and Zyy never reduce to zero
on rotation of axis, but only become very small compared with Zxy and Zyx (1-D
and 2-D cases). In a 3-D structure, Zxx and Zyy may still be quite appreciable after
axis rotation, but the Eq. 2.35 can still be use to obtained the gross 2-D angle of
strike of the 3-D structure [14].

2.5.3 Dimensionality Indicators

Apart from the ratio qmax to qmin, other parameters used in determining the
dimensionality of the Earth structure under investigation are Skew and Tipper.

Skew
Skew defined as the ratio of the magnitude of the second invariant to that of the
third invariant

S ¼ jZxxþ Zyyj
jZxy � Zyxj ð2:47Þ

Skew is the measure of the EM coupling between the measured electric and
magnetic field variations in the same direction. There is no coupling for the case of
a 1-D structure and when measurements are made parallel and perpendicular to the
strike of a 2-D structure, but there is always coupling over a 3-D structure except at
a point of radial symmetry. Thus, for 1-D and 2-D structures, S should be zero.
This is rarely the case in practice as a result of the ever present noise in the data. In
a 2-D case where the resistivity contrast across the structure is low, i.e.,

Zxy � Zyxj j ffi 0; S is large. For 3-D structures S is generally large.

Tipper
The tipper coefficients (the single station vertical magnetic field transfer functions)
A and B by expressing the vertical magnetic component Hz as a linear combi-
nation of the horizontal magnetic field components (Hx, Hy), [15, 16] have defined
i.e.,

Hz ¼ AHx þ BHy ð2:48Þ

These complex coefficients can be visualized as operating on the horizontal
magnetic field and tipping part of it into the vertical. The magnitude of the tipper is
given by

T ¼ p A2 þ B2
� �

ð2:49Þ
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The expressing for calculating the tipper coefficients are

A ¼ \HzHx�[ \HyHy�[ � \HzHy�[ \HyHx�[
\HxHx�[ \HyHy�[ � \HxHy�[ \HyHx�[

ð2:50Þ

B ¼ \HzHy�[ \HxHx�[ � \HzHx�[ \HxHy�[
\HyHy�[ \HxHx�[ � \HyHx�[ \HxHy�[

ð2:51Þ

Where * denotes the complex conjugate. For a 2-D structure with strike in the X-
direction, A = 0. Tipper thus can be used to identify the presence of 2-D effects in
the analyzed data. Information from the vertical magnetic field transfer functions is
helpful in determining the structural strike direction [5].

The angle which maximizes the coherency between the horizontal and vertical
magnetic fields [17] is given by

u ¼ T�2½ðRe2A þ Re2BÞ�arctan ReB þ ReAð Þ
þ Im2A þ Im2B
� �

arctan ImB þ ImAð Þ ð2:52Þ

The phase difference between Hz and Hu gives the bearing of some structures.
They have also shown that the tipper skew c is given by

c ¼ 2T�2 ReA ImB � ImA ReBð Þ ð2:53Þ

For 2-D structures c is zero. All three quantities T, u and c are independent of
axis rotation and provide some information about the subsurface structure.

The reliability of the calculated Hz (Hz c) is estimated from the coherence
between it and the measured Hz (Hz m), i.e.

Coh Hz mHz c½ �

¼ jA�\Hz mHx�[ þ B�\Hz mHy�[ j
\Hz mHzm�[ 1=2½AA�HxHx�[ þ BB�\Hy Hy�[ þ 2Re AB�\HxHy�[ð Þ�1=2
n o

ð2:54Þ

With * denoting the complex conjugate.

2.5.4 Induction Arrows

Induction arrows are vector representations of the complex (i.e., containing real
and imaginary parts) ratios of vertical to horizontal magnetic field components.
Since vertical magnetic fields are generated by lateral conductivity gradients,
induction arrows can be used to infer the presence or absence of lateral variations
in conductivity [18]. The vectors point towards the anomalous internal concen-
trations of current [19] called the Parkinson convention whereas the vectors points
away from internal current concentrations are called the wise convention [20]. The
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vectors are also sometimes called tipper vectors as they transform horizontal
magnetic fields into the vertical plane according to the relationship:

Hz xð Þ ¼ ðTxðxÞ TyðxÞÞ Bx=l0

By=l0

� 	

ð2:55Þ

In a 2-D Earth, induction arrows are associated only with the E-polarization.
Thus, insulator conductor boundaries extending through a 2-D Earth gives rise to
induction arrows that orient perpendicular to them, and have magnitude that are
proportional to the intensities of anomalous current concentrations [21], which are
intern determined by the magnitude of the conductivity gradient or discontinuity.
However, an absence of induction arrows at a single site does not necessarily
confirm an absence of laterally displaced conductivity boundaries [18].

