
Chapter 2
Provably Robust Simplification of Component
Trees of Multidimensional Images

Gabor T. Herman, T. Yung Kong, and Lucas M. Oliveira

Abstract We are interested in translating n-dimensional arrays of real num-
bers (images) into simpler structures that nevertheless capture the topologi-
cal/geometrical essence of the objects in the images. In the case n = 3 these struc-
tures may be used as descriptors of images in macromolecular databases. A fore-
ground component tree structure (FCTS) contains all the information on the rela-
tionships between connected components when the image is thresholded at various
levels. But unsimplified FCTSs are too sensitive to errors in the image to be good
descriptors. This chapter presents a method of simplifying FCTSs which can be
proved to be robust in the sense of producing essentially the same simplifications
in the presence of small perturbations. We demonstrate the potential applicability
of our methodology to macromolecular databases by showing that the simplified
FCTSs can be used to distinguish between two slightly different versions of an
adenovirus.

2.1 Introduction

High-level structural information about macromolecules is now being organized into
databases. These include EM maps (three-dimensional grayscale image arrays ob-
tained by reconstruction from electron microscopic data) of macromolecular struc-
tures. The large size of these image arrays, the arbitrary position and orientation of
the macromolecule in the array, and the possibility of non-linear stretching of the
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range make standard methods of comparison between database entries infeasible.
There is a need for simple robust descriptors that capture the topological/geometrical
essence of the macromolecules in the images. We believe that appropriately simpli-
fied foreground component tree structures may be suitable for this purpose.

Foreground component trees are well known representations of grayscale images.
Given a grayscale image I : S → R whose domain S is connected, the foreground
component tree of I is a rooted tree whose nodes are the connected components of
superlevel sets of I. These nodes have sometimes been called maximum intensity
extremal regions [6]. A node c′ is an ancestor in the tree of a node c if and only if
c′ ⊇ c. The tree can be efficiently constructed using an algorithm which processes
the elements of S in decreasing order of their graylevels and uses Tarjan’s union-find
algorithm [11] to build the tree from the bottom up. For details, see [1, Alg. 4.1] or
[7, Alg. 2]. The latter paper also describes applications of foreground component
trees to image processing and gives a bibliography of some relevant literature.

Two related representations of images (contour trees and 0th persistence dia-
grams) will be described in Sect. 2.7 when we discuss research problems suggested
by our work.

Unsimplified foreground component trees are too sensitive to errors in the image
to be good descriptors. Accordingly, this chapter presents a new three-step method
of simplifying these trees that is provably robust, in the sense that the method pro-
duces essentially the same simplified trees when the image is slightly perturbed.
This property of our method is precisely stated in our main result, Theorem 1.

Methods of simplifying component trees to suppress features that are likely due
to noise or artifacts have previously been considered (see, e.g., [7, 10]). But we
are not aware of any previous work in which a tree simplification method has been
proved to have a robustness property of the kind stated in Theorem 1.

We believe that the simplified trees produced by our method will be useful image
descriptors for the identification and classification of macromolecules. As evidence
of this we provide a sample biological application in which they are used to differ-
entiate two versions of an adenovirus.

2.2 Foreground Component Tree Structures (FCTSs)

We use the term adjacency relation to mean an irreflexive symmetric binary relation
(i.e., a set κ of ordered pairs such that if (a, b) ∈ κ then a �= b and (b, a) ∈ κ). The
members of the pairs that belong to any adjacency relation we are using will be
called spels. (As in, e.g., [5], “spel” is an abbreviation of “spatial element”, and we
think of spels as generalizations of pixels and voxels.) We use the term grayscale
image or, more briefly, the term image, to mean a real-valued function whose domain
is a nonempty set of spels. If I : S→ R is any image then for any s ∈ S we may refer
to the real value I(s) as the graylevel of s in I.

In the practical work described in Sect. 2.6, we use the “6-adjacency” relation [5,
p. 16] on Z

3 as our adjacency relation, and use grayscale images whose domain is
the finite set {(x, y, z) ∈ Z

3 | 0 ≤ x ≤ 274, 0 ≤ y ≤ 274, 0 ≤ z ≤ 274}.
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Fig. 2.1 A rooted tree in which the critical nodes have been circled

Let κ be an adjacency relation. We say that two disjoint sets of spels S1 and S2
are κ-adjacent if there exist s1 ∈ S1 and s2 ∈ S2 such that (s1, s2) ∈ κ . We call a
sequence s0, . . . , sl of l + 1 spels a κ-path if l = 0 or if l ≥ 1 and (si , si+1) ∈ κ for
0 ≤ i < l. We say that a set S is κ-connected if for all s, s′ ∈ S there exists a κ-path
s0, . . . , sl such that s0 = s, sl = s′, and si ∈ S for 0 ≤ i ≤ l.

Let I : S→ R be any image, let τ ∈ R, and let s ∈ S. Then Cκ (s, I, τ ) will denote
the set of all s′ ∈ S for which there exists a κ-path s0, . . . , sl such that s0 = s, sl = s′,
and I(si) ≥ τ for 0 ≤ i ≤ l. Note that Cκ (s, I, τ ) = ∅ if τ > I(s), and s ∈ Cκ (s, I, τ )

if τ ≤ I(s). We write Cκ (s, I) to denote the set Cκ (s, I, I(s)). Readily, if t ∈ Cκ (s, I),
then I(t) ≥ I(s) and either Cκ (t, I) = Cκ(s, I) or Cκ (t, I) � Cκ (s, I) according to
whether I(t) = I(s) or I(t) > I(s).

We assume the reader is familiar with the concept of a rooted tree (as defined in,
e.g., [3, Appendix B.5.2]). Let T be any rooted tree. We write Nodes(T ) to denote
the (finite) set of all nodes of T , write root(T ) to denote the root of T , and write
Leaves(T ) to denote the set of all leaves of T .

Recall that if u ∈ Nodes(T ) and v is a node of the subtree of T that is rooted
at u, then u is said to be an ancestor of v in T , and v a descendant of u in T . We
write u 
T v or v �T u to mean that u,v ∈ Nodes(T ) and u is an ancestor of v
in T . We write u ≺T v or v 
T u to mean that u 
T v but u �= v. If u ≺T v then
u is said to be a proper ancestor of v in T , and v a proper descendant of u in T .

For v ∈ Nodes(T ), we write ChildrenT (v) to denote the set of all the children
of v in T , and if v �= root(T ) then we write parentT (v) to denote the parent of v
in T . A node v of T is said to be critical if |ChildrenT (v)| �= 1; thus v is a critical
node if and only if either v ∈ Leaves(T ) or |ChildrenT (v)| ≥ 2. In Fig. 2.1, the
critical nodes are circled.

Let κ be any adjacency relation. Then a κ-foreground component tree structure
or κ-FCTS is a pair (T , �) for which there exists a collection C of nonempty finite
κ-connected sets of spels such that the following four conditions hold:



30 G.T. Herman et al.

Fig. 2.2 The tree of the
FCTS that is defined in
Example 1

1.
⋃

C ∈ C

2. For all u,v ∈ C, if u �⊇ v and v �⊇ u then the sets u and v are disjoint and are not
κ-adjacent.

3. � is a real-valued function on C such that, for all u,v ∈ C, �(u) < �(v) whenever
u � v. (For each v ∈ C we call �(v) the level of v.)

4. T is the rooted tree such that Nodes(T ) = C and, for all u,v ∈ C, u ≺T v if
and only if u � v.

Condition 1 is equivalent to the condition that C have an element which is a
superset of every element of C. Moreover, since every element of C is required to
be a nonempty finite κ-connected set, condition 1 implies that

⋃
C is a finite κ-

connected set. Since
⋃

C is finite, C can only be a finite collection.
If C is any collection of nonempty finite κ-connected sets that satisfies condi-

tions 1 and 2, and � any function that satisfies condition 3, then there will exist a
unique rooted tree T that satisfies condition 4 (so that (T , �) is a κ-FCTS); the
root of this tree will be

⋃
C.

Example 1 Let κ be the adjacency relation on the integers such that (n1, n2) ∈
κ if and only if |n1 − n2| = 1. Let C be the following collection of six sets:
{{1,2,3,4,5,6,7,8}, {1,2,3,4,5}, {1,2}, {4,5}, {7,8}, {8}}. Then it is readily con-
firmed that C satisfies conditions 1 and 2. Now let � : C → R be defined by
�({1,2,3,4,5,6,7,8}) = 12, �({1,2,3,4,5}) = 13, �({7,8}) = 16, and �({1,2}) =
�({4,5}) = �({8}) = 18. Then it is readily confirmed that � satisfies condition 3.
Thus there is a κ-FCTS (T , �) for which Nodes(T ) = C. The tree T of this
κ-FCTS is shown in Fig. 2.2.

If F is a κ-FCTS (T , �), then we may use F to mean the rooted tree T in our ter-
minology and notation. As examples of this, nodes and edges of T may be referred
to as nodes and edges of F, the notations Nodes(F), root(F), and Leaves(F) will
have the same meanings as Nodes(T ), root(T ), and Leaves(T ), and parentF(v)

will have the same meaning as parentT (v) for any v ∈ Nodes(T ) \ root(T ).
Let S be any nonempty finite κ-connected set of spels. Then we associate each

image I : S → R with the κ-foreground component tree structure FCTSκ(I) that is
defined by FCTSκ(I) = (TI, �I), where:

(i) Nodes(TI) = {Cκ (s, I) | s ∈ S} and, for all u,v ∈ Nodes(TI), we have that
u 
TI v if and only if u ⊇ v.
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Fig. 2.3 A grayscale image whose domain is a row of 37 pixels is shown at the top. Writing I
to denote this image, the numbers above the image show the graylevel I(p) of each pixel p in
the domain; for example, the graylevels of the first, second, third, and fourth pixels on the left
are respectively 0, 3, 14, and 14. The κ-FCTS of the image (i.e., FCTSκ (I)) is shown below the
image. Here κ is the adjacency relation such that (p1,p2) ∈ κ just if p1 and p2 are pixels that share
an edge. Writing (T , �) for this κ-FCTS, each node of the tree T is a κ-connected set of pixels
whose elements are indicated in the figure by the horizontal bar which runs through that node. For
example, the root node v0 of T consists of all 37 pixels in the domain, the node v1 consists of all
pixels in the domain except the leftmost, and the leaf node v17 consists of just the third and the
fourth pixels from the left. For each node v, the value of �(v) can be read from the vertical bar on
the left. For example, �(v2) = �(v3) = 3 and �(v4) = �(v5) = 6

(ii) For all s ∈ S, we have that �I(Cκ (s, I)) = I(s). (�I is well defined by this condi-
tion, because I(s) = I(s′) whenever Cκ (s, I) = Cκ (s′, I).)

It is readily confirmed that a κ-FCTS with these two properties exists, because C =
{Cκ(s, I) | s ∈ S} satisfies conditions 1 and 2 in the definition of a κ-FCTS; the root
of the tree of this FCTS is

⋃
C = S. It follows from (ii) that for each v ∈ Leaves(TI)

the level of v in FCTSκ (I) is just the graylevel in I of each spel in v, and that for
each v ∈ Nodes(TI) the level of v is just the minimum of the graylevels of the
spels in v. We call FCTSκ(I) the κ-FCTS of the image I. Figure 2.3 illustrates this
concept.

Conversely, we associate each κ-FCTS F = (T , �) with the image IF that we
now define. For each spel s ∈ root(T ), conditions 2 and 4 in the definition of a
κ-FCTS imply that, among the elements of Nodes(T ) that contain s, there must be
a smallest (i.e., a node that is a descendant in T of every node that contains s); that
element will be denoted by nodeT (s). We define IF = I(T ,�) to be the image whose
domain is root(T ), and which satisfies IF(s) = �(nodeT (s)) for all s ∈ root(T ).
We also call IF the image of the κ-FCTS F.

Readily, IFCTSκ (I) = I for any image I whose domain is finite and κ-connected,
and FCTSκ(IF) = F for every κ-FCTS F. Thus the maps I �→ FCTSκ(I) and
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F �→ IF are mutually inverse bijections between the set of all images with finite
κ-connected domains and the set of all κ-FCTSs.

Consequently, a figure (such as Fig. 2.3) that shows an image I and its associated
κ-FCTS FCTSκ(I) can also be construed as showing the κ-FCTS F = FCTSκ (I)
and its associated image IF = I.

2.3 The (λ,k)-Simplification of a κ-FCTS, Essential
Isomorphism, and the Main Theorem

As mentioned earlier, the foreground component tree structure FCTSκ (I) is too
sensitive to errors in the image I to be a good descriptor. In this section we propose
a method of simplifying FCTSκ(I) that is provably robust, in the sense that the
simplified κ-FCTS of I remains essentially the same when I is slightly perturbed.
We begin by defining some further terminology and notation.

Let T be any rooted tree, and F = (T , �) a κ-FCTS. Then the set of all critical
nodes of T will be denoted by Crit(T ) or Crit(F). The node in Crit(T ) that is
an ancestor in T of every node in Crit(T ) will be called the lowest critical node
or LCN of T or F, and denoted by LCN(T ) or LCN(F).

For any subset V of Nodes(T ) that does not contain every ancestor of LCN(T ),
there is a κ-FCTS (T ′, �′) such that Nodes(T ′) = Nodes(T ) \ V and �′ is the
restriction of � to Nodes(T ′). This κ-FCTS will be denoted by F− V.

We write F′ � F to mean that F′ = F−V for some V ⊆ Nodes(T )\{root(T )}.
Thus F′ � F implies that root(F′) = root(F) and that Nodes(F′) ⊆ Nodes(F).

We write T crit to denote the rooted tree whose set of nodes is Crit(T ) ∪
{root(T )} in which a node u is an ancestor of a node v if and only if u is an
ancestor of v in T . Thus root(T crit) = root(T ), LCN(T crit) = LCN(T ), and
Crit(T crit) = Crit(T ). If LCN(T ) �= root(T ) then LCN(T crit) = LCN(T ) is
the unique child of root(T crit) = root(T ) in T crit. The κ-FCTS (T crit, �crit),
where �crit is the restriction of � to Nodes(T crit), will be denoted by Fcrit. Note
that Fcrit � F. This concept is illustrated in Figs. 2.4 and 2.6.

Using this terminology, our method of simplifying FCTSκ(I) can be stated as
follows:

Let F0 = (T0, �0) be any κ-FCTS. Then, for every positive real value λ and
every nonnegative integer k < |root(T0)|, we define the (λ, k)-simplification of F0
to be the κ-FCTS F3 that can be obtained from F0 in three steps, as follows:

Step 1: Prune F0 by removing nodes of size ≤ k, to produce F1 � F0.
Step 2: Prune F1 by removing branches of length ≤ λ, to produce F2 � F1.
Step 3: Eliminate internal edges of length ≤ λ from Fcrit

2 , to produce the final
κ-FCTS F3 � Fcrit

2 .

With the possible exception of the root, every non-leaf node of the final κ-FCTS F3
is a critical node both of F3 and of the original κ-FCTS F0.

Step 1 is one of the filtering methods proposed in Sect. VI of [7]. It is defined
as follows: The result of pruning the κ-FCTS F0 = (T0, �0) by removing nodes of
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Fig. 2.4 The thick black edges are the edges of the FCTS Fcrit, where F is the FCTS that is shown
in Fig. 2.6 below. Nodes and edges of F are shown in gray, but may be hidden by nodes and edges
of Fcrit—for example, the edges of F that join v4 to v8 and v8 to v12 in Fig. 2.6 are not visible in
this figure because they are hidden by the edge of Fcrit that joins v4 to v12. (The image I

Fcrit of

Fcrit is shown at the top)

size ≤ k is just the κ-FCTS

F0 − {
v ∈ Nodes(T0)

∣
∣ |v| ≤ k

}

where, as usual, |v| denotes the cardinality of the set v—i.e., the number of spels
in v. Note that the result is just F0 itself if k = 0. Figure 2.5 shows an FCTS that
has been obtained by pruning the FCTS of Fig. 2.3 in this way.

Precise definitions of steps 2 and 3 of (λ, k)-simplification will be given in
Sects. 2.4 and 2.5 below.

While our simplification method is somewhat similar to the method of [10], it has
the robustness properties that are stated in Theorem 1 and Corollary 2 below (which
the method of [10] does not have). We now introduce terminology and notation that
will be used to state these two results.

We say that two κ-FCTSs Fa = (Ta, �a) and Fb = (Tb, �b) are essentially iso-
morphic if the subtree of T crit

a that is rooted at LCN(Ta) is isomorphic to the
subtree of T crit

b that is rooted at LCN(Tb). Thus Fa and Fb are essentially iso-
morphic if and only if there exists a mapping θ : Crit(Ta) → Crit(Tb) such that
θ [Crit(Ta)] = Crit(Tb) and, for all v,v′ ∈ Crit(Ta), v 
Ta v′ if and only if
θ(v) 
Tb θ(v′). (The latter property implies that θ is 1-to-1.) Any such θ will be
called an essential isomorphism of Fa to Fb.

Note that if the rooted trees T crit
a and T crit

b are isomorphic, then Fa = (Ta, �a)

and Fb = (Tb, �b) are certainly essentially isomorphic. The converse is almost but
not quite true. The only way in which Fa = (Ta, �a) and Fb = (Tb, �b) could be
essentially isomorphic without T crit

a and T crit
b being isomorphic is if the root is
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Fig. 2.5 The effect of pruning the FCTS of Fig. 2.3 by removing nodes of size ≤ k is shown, in
the case k = 1; the black edges are the edges of the resulting FCTS. Just two nodes (v10 and v23)
are removed from the tree of Fig. 2.3, as these are the only nodes of that tree that consist of no
more than k pixels (i.e., no more than 1 pixel, since k = 1). The image of the resulting FCTS is
shown at the top: Note that the graylevel of the second pixel from the right has changed from 18
in Fig. 2.3 to 16 here; this reflects the removal of v23 from the tree. Similarly, the graylevel of the
17th pixel from the left has changed from 10 to 9; this reflects the removal of v10. The graylevels
of the other 35 pixels are the same as in Fig. 2.3

the same as the LCN in one of the trees but not in the other, and when we remove
the root from the latter tree (so its LCN becomes its root) it becomes isomorphic to
the former tree—e.g., if T crit

a has the structure

V

but T crit
b has the structure

Y

.
For any δ ≥ 0, if an essential isomorphism θ of Fa to Fb satisfies the condition

|�b(θ(x)) − �a(x)| ≤ δ for all x ∈ Crit(Fa), then we say that θ is level-preserving
to within δ. Evidently, the inverse of any essential isomorphism of Fa to Fb that
is level-preserving to within δ will be an essential isomorphism of Fb to Fa that is
level-preserving to within δ.