2.5.5 Concept of Static Shift

Static shift causes a frequency-independent off set in apparent resistivity curves so
that they plot parallel to their true level, but are scaled by real factors. The scaling
factor(s) cannot be determined directly from MT data recorded at a single site. A
parallel shift between two polarizations of the apparent resistivity curves is a
reliable indicator that static shift is present in the data. However, a lack of shift
between two apparent resistivity curves does not necessarily guaranty polariza-
tions an absence of static shift, since both curves might be shifted by the same
amount. The correct level of the apparent resistivity curves may lie above, below
or between their measured levels. If MT data are interpreted via 1-D modeling
without correcting for static shift, the depth to a conductive body will be shifted by
the square root of the factor by which the apparent resistivities are shifted (Hs),
and the modeled resistivity will be shifted by S. 2-D and 3-D models may contain
extraneous structure if static shifts are ignored. Therefore, additional data or
assumptions are often required.

Static shift corrections may be classified into three broad methods.

• Short-period corrections relying on active near surface measurements (e.g.,
TEM, DC).

• Averaging (statistical) techniques.
• Long period corrections relying on assumed deep structure (e.g., a resistivity

drop at the mid-mantle transition zones) or long period magnetic transfer
functions.

The concept of static shift is caused by multi-dimensional conductivity con-
trasts having depths and dimensions less than the true penetration depth of elec-
tromagnetic fields [18]. As a result of conservation of electric charge, conductivity
discontinuities cause local distortion of the amplitudes of electric fields and hence
causing impedance magnitudes to be enhanced or diminished by real scaling
factors. When current crosses a discontinuity, charges build up along a
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discontinuity. The resulting shift in apparent resistivity curves is referred as
‘static’. Indeed, the presence of static shift is most easily identifiable in measured
data in which apparent resistivities are shifted relative to each other, but imped-
ance phases lie together. As a result of static shift, apparent resistivity curves are
shifted by a constant, real scaling factor, and therefore preserve the same shape as
in shifted apparent resistivity curves in the period range where static shift occurs.
The small-scale conductivity heterogeneities have more significant effects on
electric fields and this is more common in highly resistive environments, where
problem of Static shifts occur.

2.6 3-D Galvanic Distortion and Decomposition of MT
Impedance Tensor

The electromagnetic signal becomes weak when the electromagnetic skin depth
becomes greater than the dimensions of the anomaly but it continues to have a
non-inductive response termed as galvanic [22].

Electromagnetic data containing galvanic effects can often be described by
superimposition or decomposition model in which the data are decomposed into a
non-inductive response owing to multi-dimensional heterogeneities with dimen-
sions significantly less than the inductive scale length of the data (often described
as local), and a response owing to an underlying 1-D or 2-D structure (often
described as regional). In such cases, determining the electromagnetic strike
involves decomposing the measured impedance tensor into matrices representing
the inductive and non-inductive parts. The inductive part is contained in a tensor
composed of components that have both magnitude and phase (i.e. its components
are complex), where as the non-inductive part exhibits DC behavior only, and is
described by a distortion tensor, the components of which must be real and
therefore frequency independent [18].

Interpretation of experimental magnetotelluric results is easiest in those cases
where the surveyed structure is one dimensional (1-D) or 2-D. However, experi-
mentally determined magnetotelluric impedance tensors rarely conform to the ideal
2-D impedance tensor. That is there is no rotation of the co-ordinate axis such that the
diagonal elements of the impedance tensor are both exactly zero. This may occur
either (1) because of data errors in the case of 1-D or 2-D induction, (2) because of 3-
D induction, or (3) because of 1-D or 2-D induction coupled with the effects of
galvanic(frequency independent) telluric distortion. For historical reasons connected
with the ease of calculating inductive responses for 2-D structures and the difficulty
of doing the same for 3-D structures, it has been customary to assume the first of the
above possibilities in presenting data and to rotate the coordinate axes so as to make
the measured tensor as close as possible to an ideal 2-D tensor (one with zero diagonal
elements) in some sense [usually a least square sense e.g. [13].