If an essential isomorphism θ of Fa to Fb is level-preserving to within 0 (i.e., if
�b(θ(x)) = �a(x) for all x ∈ Crit(Fa)), then we say that θ is level-preserving.

Example 2 The FCTS shown in Fig. 2.6 is essentially isomorphic to the FCTS
shown by the thick black edges in Fig. 2.8. Indeed, if (T , �) is the FCTS shown
in Fig. 2.6, and (T∗, �∗) is the FCTS shown by the thick black edges in Fig. 2.8,
then (T , �)crit is the FCTS shown in Fig. 2.4, and (T∗, �∗)crit = (T∗, �∗). It is evi-
dent from a quick glance at Figs. 2.4 and 2.8 that T crit is isomorphic to T crit∗ = T∗,
so that (T , �) is essentially isomorphic to (T∗, �∗), as we claimed. It is readily con-
firmed that the mapping θ : Crit(T ) → Crit(T∗) which respectively maps

v1, v4, v5, v9, v10, v11, v12, v14, v15, v16, v17 in Fig. 2.6 (or Fig. 2.4)

to v1, v4, v5, v13, v14, v15, v17, v19, v20, v21, v22 in Fig. 2.8
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Fig. 2.6 If I is the image at the top (and κ is the same adjacency relation as in Figs. 2.3 and 2.5),
then Λκ(I) = 5 and Kκ(I) = 2. Λκ(I) = 5 because, writing (T , �) for the κ-FCTS of I (which is
shown in this figure), T has critical nodes vi and vj such that vi 
T vj and �(vi )−�(vj ) = 5 (e.g.,
(vi , vj ) = (v4, v1)), but T has no critical nodes vi and vj such that vi 
T vj and �(vi )−�(vj ) < 5.
Kκ(I) = 2 because T has a node (e.g., v9) that consists of just 2 pixels, but no node of T consists
of fewer than 2 pixels

is an essential isomorphism of (T , �) to (T∗, �∗). The essential isomorphism θ is
not level-preserving, since |�∗(θ(x)) − �(x)| = 1 when x = v12 and when x = v15;
indeed, �(v12) = 13 but �∗(θ(v12)) = 14, and �(v15) = 17 but �∗(θ(v15)) = 16. But
it is readily confirmed that �∗(θ(x)) = �(x) for all x ∈ Crit(T ) \ {v12, v15}, and so
θ is level-preserving to within 1.

Let I : S → R be an image whose domain S is finite and κ-connected, and let
(T , �) = FCTSκ (I). Then we define:

Kκ(I) = min
s∈S

∣
∣Cκ (s, I)

∣
∣ = min

v∈Leaves(T )
|v|

Λκ(I) = min
{
�(u) − �(v)

∣
∣ u,v ∈ Crit(T ) and u 
T v

}

These concepts are illustrated in Fig. 2.6.
If I : S → R and I′ : S → R are two images that have the same domain S, then

the value maxs∈S |I′(s) − I(s)| will be denoted by ‖I′ − I‖∞.
Using this notation, we now state our principal robustness result regarding (λ, k)-

simplification (a result which we will generalize in Corollary 2):

Theorem 1 (Main Theorem) Let κ be any adjacency relation, I : S →R any image
whose domain S is finite and κ-connected, k any integer such that 0 ≤ k < Kκ(I),
and λ any value such that 0 < λ < Λκ(I)/2. Let I′ : S → R be an image such that
‖I′ − I‖∞ ≤ λ/2. Then there is an essential isomorphism of the (λ, k)-simplification
of FCTSκ(I′) to FCTSκ(I) that is level-preserving to within λ/2.
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A proof of this theorem is given in Appendix B. In the theorem, and in Corol-
lary 2 below, we may think of the image I : S → R as an ideal or perfect image of
some object (such as a macromolecule) at a certain level of detail/resolution, and
think of the image I′ as an imperfect noisy approximation to the ideal image I (such
as an EM map of the same object). We may suppose that the ideal image I is not
available to us (and we do not know the exact structure of FCTSκ (I)), but the im-
perfect image I′ is available and we can therefore construct FCTSκ (I′). Theorem 1
and Corollary 2 assure us that, if I′ is “sufficiently similar” to I, then there will be
values of λ and k for which the (λ, k)-simplification of FCTSκ(I′) is essentially
isomorphic to FCTSκ(I).

For this purpose it follows from Theorem 1 that the imperfect noisy approxima-
tion I′ will be “sufficiently similar” to the ideal image I if there is no spel in S at
which the value of I′ differs from the value of I by Λκ(I)/4 or more. Additionally,
it will follow from Corollary 2 (as we shall explain in Example 4) that I′ might be
sufficiently similar to I even if this condition is violated at a small number of spels
whose values in I and I′ may differ by arbitrarily large amounts.

Example 3 To illustrate Theorem 1, let I be the image that is shown in Fig. 2.6,
and let I′ be the image that is shown in Fig. 2.3. Then ‖I′ − I‖∞ = 1, because there
exists a pixel p (e.g., any of the three rightmost pixels in the domain) for which
|I′(p)−I(p)| = 1, but there is no pixel p for which |I′(p)−I(p)| > 1. Now let λ = 2
and k = 1. As we observe in the caption of Fig. 2.6, Λκ(I) = 5 and Kκ(I) = 2, so the
conditions λ < Λκ(I)/2, k < Kκ(I), and ‖I′ − I‖∞ ≤ λ/2 that appear in Theorem 1
are satisfied. Thus the theorem says that there is an essential isomorphism of the
(λ, k)-simplification of FCTSκ(I′) to FCTSκ(I) that is level-preserving to within
λ/2 = 1. In fact the inverse of the mapping θ defined in Example 2 above is just
such an essential isomorphism! That is because (as we will see in Sect. 2.5) the
FCTS shown by the thick black edges in Fig. 2.8 is exactly the (λ, k)-simplification
of FCTSκ (I′).

From Theorem 1, it is easy to deduce Corollary 2 below. Theorem 1 is essentially
the case of Corollary 2 in which k∗ = 0 and I∗ = I .

As mentioned above, one can think of I in Theorem 1 and Corollary 2 as a perfect
or ideal image, and think of I′ as an imperfect approximation to I. Theorem 1 is
applicable only if the graylevel of every spel in I′ is close to (specifically, within
less than Λκ(I)/4 of) that spel’s graylevel in I. Corollary 2 is more general; as we
will see in Example 4 below, it may be applicable even if there are exceptional spels
at which I′’s graylevel is much lower or higher than I’s graylevel.

Corollary 2 Let I : S →R and I′ : S→ R be images on the same finite κ-connected
domain S. For any nonnegative integer k < |S|, let I′

k denote the image of the κ-
FCTS that results from pruning FCTSκ (I′) by removing nodes of size ≤ k. Sup-
pose there is an image I∗ : S → R such that there exists a level-preserving essen-
tial isomorphism of FCTSκ(I∗) to FCTSκ (I), and there exists a nonnegative in-
teger k∗ < Kκ(I∗) for which the image I′ satisfies ‖I′

k∗ − I∗‖∞ < Λκ(I)/4. Then,
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for any positive λ and integer k such that 2‖I′
k∗ − I∗‖∞ ≤ λ < Λκ(I)/2 and

k∗ ≤ k < Kκ(I∗), there is an essential isomorphism of the (λ, k)-simplification of
FCTSκ (I′) to FCTSκ(I) that is level-preserving to within λ/2.

Proof of Corollary 2, assuming Theorem 1 Let k be an integer such that k∗ ≤ k <

Kκ(I∗), and λ a positive value such that 2‖I′
k∗ − I∗‖∞ ≤ λ < Λκ(I)/2.

Now FCTSκ(I′
k∗) is the result of applying step 1 of (λ, k∗)-simplification to

FCTSκ (I′). It follows that the (λ, k)-simplification of FCTSκ(I′) is the same as the
(λ, k)-simplification of FCTSκ(I′

k∗) (since applying simplification step 1 twice in
succession with parameter k∗ and then k has the same effect as applying step 1 just
once with the parameter max(k∗, k) = k). To prove the corollary, we need to show
that there is an essential isomorphism of this κ-FCTS (i.e., the (λ, k)-simplification
of FCTSκ (I′

k∗)) to FCTSκ(I) that is level-preserving to within λ/2.
We have that Λκ(I) = Λκ(I∗), since there is a level-preserving essential iso-

morphism of FCTSκ(I∗) to FCTSκ(I). Thus we have that λ < Λκ(I∗)/2. More-
over, ‖I′

k∗ − I∗‖∞ ≤ λ/2 and k < Kκ(I∗). So, on applying Theorem 1 to I∗ and
I′
k∗ , we see that there is an essential isomorphism of the (λ, k)-simplification

of FCTSκ(I′
k∗) to FCTSκ(I∗) that is level-preserving to within λ/2. Compos-

ing this essential isomorphism with the level-preserving essential isomorphism of
FCTSκ (I∗) to FCTSκ(I) gives an essential isomorphism of the (λ, k)-simplification
of FCTSκ (I′

k∗) to FCTSκ (I) that is level-preserving to within λ/2, as required. �

The following example shows how the condition that I′ must satisfy in Corol-
lary 2 is much less restrictive than the condition ‖I′ − I‖∞ < Λκ(I)/4 that I′ needs
to satisfy for Theorem 1 to be applicable.

Example 4 Let S be a 3D rectangular array of voxels, and let κ be the 6-adjacency
relation on S. Let I : S → R be an image such that, for each threshold τ ≤
maxs∈S I(s), the members of {Cκ(s, I, τ ) | I(s) ≥ τ } have fairly compact shapes
and are not very small, and no two of the sets are very close together. (Here “have
fairly compact shapes” and “are not very small” imply that: (i) removing a very
few randomly chosen voxels from a set Cκ (s, I, τ ) is unlikely to split it into two or
more pieces, and unlikely to completely eliminate that set. The “no two of the sets
are very close” condition implies that: (ii) adding a very few randomly chosen vox-
els to a set Cκ (s, I, τ ) is unlikely to connect that set to a different set Cκ(s′, I, τ ).)
Now let I′ be an image on S that is obtained from I by changing the graylevels of
a very small number of randomly chosen voxels by arbitrarily large positive and/or
negative amounts. Then ‖I′ − I‖∞ < Λκ(I)/4 will not hold unless every graylevel
change is smaller in absolute value than Λκ(I)/4. But, regardless of the sizes of the
graylevel changes, when k∗ is the cardinality of the largest 6-connected subset of
the set {s ∈ S | I′(s) > I(s)} it is likely (because of (i) and (ii)) that there will be a
level-preserving essential isomorphism of FCTSκ(I′

k∗) to FCTSκ (I), in which case
the image I′ will satisfy the condition of Corollary 2 with I∗ = I′

k∗ .
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2.4 Pruning by Removing Branches of Length ≤ λ

Step 2 of (λ, k)-simplification is to prune the FCTS that is the result of step 1 by
removing branches of length ≤ λ. We now give a mathematical specification of
the output of step 2 (properties P1–P4 below), present a result (Proposition 3) that
gives us an easily visualized characterization of the output, and then describe (in
Sect. 2.4.3) how step 2 can be efficiently implemented.

2.4.1 Specification of Simplification Step 2

Let T be any rooted tree and let x ∈ Nodes(T ). Then we write x⇓T to denote the
set of all ancestors of x in T , write x↓T to denote the set x⇓T \ {x} (i.e., the set
of all proper ancestors of x in T ), write x⇑T to denote the set of all descendants
of x in T , and write x↑T to denote the set x⇑T \ {x} (i.e., the set of all proper
descendants of x in T ).

Now let ∅ �= S ⊆ Nodes(T ). Then we write
∧

T S to denote the closest common
ancestor of S, by which we mean the node v of T such that v⇓T = ⋂

u∈S u⇓T , or,
equivalently, the element of

⋂
u∈S u⇓T that is a descendant in T of every element

of that set.
For any κ-FCTS Fin = (Tin, �in), we call a sequence leaf[1], . . . , leaf[n] an

�in-increasing enumeration of Leaves(Fin) if no two of leaf[1], . . . , leaf[n] are
the same, {leaf[1], . . . , leaf[n]} = Leaves(Fin) (so that n = |Leaves(Fin)|), and
�in(leaf[1]) ≤ · · · ≤ �in(leaf[n]). Pruning a κ-FCTS Fin by removing branches of
length ≤ λ is done using such an enumeration of Leaves(Fin).

For any λ > 0, any κ-FCTS Fin = (Tin, �in), and any �in-increasing enumeration
leaf[1], . . . , leaf[n] of Leaves(Fin), we define the result of pruning Fin by removing
branches of length ≤ λ using the leaf enumeration leaf[1], . . . , leaf[n] to be the κ-
FCTS Fout that has the following four properties:

P1: Fout � Fin
P2: leaf[n] ∈ Leaves(Fout)

P3: For 1 ≤ i < n, leaf[i] ∈ Leaves(Fout) if and only if there does not exist any
j ∈ {i + 1, . . . ,n} for which �in(leaf[i]) − �in(

∧
Tin

{leaf[j ], leaf[i]}) ≤ λ.
P4: Nodes(Fout) = ⋃{leaf[i]⇓Tin | 1 ≤ i ≤ n and leaf[i] ∈ Leaves(Fout)}
Given any κ-FCTS Fin = (Tin, �in), any λ > 0, and any �in-increasing enumeration
leaf[1], . . . , leaf[n] of Leaves(Fin), it is evident that P1–P4 uniquely determine Fout.
Moreover, even though the result Fout of pruning may depend on the leaf enumer-
ation leaf[1], . . . , leaf[n] that is used, we will see from Proposition 3 that, for any
given Fin and λ, P1–P4 uniquely determine Fout up to a level-preserving essential
isomorphism.

Figure 2.7 shows an FCTS that has been obtained by pruning the FCTS of Fig. 2.5
in this way.
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Fig. 2.7 The effect of pruning the FCTS of Fig. 2.5 by removing branches of length λ is
shown, in the case λ = 2; the black edges are the edges of the resulting FCTS. Writing
(T1, �1) for the FCTS of Fig. 2.5, it is assumed that pruning is done using an �1-increasing
leaf enumeration in which the leaf v17 of T1 occurs later than the leaf v18. The leaves
v8, v12, and v18 are the only nodes of T1 that are removed; the leaf v8 is removed be-
cause we have that �1(v8) − �1(

∧
T1

{v19, v8}) = �1(v8) − �1(v7) ≤ 2 = λ (and v19 occurs
later in the �1-increasing leaf enumeration than v8 because �1(v8) < �1(v19)); v12 is removed
because �1(v12) − �1(

∧
T1

{v17, v12}) = �1(v12) − �1(v9) ≤ 2 = λ; v18 is removed because
�1(v18) − �1(

∧
T1

{v17, v18}) = �1(v18) − �1(v11) ≤ 2 = λ and we are assuming (as mentioned
above) that v17 occurs later in the �1-increasing leaf enumeration than v18. In this example no
non-leaf nodes of T1 are removed, as every non-leaf node of T1 is an ancestor of a leaf of T1 that
is not removed

2.4.2 An Easily Visualized Characterization of the Output of
Simplification Step 2

The main goal of this section is to present a result (Proposition 3) that is important
for the following reasons:

1. It shows that the output of step 2 is independent of the leaf enumeration which is
used for pruning (up to a level-preserving essential isomorphism).

2. It gives an easily visualized characterization of the output. (This will be further
explained after Proposition 3.)

3. The linear-time implementation of step 2 that is described in Sect. 2.4.3 is based
on this result.

For any rooted tree T and any x ∈ Nodes(T ), we write T [x] to denote the
subtree of T that is rooted at x.

Now we define some other notation that will be used in Proposition 3. For this
purpose, let F = (T , �) be any κ-FCTS and λ any positive value. Then we de-
fine depthF(x) = maxy∈Leaves(T [x]) �(y) − �(x). Note that depthF(x) = 0 for all
x ∈ Leaves(T ). We also define:
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Uλ〈F〉 = {
v ∈ Nodes(T )

∣
∣ depthF(v) > λ

}

Vλ〈F〉 = {
v ∈ Nodes(T )

∣
∣ v /∈ Uλ〈F〉 but v↓T ⊆ Uλ〈F〉}

If Uλ〈F〉 �= ∅, then v ∈ Vλ〈F〉 if and only if v ∈ root(T )↑T , depthF(v) ≤ λ, and
depthF(parentT (v)) > λ. If Uλ〈F〉 = ∅, then Vλ〈F〉 = {root(T )}.

For any x ∈ Nodes(T ), either x ∈ Uλ〈F〉 or x has a unique ancestor in Vλ〈F〉
(possibly itself), and x satisfies just one of those conditions. Hence:

Nodes(T ) = Uλ〈F〉 ∪
⋃

v∈Vλ〈F〉
v⇑T (2.1)

If Uλ〈F〉 �= ∅ (so that root(T ) lies in Uλ〈F〉 and not in Vλ〈F〉), then we define:

Vλ
1〈F〉 = {

v ∈ Vλ〈F〉 ∣
∣ depthF(v) + �(v) − �

(
parentT (v)

)
> λ

}

But if Uλ〈F〉 = ∅, then we define Vλ
1〈F〉 = {root(T )} = Vλ〈F〉.

Let σ = (leaf[1], . . . , leaf[n]) be any �-increasing enumeration of the leaves of
the tree T , and v any node of T . Then we define lastLeafσ (v,T ) to be the
leaf of T [v] that occurs later in the �-increasing enumeration σ than all other
leaves of T [v]. (If T [v] has just one leaf, then lastLeafσ (v,T ) is that leaf.) Thus
we have that depthF(v) = �(lastLeafσ (v,T )) − �(v). We define Pathσ (v,T ) =
{x ∈ Nodes(T ) | v 
T x 
T lastLeafσ (v,T )}. (Note that if v′ is any node of T
that is neither an ancestor nor a descendant of v in T , then lastLeafσ (v,T ) �=
lastLeafσ (v′,T ) and Pathσ (v,T ) ∩ Pathσ (v′,T ) = ∅.)

Using the notation we have just introduced, we now state the main result of this
section, which is proved in Appendix A.

Proposition 3 Let Fin = (Tin, �in) be any κ-FCTS, let λ > 0, and let Fout =
(Tout, �out) be the κ-FCTS that results from pruning Fin by removing branches of
length ≤ λ using an �in-increasing enumeration σ of Leaves(Tin). Then the nodes
of Fout consist just of:

(i) The nodes of Uλ〈Fin〉.
(ii) The nodes of Pathσ (v,Tin) for each node v in Vλ

1〈Fin〉.