Improvements in data quality in recent years have made it obvious that the third
possibility (1-D or 2-D induction coupled with 3-D telluric distortion) is important
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in practice. The measured impedance tensor, if such distortion is present, need not
be close to a true 2-D impedance tensor, and rotation or decomposition methods
based on this assumption make no sense in this situation. A number of alternative
decomposition methods have been proposed e.g. [23–26] which do not make any
simplifying assumptions about the physical model and use as many parameters to
represent the tensor as there are data (eight real parameters in contrast to the five
kept by rotation to an idealized 2-D tensor). In the case of induction in one or two
dimensions coupled with 3-D galvanic scattering, then these general decomposi-
tions may not be optimal since they fail to take advantage of the simplicities of
underlying the model.

Galvanic distortion or current channeling does not destroy most of the infor-
mation present about an underlying 2-D inductive process [27]. Bhar demonstrates
possible ways in which this information can be recovered and shows an application
to a field situation. Therefore the physical approach we take to the decomposition
problem is to make the specific assumption that a measured impedance tensor is
produced by local galvanic distortion, by arbitrary 3-D structures, of the electric
currents induced on the large scale in a regionally 1-D or 2-D structure. Even when
this model is not true for all frequencies of the data set, it may still be true over
limited frequency ranges since the definition of a ‘‘regional’’ scale can be different
for different frequency ranges.

In summary, the purpose of our decomposition is to separate local and regional
parameters as much as possible under the assumption that the regional structure is
at most 2-D and the local structure causes only galvanic scattering of the electric
fields, and to do so in the form of a product factorization.

The decomposition technique, which is used to determine the electromagnetic
strike using the decomposition hypothesis is an inverse technique proposed by
Groom and Bailey [28]. In Groom Bailey’s decomposition technique, separation of
the ‘‘localized’’ effects of 3-D current channeling from the ‘regional’ 2-D inductive
behavior is achieved by factorizing the impedance tensor problem in terms of a
rotation matrix, b, and a distortion tensor, C, which is itself the product of three
tensor sub operators (twist, T, Shear, S, local anisotropy, A, and a scalar, g, [18]:

Z ¼ b C Z bT where C ¼ g T S A

2.7 Rotating the Impedance Tensor

In a layered Earth, the Impedance in all directions can be calculated (from the
biavariate regression) simply by measuring the electric field variation in the per-
pendicular direction. We could test the hypothesis of a layered Earth either (1) by
performing the measurements in different co-ordinate frames—(x,y) and (x0,y0)-
and comparing the elements of the Impedance tensors Z and Z0, respectively, or (2)
by applying a mathematical rotation to the impedance tensor estimated from data
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measured in a fixed co-ordinate frame. Theoretically, we can simulate a field site
setup with sensors oriented in any direction, a, via a mathematical rotation
involving matrix multiplication of the measured fields (or impedance tensor) with
a rotation matrix, b:

E0 ¼ bE
B0 ¼ bB




bE ¼ Z
0
bðB=l0Þ ) Z

0 ¼ bZbT ð2:56Þ

where

b ¼ cosa sina
�sina cosa

� 	

ð2:57Þ

And superscript T denotes the transpose of b,

bT ¼ cosa �sina
sina cosa

� 	

ð2:58Þ

Equation 2.1 can be expanded as,

Z
0
xx ¼ Zxx Cos2a þ Zxy þ Zyxð Þ Sin a Cos a þ ZyySin2a

Z
0
xy ¼ Zxy Cos2a þ Zxx þ Zyyð Þ Sin a Cos a � ZyxSin2a

Z
0
yx ¼ Zyx Cos2a þ Zyy � Zxxð Þ Sin a Cos a � ZxySin2a

Z
0
yy ¼ Zyy Cos2a þ Zyx � Zyxð Þ Sin a Cos a � ZxxSin2a

9

>

>

=

>

>

;

ð2:59Þ

or more elegantly,

Z
0
xx ¼ S1þ S2Sina Cos a

Z
0
xy ¼ D1þ S1Sina Cos a

Z
0
yx ¼ D2� D1Sina Cos a

Z
0
yy ¼ �D1� D2Sina Cos a

9

>

>

>

>

>

=

>

>

>

>

>

;

; ð2:60Þ

where S1, S2, D1 and D2 are the modified impedances [5]:

S1 ¼ Zxx þ Zyy S2 ¼ Zxy þ Zyx

D1 ¼ Zxx � Zyy D2 ¼ Zxy � Zyx

The rotated modified impedances are simplify

S
0

1¼ Z
0
xx þ Z

0
yy ¼ Zxx þ Zyy ¼ S1

D
0
1¼ Z

0
xx � Z

0
yy

¼ Cos2a� Sin2a
� �

Zxx � Zyyð Þ þ 2CosaSina Zxy � Zyxð Þ
¼ Cos2aD1þ Sin2aS2

ð2:61Þ
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And similarly

S
0

2¼Cos2a S2 � Sin2a D1Þ and D
0
2 ¼ D2 ð2:62Þ

Hence, S1 and D2 are rotationally invariant [18].