Now let Fin = (Tin, �in), λ, σ , and Fout = (Tout, �out) be as in Proposition 3.
Since Vλ

1〈Fin〉 ⊆ Vλ〈Fin〉, and since no node in Vλ〈Fin〉 is an ancestor in Tin of
a node in Uλ〈Fin〉 or of a different node in Vλ〈Fin〉, for all v ∈ Vλ

1〈Fin〉 we have
that Pathσ (v,Tin) ∩ Uλ〈Fin〉 = ∅, and for all distinct v,v′ ∈ Vλ

1〈Fin〉 we have that
Pathσ (v,Tin) ∩ Pathσ (v′,Tin) = ∅.

Thus Proposition 3 gives us an easily visualized characterization of the nodes of
the FCTS Fout = (Tout, �out) that results from pruning Fin by removing branches of
length ≤ λ using the leaf enumeration σ (and hence an easily visualized characteri-
zation of Fout itself, since Fout � Fin).

In Proposition 3, Uλ〈Fin〉 and Vλ
1〈Fin〉 are determined by Fin and λ; they do

not depend on σ . For any v in Vλ
1〈Fin〉, the difference in level between v and the

leaf node of Pathσ (v,Tin)—i.e., the value of �out(lastLeafσ (v,Tin)) − �out(v) =
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�in(lastLeafσ (v,Tin)) − �in(v) = depthFin
(v)—also does not depend on σ . So even

though the sets Pathσ (v,Tin) may depend on the leaf enumeration σ , we see from
Proposition 3 that Fout is uniquely determined by Fin and λ up to a level-preserving
essential isomorphism.

2.4.3 Linear-Time Implementation of Simplification Step 2

In the rest of this chapter we assume that each FCTS (T , �) we use is represented
in such a way that we can find the root of T in O(1) time and can do all of the
following in O(1) time for any node v of T :

• Create a clone of v, and add it to another FCTS (as a new child of some specified
node of the latter).

• Find the parent of v in T , if v is not the root.
• Determine the value of �(v).
• Determine whether or not v is a leaf of T .

We also assume that, for any non-leaf node v of T , we can find all the children of
v in O(|ChildrenT (v)|) time.

In the rest of this section we describe simple but efficient implementations of
step 2 and of a variant of step 2.

Let Fin = (Tin, �in) be some κ-FCTS, and let σ be an �in-increasing leaf enu-
meration of Leaves(Tin) such that, whenever x and y are leaves of Tin, the answer
to the question

Does x occur later than y in σ? (2.2)

can be determined in O(1) time even if �in(x) = �in(y).
Our implementation of step 2 runs in O(|Nodes(Tin)|) time, and does not require

the actual creation of the sequence σ : We allow σ to be implicitly defined by some
function f : Leaves(Tin) × Leaves(Tin) → {Yes,No} such that the answer to (2.2)
for any two leaves x and y of Tin is f (x,y) and this can be computed in O(1)

time.1

For every λ > 0 let Fout,λ be the FCTS that should result from pruning Fin by
removing branches of length ≤ λ using the leaf enumeration σ . We now explain
how Fout,λ can be constructed in O(|Nodes(Tin)|) time.

For each non-leaf node w of Tin, we define nextσ (w,Tin) to be the child of w in
Pathσ (w,Tin) (i.e., the child of w that is an ancestor of lastLeafσ (w,Tin)); if w is
a leaf of Tin then we define nextσ (w,Tin) = w. During a single postorder traversal
nextσ (w,Tin), lastLeafσ (w,Tin), and depthFin

(w) can be computed for all nodes w
of Tin in

∑
w∈Nodes(Tin)

O(1 + |ChildrenTin(w)|) = O(|Nodes(Tin)|) time. Then,

1Note that no algorithm which actually creates the sequence σ that is defined by any such func-
tion f can run in O(|Nodes(Tin)|) time in all cases, because any comparison sort must perform
Ω(n logn) comparisons to sort a set of n items (here, leaves) in the worst case [3, Thm. 8.1].
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for any given node v of Tin it is easy to determine in O(1) time whether v belongs
to Uλ〈Fin〉, to Vλ

1〈Fin〉, or to neither of those sets, and it is easy to find all the nodes
of Pathσ (v,Tin) by following a chain of nextσ (w,Tin) nodes that starts with w = v.
Hence we can construct Fout,λ in O(|Nodes(Tin)|) time, for any positive λ that the
user may specify, in the following way:

1. Clone root(Tin), and initialize the output FCTS (i.e., the FCTS that will be out-
put when the algorithm terminates) to be an FCTS whose only node is the clone
of root(Tin).

2. Do a preorder traversal of the subgraph of Tin that is induced by the set of nodes
Uλ〈Fin〉 ∪ Vλ

1〈Fin〉. (This is the rooted tree that is derived from Tin by ignoring
all nodes which do not lie in the set Uλ〈Fin〉∪Vλ

1〈Fin〉. Note that this set contains
root(Tin) and all the ancestors of each node in the set.) When any node v is
visited during the traversal, do the following:
(2a) If v ∈ Uλ〈Fin〉\{root(Tin)}, then create a clone of v and add it to the output

FCTS.
(2b) If v ∈ Vλ

1〈Fin〉, then find all the nodes of Pathσ (v,Tin) and, for every such
node w, create a clone of w and add it to the output FCTS (unless w =
root(Tin)).

It is evident that Fout,λ can be constructed in this way, since steps (2a) and (2b)
will create clones of all nodes of types (i) and (ii) in Proposition 3 (except the root
of Tin) and add them to the output FCTS.

Step 3 of (λ, k)-simplification simplifies Fcrit, where F is the output of step 2.
We can construct Fcrit

out,λ directly, without constructing Fout,λ, using a modified ver-
sion of the algorithm described above in which (2a) and (2b) are replaced with:

(2a′) If v ∈ Uλ〈Fin〉 \ {root(Tin)}, and ChildrenTin(v) contains two or more nodes
in Uλ〈Fin〉 ∪ Vλ

1〈Fin〉, then create a clone of v and add it to the output
FCTS.

(2b′) If v ∈ Vλ
1〈Fin〉, then create a clone of the node lastLeafσ (v,Tin) and add it to

the output FCTS.

Here (2b′) assumes that Tin has at least two nodes.

2.5 Elimination of Internal Edges of Length ≤ λ from Fcrit

Step 3 of (λ, k)-simplification is to eliminate internal edges of length ≤ λ from Fcrit,
where F is the FCTS that results from step 2 of (λ, k)-simplification. We now math-
ematically specify the output of step 3, and then present an algorithm which imple-
ments step 3.
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2.5.1 Specification of Simplification Step 3

Let F = (T , �) be any κ-FCTS. Then, for each λ > 0, the result of eliminating
internal edges of length ≤ λ from Fcrit is the κ-FCTS Fcrit〈λ〉 that we will define
below. The definition will use some notation which we now introduce.

The set {�(c)− �(c′) | c, c′ ∈ Crit(F) \ Leaves(F) and c′ ∈ c↓F} will be denoted
by D(F), and d

F

1 < d
F

2 < · · · < d
F

|D(F)| will denote the elements of D(F) in as-

cending order. (Note that all elements of D(F) are positive.) We define d
F

0 = 0. For
any λ > 0, we define predF(λ) = max{d ∈ D(F) ∪ {0} | d < λ}.
Example 5 Let F be the FCTS shown in Fig. 2.7. Then we see from Fig. 2.7 that
Crit(F) \ Leaves(F) = {v1, v4, v5, v15, v16} and D(F) = {1,5,6,7,11,12}. It fol-
lows, for example, that, d

F

1 = 1, d
F

2 = 5, and predF(λ) = 1 for 1 < λ ≤ 5.

Now we define Fcrit〈0〉 = Fcrit and, for all λ > 0, we recursively define Fcrit〈λ〉
to be the κ-FCTS that has the following five properties:

E1: Fcrit〈λ〉 � Fcrit

E2: LCN(Fcrit〈λ〉) = LCN(F)

E3: Leaves(Fcrit〈λ〉) = Leaves(F)

E4: If λ /∈ D(F), then Fcrit〈λ〉 = Fcrit〈predF(λ)〉.
E5: For every c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}) and every

i ∈ {0, . . . , |D(F)| − 1}, we have that c ∈ Nodes(Fcrit〈dF

i+1〉) if and only if

c ∈ Nodes(Fcrit〈dF
i 〉) and �(c) − �(parent

Fcrit〈dFi 〉(c)) > d
F

i+1.

E1 implies that Nodes(Fcrit〈λ〉) ⊆ Nodes(Fcrit) = Crit(F) ∪ {root(F)}, and also
implies that root(Fcrit〈λ〉) = root(F).

Example 6 Figure 2.8 shows the FCTS Fcrit〈λ〉 in the case where F is the FCTS
that is shown in Fig. 2.7 and 1 ≤ λ < 5. Here d

F

1 = 1 and d
F

2 = 5 (as we observed

in Example 5). Since d
F

1 ≤ λ < d
F

2 , it follows from E4 that Fcrit〈λ〉 = Fcrit〈dF

1 〉 =
Fcrit〈1〉. The node v16 in Fig. 2.7 is not a node of Fcrit〈dF

1 〉; indeed, when we

put i = 0 and c = v16, the condition �(c) − �(parent
Fcrit〈dFi 〉(c)) > d

F

i+1 in E5 is

not met since parent
Fcrit〈dF0 〉(v16) = v15 and �(v16) − �(v15) = 1 = d

F

1 . But E1–E5

imply that the other 12 nodes of Fcrit are nodes of Fcrit〈λ〉.

2.5.2 Implementation of Simplification Step 3

It is possible to perform simplification step 3 (i.e., to construct Fcrit〈λ〉 from Fcrit)
by direct application of E1–E5. However, this would require computation of the
sorted sequence d

F

1 < d
F

2 < · · · < d
F
k , where d

F
k is λ or predF(λ) according to

whether λ ∈ D(F) or λ /∈ D(F), followed by k tree traversals that successively find
the nodes of Fcrit〈dF

1 〉,Fcrit〈dF

2 〉, . . . ,Fcrit〈dF
k 〉.
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Fig. 2.8 The effect of eliminating internal edges of length ≤ λ from Fcrit = (T crit, �crit) is shown
here, in the case where F = (T , �) is the FCTS of Fig. 2.7 and 1 ≤ λ < 5. The nodes and edges of
the resulting FCTS Fcrit〈λ〉 are shown as fat/thick black nodes and edges. Other nodes and edges
of the tree T of Fig. 2.7 are colored gray, but two of those nodes (v9 and v11 in Fig. 2.7) and three
of those edges are partially or completely hidden by the thick black edge that joins v4 to v17. Note
that, since 2 is a possible value of λ in this figure, and since F is the result of applying steps 1 and
2 of (λ, k)-simplification to the FCTS shown in Fig. 2.3 in the case λ = 2 and k = 1, the FCTS
shown in this figure is the (2,1)-simplification of the FCTS shown in Fig. 2.3

Algorithm 1 below, which performs just one tree traversal after the initial cloning
step, will usually be a much more efficient implementation of step 3. It inputs a κ-
FCTS Fin = (Tin, �in) and a positive λ, and constructs Fcrit

in 〈λ〉 by creating a clone
(T , �) of Fcrit

in = (T crit
in , �crit

in ) and then labeling each node c of T with a value
c.label such that Fcrit

in 〈λ〉 = (T , �)−{v ∈ Nodes(T ) | v.label ≤ λ}. The correctness
of this algorithm is proved in Appendix A.

If we write h(Fin, λ) to denote the length l ≥ 1 of the longest chain of nodes
v1 
Tin · · · 
Tin vl in Crit(Fin) for which �in(v1) − �in(vl ) ≤ λ, then we see from
the initial step “(T , �) ←− a clone of (T crit

in , �crit
in )” of Algorithm 1 and from the

repeat . . . until loop in labelDescendants (Procedure 1) that, under the as-
sumptions which are stated at the beginning of Sect. 2.4.3, the running time of Al-
gorithm 1 is O(|Nodes(Fin)| + h(Fin, λ) |Crit(Fin)|).

2.6 Demonstration of Potential Biological Applicability

To illustrate the potential usefulness of our simplified FCTSs in identifying struc-
tural differences between macromolecules, we looked for two structures that are
very similar, but not identical. Appropriate data sets were kindly provided by
Roberto Marabini of the Universidad Autónoma de Madrid.
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Algorithm 1: Eliminate Internal Edges of Length ≤ λ from Fcrit

inputs : a κ-FCTS Fin = (Tin, �in); a positive real value λ

output: a κ-FCTS Fout that satisfies Fout � Fcrit
in

(T , �) ←− a clone of (T crit
in , �crit

in );
root(T ).label ←− ∞;
LCN(T ).label ←− ∞;
foreach x ∈ ChildrenT (LCN(T )) do labelDescendants(x,T , �, λ);
Fout ←− (T , �) − {v ∈ Nodes(T ) | v.label ≤ λ};

Procedure 1: labelDescendants(c,T , �, λ)

if c /∈ Leaves(T ) then
c′ ←− c;
repeat

c′ ←− parentT (c′);
c.label ←− �(c) − �(c′);

until (c.label > λ or c.label ≤ c′.label);
foreach x ∈ ChildrenT (c) do labelDescendants(x,T , �, λ);

else c.label ←− ∞;

These data sets originate from the work of San Martín et al. [9], which inves-
tigated some biological questions associated with adenoviruses. These viruses are
responsible for a large number of diseases in humans such as gastrointestinal and
respiratory infections, but can also be used in gene therapy and vaccine delivery [8].
They have an icosahedral shape with a diameter of approximately 900 Å. At each
of the 12 vertices of the icosahedron there is a substructure referred to as a penton,
and the rest of the surface of the icosahedron consists of 240 hexons. To reflect this,
our simplified FCTSs of these viruses would be expected to have 252 leaves, one
for each penton or hexon. This is indeed the case, as we will see.

In the course of their work, San Martín et al. [9] produced a mutant version of
the wildtype version of the adenovirus they were investigating. The two are identical
except for a change in a protein (called IIIa). Surface renderings and central cross-
sections of the two versions are shown in Fig. 2.9. We now describe how, in spite of
their great similarity, the two versions can be distinguished from each other by an
obvious topological difference between their simplified FCTSs.

Each version of the virus studied by San Martín et al. [9] was represented by
a grayscale volume image on a 275 × 275 × 275 array of sample points. We fur-
ther quantized the graylevels in each of these images to a set of just 256 equally
spaced values represented by the integers 0, . . . ,255, where 0 corresponded to the
minimum and 255 the maximum graylevel in the original image. For each resulting
image I, we constructed FCTSκ(I) using 6-adjacency as our adjacency relation κ ,
and computed the (λ, k)-simplification of FCTSκ(I) for various choices of λ and k.
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Fig. 2.9 Adenovirus. Surface rendering (a) and central cross-section (b) of the wildtype version.
Surface rendering (c) and central cross-section (d) of the mutant version

Fig. 2.10 The gray lines show an FCTS (T , �) using the tree representation of Figs. 2.1–2.8. The
black lines show the same FCTS using the tree representation of Fig. 2.11. (In the latter represen-
tation, a node that is neither the root nor a leaf is represented by a horizontal segment, and an edge
from a node p to one of its children c is represented by a vertical segment of length proportional to
�(c) − �(p))

We found that λ = 10 and k = 799 were good choices that yielded topologically
different simplified FCTSs for the two versions of the virus. These simplified FCTSs
are shown in Fig. 2.11, using a tree representation that is explained in Fig. 2.10. Each
simplified FCTS has 252 leaves, corresponding to the 12 pentons and 240 hexons.
For the wildtype version, the lowest critical node is the parent of all 252 leaves;
see Fig. 2.11(a). For the mutant version, the lowest critical node is the parent of the
12 leaves that correspond to pentons, but is the grandparent of the 240 leaves that
correspond to hexons; see Fig. 2.11(b). These simplified FCTSs indicate that for
the mutant version of the virus there is a substantial range of threshold levels (such
as level A in Fig. 2.11(b)) at which the pentons are disconnected from each other
and from the hexons, but the hexons are connected to each other; for the wildtype
version there is no such range of threshold values. Interestingly, San Martín et al. [9]
do not mention this difference between the two versions of the virus, although they
do point out that in images of the mutant version pentons have lower graylevels than
hexons. (The latter can be seen in Fig. 2.9(d), and is also indicated by Fig. 2.11(b);
when the image of the mutant virus is thresholded at the graylevel B in Fig. 2.11(b),
hexons are observable but pentons are not.)

So our simplified FCTSs may possibly have revealed a previously unobserved
difference between the mutant and the wildtype versions of the virus: for the mutant
version, there is a substantial range of threshold values at which the hexons are
connected to each other, but no penton is connected to a hexon or to another penton.
To investigate whether this is a genuine difference between the two versions of the
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Fig. 2.11 (λ, k)-simplifications of FCTSs of wildtype (a) and mutant (b) adenoviruses, where
λ = 10 and k = 799. (The tree representation used in this figure is explained in Fig. 2.10.) In (a),
the lowest critical node (represented by the horizontal line segment) is the parent of all 252 leaves
of the tree. In (b), the lowest critical node (represented by the horizontal line segment above line A)
is the parent of the rightmost 12 leaves, which correspond to pentons, but is the grandparent of the
other 240 leaves, which correspond to hexons

virus or merely a difference between the specific volume images from which we
produced our FCTSs, we carried out a further study.

Ideally, we would have compared simplified FCTSs of, say, 10 independently
reconstructed volume images of each version, but such data were not available to
us. So we conducted the following approximation of such a study.

For each version of the virus, we randomly selected 2000 out of 3000 available
projection images, and used them to reconstruct a volume image on a 275 × 275 ×
275 array of points. This was repeated 10 times.

For each of the 20 resulting volume images, we produced a simplified FCTS
using the above-mentioned parameters. In each of the 10 simplified FCTSs of the
mutant adenovirus, the lowest critical node had 13 children, 12 corresponding to the
pentons and the 13th being the root of a subtree whose leaves corresponded to the
hexons, as in Fig. 2.11(b). But this was not true of the 10 simplified FCTSs of the
wildtype adenovirus; they were all similar to Fig. 2.11(a).

These results provide some evidence to support the hypothesis that images of
the mutant version of the virus can be distinguished from images of the wildtype
version by the existence in the former (but not the latter) of a substantial range of
threshold values with the above-mentioned properties. More investigation would be
needed to confirm this hypothesis.

In any event, this example illustrates how our simplified FCTSs may reveal in-
teresting structural differences between two similar macromolecules.