2.8 Inversion Schemes

Geophysical data is modeled and interpreted in terms of subsurface geology in two
ways: a direct way, known as forward modeling, and indirect way, known as
inverse modeling. In the forward method, the model parameters of the subsurface
geology are estimated from geophysical observations and response functions. On
the other hand, in the inverse method a model of the subsurface is assumed and a
theoretical geophysical response is computed for the assumed model and com-
pared with the observed data. This process is repeated for various models through
an iterative process until a minimum difference between the computed and
observed responses is achieved.

In the past, modeling of the data was carried out by master curve matching,
through trial and error processes. Two-layer and three master curves were pub-
lished by Cagniard and Yungul [2, 29]. The trial and error method is generally
very painstaking, especially when a large number of parameters are involved, and
the curve matching technique is very limited in resolution. With the general
availability of electronic computers and better-matched recording equipment, it is
now possible to invert data automatically to save time and to attain maximum use
of the data.

With the advancement in the computational facility inversion schemes gained
widespread use and many of these deploy, a combination of least-squares method
and an iteration scheme for achieving the fit between the observed data and model
response.The least-squares condition to be satisfied is:

/ ¼ Rðqci � qriÞ2 ¼ a minimum:

where qci ? calculated apparent resistivity at a period Ti

And qri ? observed resistivity at a period Ti

Several iterations are generally required for convergence of / to a limit. The
step size and the direction of the correlation vector is determined simultaneously,
to insure proper convergence [30]. Uniqueness however, is not generated in this
method.

The traditional multidimensional MT inversion procedure is as follows: the
conductivity of the earth is parameterized by assigning its values for different
layers in the case of 1-D, or at a number of nodes or in a number of predefined
elements in the case of 2-D/3-D. A starting model is guessed and a matrix, F, of
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partial derivatives of the data with respect to small changes in the parameters is
calculated. This involves solutions of multiple forward problems. Singular value
decomposition (SVD) or some other damped generalized inverse of FFT is then
used to predict the conductivity perturbations that should improve the fit to the
data/these perturbations are added to the initial guess to produce a new starting
model. The forward problem is then solved for one more time to calculate new
data residuals. And the whole process is repeated until a satisfactory fit to the data
has been obtained.

In solving any inverse problem, one seeks not merely a model which fits a given
set of data, but also a knowledge of what features in that model are required by the
data and more not merely incidental to the manner in which the model was
obtained as starting points. For 2-D or 3-D models, since unconstrained details
may persist in later iterations and be mistakenly interpreted as significant structure.

Evaluating what features are resolved has been well studied for the linear
inverse problem. Backus and Gilbert [31] have shown to construct average of
models that are uniquely determined by the data. Knowledge of the resolution
functions and the variance of the average allow critical evaluation of details in the
structure. With the uncertainties and the nonlinear effects in MT inversion, one
should seek models that have the minimum structure for some tolerable level of
misfit to the data. If a minimum structure mode exhibits a particular feature, the
confidence limit regarding that feature improves. Conversely, if a minimum-
structure model does not exhibit a particular feature, then that feature is certainly
not required by the data.

All the real data have measurement errors, so that it is generally neither possible
not desirable to fit the data exactly. The chi squared statistic is given by:

v2 ¼ Rrci=ei

where rci are data residuals and ei are data standard errors

NLCG inversion
A new algorithm for computing regularized solutions of the 2-D magnetotelluric
inverse problem is a nonlinear conjugate gradients (NLCG) scheme to minimize an
objective function that penalizes data residuals and second spatial derivatives of
resistivity [32]. This algorithm is compared theoretically and numerically to two
previous algorithms for constructing such ‘‘minimum-structure’’ models: the
Gauss–Newton method, which solves a sequence of linearized inverse problems
and has been the standard approach to nonlinear inversion in geophysics, and an
algorithm due to Mackie and Madden, which solves a sequence of linearized
inverse problems incompletely using a (linear) conjugate gradients technique.
Numerical experiments involving synthetic and field data indicate that the two
algorithms based on conjugate gradients (NLCG and Mackie-Madden).
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