2.7 Possibilities for Future Work

2.7.1 How Can Our Simplification Method and Theorem 1 Be
Adapted to Contour Trees?

FCTSs are closely related to contour trees, which are also used to represent images
(see, e.g., [12]). Intuitively, a contour tree of an image is an undirected graph each of
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whose points represents a contour—i.e., a connected component of a level set—of a
continuous scalar field derived from the image by interpolation. Contours of scalar
fields derived from 3D images are often called isosurfaces.

To define the contour tree, let I : S → R be an image whose domain S is a finite
set of points in Euclidean n-space R

n (for some n). As usual, we refer to the ele-
ments of S as spels. For simplicity in defining the contour tree, we require that I be
1-to-1—i.e., we require that no two spels have exactly the same graylevel in I. (This
prevents distinct spels from lying on the same contour, and will allow the contour
tree to be defined as a graph whose vertices are spels.) Note that a 1-to-1 image
can be produced from any image by making arbitrarily small graylevel perturba-
tions.

For any adjacency relation α on S, we write Graph(α) to denote the undirected
simple graph whose vertex set is S and whose vertex adjacency relation is α. Recall
that an undirected graph is said to be a tree if it is connected and acyclic.

We will be considering α-FCTSs of I and its negative image −I (which is ob-
tained from I by multiplying each spel’s graylevel by −1). For any x ∈ S, when dis-
cussing FCTSα(I) and FCTSα(−I) we write 〈x〉 to denote either the node Cα(x, I)
of FCTSα(I) or the node Cα(x,−I) of FCTSα(−I).

Now suppose the adjacency relation α is unknown, but we know Graph(α) is
a tree. Then α is uniquely determined by FCTSα(I) and FCTSα(−I). Indeed, it is
not hard to verify that s is an end vertex of Graph(α) whose only α-neighbor is s′
just if in one of FCTSα(I) and FCTSα(−I) we have that 〈s〉 = {s} is a leaf whose
parent is 〈s′〉, and in the other of FCTSα(I) and FCTSα(−I) we have that 〈s〉 has
exactly one child. Further, if s is any end vertex of Graph(α) and the restrictions of
I and α to S \ {s} are denoted by I ′ and α′, then FCTSα′(I′) = FCTSα(I) − {〈s〉}
and FCTSα′(−I′) = FCTSα(−I) − {〈s〉}, from which α′ can be computed (e.g.,
recursively). Algorithm 4.2 in [1], which is based on these two facts, can be
used to construct the tree Graph(α) in O(|S|) time, given I, FCTSα(I), and
FCTSα(−I).

To define a contour tree of I, we first choose a “good” adjacency relation κ

on S. Let L be a geometric simplicial complex whose vertex set is S and whose
union is connected and simply connected. Let κ be the adjacency relation on S

such that (s, t) ∈ κ if and only if s and t are the endpoints of an edge of the com-
plex L .

Now let f : ⋃
L → R be the continuous scalar field obtained when we extend

the image I by linear interpolation over each simplex of L . Let � be the strict
partial order on S such that s � s′ if and only if I(s) < I(s′) and there is a path in⋃

L from s to s′ along which f ’s value increases monotonically from I(s) to I(s′).
Let α(I,L ) be the adjacency relation on S such that (s, s′) ∈ α(I,L ) if and only if
one of the spels s and s′ is an immediate successor of the other with respect to �.
(We say y is an immediate successor of x with respect to � if x �y and there is no z

such that x � z� y.) It can be shown, using the linearity of f on each simplex of L
and, e.g., well known properties of Reeb graphs (see [1, 4]), that FCTSα(I,L)(I) =
FCTSκ (I) and FCTSα(I,L )(−I) = FCTSκ(−I), and that Graph(α(I,L )) is a tree.
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We define the κ-contour tree2 of I to be Graph(α(I,L )). It follows from our
remarks above that this tree is uniquely determined by FCTSκ(I) and FCTSκ(−I),
and that the tree can be constructed in O(|S|) time from I and these two κ-
FCTSs.

In view of the close relationship between contour trees and FCTSs, we are hope-
ful that it will be possible to formulate a simplification method for contour trees that
is similar to our simplification method for FCTSs and is provably robust in the sense
that it can be shown to satisfy an analog of Theorem 1.

2.7.2 Does the Bottleneck Stability Theorem Have an Analog for
FCTSs That Implies Theorem 1?

Let I : S → R be any image whose domain S is finite, and κ any adjacency relation
on S such that S is κ-connected. A descriptor of I that is related to (but contains
less information than) FCTSκ(I) is the 0th persistence diagram of −I based on the
adjacency relation κ . (Here the minus sign reflects the fact that persistence diagrams
are defined in terms of the sublevel sets of filter functions3 whereas FCTSs are
defined in terms of the superlevel sets of images.) The 0th persistence diagram of
−I based on κ is a multiset of points in R× (R∪ {+∞}) that contains one point for
each leaf of FCTSκ (I). The diagram is easily computed4 from FCTSκ(I), but it is
not possible to reconstruct FCTSκ(I) from the diagram.

Step 2 of our simplification method eliminates those leaves of the FCTS that are
represented in the 0th persistence diagram by points (x, y) for which y − x ≤ λ.
Moreover, for any two images I, I′ : S → R, the L∞-distance between the filter
functions used to define the 0th persistence diagrams of −I and −I′ is ‖I − I′‖∞.
For these reasons, our Theorem 1 is vaguely reminiscent of the p = 0 case of the
Bottleneck Stability Theorem for persistence diagrams [2], [4, p. 182], which states

2The tree defined here is the augmented contour tree of [1]. It may have many vertices s that have
just two neighbors, of which one neighbor s′ satisfies I(s′) < I(s) while the other neighbor s′′
satisfies I(s′′) > I(s). Many authors define the contour tree to not include such vertices.
3Persistence diagrams are commonly defined (as in [4, pp. 150–152]) for a filter function f :
K → R, where K is a suitable simplicial complex. To define the 0th persistence diagram of −I
based on the adjacency relation κ , we can take the simplicial complex K to be the simple graph
whose vertex set is S and whose edges join κ-adjacent elements of S, and we can use the filter
function f : K →R for which f (v) = −I(v) if v is a vertex of K , and f (e) = −min(I(x), I(y))

if e is an edge of K that joins the vertices x and y.
4Let FCTSκ (I) = (T , �), and let leaf[1], . . . , leaf[n] be any �-increasing enumeration of the leaves
of T . For 1 ≤ i < n, each leaf leaf[i] is represented in the persistence diagram by a point
(−�(leaf[i]),−�(a)) where a is the closest ancestor of leaf[i] that is an ancestor of at least one
of the leaves leaf[i + 1], . . . , leaf[n]. The last leaf leaf[n] of the �-increasing enumeration is repre-
sented in the persistence diagram by the point (−�(leaf[n]),+∞). The diagram is defined to also
contain, for each z ∈ R, a point (z, z) with countably infinite multiplicity.
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that the bottleneck distance5 between the pth persistence diagrams of two filter
functions cannot exceed the L∞-distance between those functions.

The Bottleneck Stability Theorem appears not to imply our Theorem 1, because
the FCTSs of two images I1 and I2 need not be essentially isomorphic even if −I1

and −I2 have the same persistence diagrams. However, it might be possible to prove
an analogous stability theorem for FCTSs that does imply Theorem 1.

2.7.3 Can Images Be Simplified Using Variants of Our Method?

In view of the natural bijective correspondence between grayscale images (with fi-
nite connected domains) and FCTSs, our method of simplifying FCTSs might also
be construed as a method of simplifying images. Unfortunately we have found that,
when used for that purpose, it will often be unsatisfactory. (One reason is that the
omission of non-critical non-root nodes before performing simplification step 3 may
reduce the graylevels of some spels in the resulting image by too much.) Neverthe-
less, we believe that it may be worthwhile to investigate variants of our method that
might be more useful for image simplification.

2.8 Conclusion

FCTSs can be used as descriptors of EM maps and other grayscale images, but un-
simplified FCTSs are too sensitive to errors in the image. This chapter has specified
a method of simplifying FCTSs that is provably robust (and capable of efficient
implementation). Our main theorem and its corollary (Theorem 1 and Corollary 2)
conservatively quantify the extent of the method’s robustness. We have presented
some experimental evidence that the simplified FCTSs produced by our method are
useful for the exploration of macromolecular databases. We hope further experimen-
tation will yield more evidence of this or suggest fruitful refinements of our method.
Some other avenues for future research have also been discussed.
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Appendix A: Some Properties of Simplification Steps 2 and 3,
and a Proof of the Correctness of Algorithm 1

A.1 Properties of Simplification Step 2

Here we prove the main result of Sect. 2.4.2, and establish other properties of sim-
plification step 2 that are used in our proof of the Main Theorem.

Lemma A1 Let Fin = (Tin, �in) be any κ-FCTS, let λ > 0, and let s and s′ be
any two distinct leaves of a κ-FCTS Fout = (Tout, �out) that results from pruning
Fin by removing branches of length ≤ λ. Then (regardless of which �in-increasing
enumeration of Leaves(Tin) is used to perform the pruning):

(i)
∧

Tout
{s, s′} = ∧

Tin
{s, s′}

(ii) min(�out(s), �out(s′)) − �out(
∧

Tout
{s, s′}) > λ

Proof The hypotheses imply that properties P1–P4 hold with respect to some
�in-increasing enumeration of Leaves(Tin). It follows from P4 that, for all v ∈
Nodes(Tout), every node in v⇓Tin is also a node in v⇓Tout . Therefore v⇓T is the
same set regardless of whether T = Tout or T = Tin. So

∧
T {s, s′} is the same

node regardless of whether T = Tout or T = Tin, since
∧

T {s, s′} is just the ele-
ment of s⇓T ∩ s′⇓T that is a descendant in T of every element of that set. Hence
(i) holds.

To prove (ii), we may assume without loss of generality that, in the �in-increasing
leaf enumeration that is used for pruning, s occurs later than s′. (This assumption im-
plies that min(�in(s), �in(s′)) = �in(s′).) Then, since s′ ∈ Leaves(Tout), property P3
implies that �in(s′) − �in(

∧
Tin

{s, s′}) > λ, which is equivalent to:

min
(
�in(s), �in

(
s′)) − �in

(∧
Tin

{
s, s′}

)
> λ (A1)

But (A1) is equivalent to assertion (ii), because of assertion (i) and the fact that �out
is just the restriction of �in to Nodes(Tout). �

Corollary A2 Let λ be any positive value, and Fout any κ-FCTS that results
from pruning a κ-FCTS Fin by removing branches of length ≤ λ. Then, for all
v ∈ Crit(Fout) \ Leaves(Fout), we have that v ∈ Crit(Fin) \ Leaves(Fin) and
depthFout

(v) > λ.

Proof Let Fout = (Tout, �out), and let v ∈ Crit(Fout) \ Leaves(Fout). Then v =∧
Tout

{s, s′} for some distinct leaves s and s′ of Fout. Now v = ∧
Tin

{s, s′} (by as-
sertion (i) of Lemma A1), and so v ∈ Crit(Fin) \ Leaves(Fin). Moreover, we have
that depthFout

(v) ≥ �out(s) − �out(v) = �out(s) − �out(
∧

Tout
{s, s′}) > λ, where the

second inequality follows from assertion (ii) of Lemma A1. �

Lemma A3 Let Fin = (Tin, �in) be a κ-FCTS, let λ > 0, and let Fout = (Tout, �out)

be the κ-FCTS that results from pruning Fin by removing branches of length ≤ λ
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using an �in-increasing leaf enumeration σ = (leaf[1], . . . , leaf[n]) of Leaves(Tin).
Then:

(a) For all v ∈ Nodes(Tin) \ Nodes(Tout), v⇑Tin ∩ Nodes(Tout) = ∅.
(b) For all v ∈ Nodes(Tin), v ∈ Nodes(Tout) if and only if lastLeafσ (v,Tin) ∈

Leaves(Tout).
(c) For all v ∈ Nodes(Tout), depthFout

(v) = depthFin
(v).

Proof For brevity, we write lastLeafσ (v) for lastLeafσ (v,Tin). Evidently, (a) fol-
lows from P4, and the “if” part of (b) follows from (a). To establish the “only
if” part of (b), let v ∈ Nodes(Tout), and let leaf[i] = lastLeafσ (v). We need to
show that leaf[i] ∈ Nodes(Tout). If i = n then this is true (by property P2), so
let us assume i < n. Let j be any element of the set {i + 1, . . . ,n} (so that
leaf[j ] /∈ Leaves(Tin[v])). Now we claim that leaf[j ] must satisfy �in(leaf[i]) −
�in(

∧
Tin

{leaf[j ], leaf[i]}) > λ.
To see this, let leaf[k] be any leaf of Tout[v]; such a leaf must exist, by P4.

As leaf[i] = lastLeafσ (v), we have that i ≥ k and �in(leaf[i]) ≥ �in(leaf[k]). As
j ∈ {i + 1, . . . ,n}, we have that j ∈ {k + 1, . . . ,n}. Therefore, since leaf[k] ∈
Leaves(Tout), property P3 implies that:

�in
(
leaf[k]) − �in

(∧
Tin

{
leaf[j ], leaf[k]}

)
> λ (A2)

But, since leaf[i] and leaf[k] are leaves of Tin[v] but leaf[j ] is not,
∧

Tin

{
leaf[j ], leaf[i]} = ∧

Tin

{
leaf[j ],v

} = ∧
Tin

{
leaf[j ], leaf[k]}

and (since �in(leaf[i]) ≥ �in(leaf[k])) this implies:

�in
(
leaf[i]) − �in

(∧
Tin

{
leaf[j ], leaf[i]}

)

≥ �in
(
leaf[k]) − �in

(∧
Tin

{
leaf[j ], leaf[k]}

)

This and (A2) imply that our claim is valid (for any j in {i + 1, . . . ,n}). The “only
if” part of (b) follows from this and property P3.

To prove (c), let v ∈ Nodes(Tout). Then lastLeafσ (v) ∈ Leaves(Tout[v]) (by (b)),
and every w ∈ Nodes(Tout[v]) ⊆ Nodes(Tin[v]) satisfies �out(w) = �in(w) ≤
�in(lastLeafσ (v)) = �out(lastLeafσ (v)).

It follows that depthFout
(v) = �out(lastLeafσ (v)) − �out(v) = �in(lastLeafσ (v)) −

�in(v) = depthFin
(v). �

Lemma A4 Let Fin = (Tin, �in) be a κ-FCTS, let λ > 0, and let Fout = (Tout, �out)

be the κ-FCTS that results from pruning Fin by removing branches of length ≤ λ

using an �in-increasing leaf enumeration σ = (leaf[1], . . . , leaf[n]) of Leaves(Tin).
Then:

(a) Nodes(Tout) \ Leaves(Tout) ⊇ Uλ〈Fin〉 ⊇ Crit(Tout) \ Leaves(Tout)

(b) For all v ∈ Vλ〈Fin〉 \ Vλ
1〈Fin〉, v⇑Tin ∩ Nodes(Tout) = ∅.

(c) For all v ∈ Vλ
1〈Fin〉, v⇑Tin ∩ Nodes(Tout) = Pathσ (v,Tin).
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Proof For brevity, we shall write Uλ, Vλ, Vλ
1 , lastLeafσ (v), and Pathσ (v) for

Uλ〈Fin〉, Vλ〈Fin〉, Vλ
1〈Fin〉, lastLeafσ (v,Tin), and Pathσ (v,Tin).

First, we prove (a). The inclusion Uλ ⊇ Crit(Tout) \ Leaves(Tout) follows from
Corollary A2 and Lemma A3(c). Moreover, since P4 implies that Leaves(Tout) ⊆
Leaves(Tin), we have that u /∈ Leaves(Tout) if u ∈ Uλ. So the other inclusion of (a)
will follow if we can show that u ∈ Nodes(Tout) whenever u ∈ Uλ.

Let u be any element of Uλ, and let leaf[i] = lastLeafσ (u). If i = n, then
lastLeafσ (u) ∈ Nodes(Tout) (by property P2) and so u ∈ Nodes(Tout) (because of
P4), as required. Now suppose i < n. Let j be any element of the set {i + 1, . . . ,n}
(so leaf[j ] /∈ Leaves(Tin[u])). Since leaf[i] is a leaf of Tin[u] but leaf[j ] is not, we
have that

∧
Tin

{leaf[j ], leaf[i]} ≺Tin u. Hence:

�in
(
leaf[i]) − �in

(∧
Tin

{
leaf[j ], leaf[i]}

)
> �in

(
leaf[i]) − �in(u)

= depthFin
(u) > λ

We see from this and property P3 that lastLeafσ (u) = leaf[i] ∈ Leaves(Tout), and
hence (in view of P4) that u ∈ Nodes(Tout), as required. This proves (a).

Next, we prove (b). Let v be any node in Vλ \ Vλ
1 . Then it follows from the

definitions of Vλ and Vλ
1 that v �= root(Tin).

Let p = parentTin
(v). Then p ∈ v↓Tin ⊆ Uλ, so we have that:

�in
(
lastLeafσ (p)

) − �in(p) = depthFin
(p) > λ (A3)

Now �in(d) − �in(v) ≤ depthFin
(v) for all d �Tin v. Therefore:

�in(d) − �in(p) ≤ depthFin
(v) + �in(v) − �in(p) ≤ λ for all d �Tin v (A4)

Here the second inequality follows from the definition of Vλ
1 and the facts that p =

parentTin
(v) and v ∈ Vλ \ Vλ

1 . It follows from (A3) and (A4) that lastLeafσ (p) is
not a descendant of v in Tin, and so

∧
Tin

{
lastLeafσ (p), lastLeafσ (v)

} = p (A5)

Since lastLeafσ (v) �Tin v, we deduce from (A4) and (A5) that

�in
(
lastLeafσ (v)

) − �in

(∧
Tin

{
lastLeafσ (p), lastLeafσ (v)

}) ≤ λ (A6)

Since p = parentTin
(v) and lastLeafσ (p) �= lastLeafσ (v) (e.g., by (A5)), the leaf

lastLeafσ (p) must occur later in the �in-increasing enumeration σ than the leaf
lastLeafσ (v). This, (A6), and P3 imply that lastLeafσ (v) /∈ Leaves(Tout). It now
follows from assertion (b) of Lemma A3 that v /∈ Nodes(Tout). This and assertion
(a) of Lemma A3 imply v⇑Tin ∩ Nodes(Tout) = ∅, which proves (b).

Finally, we prove (c). Let v be any node in Vλ
1 . We first make the claim that

lastLeafσ (v) is a leaf of Tout.
If v = root(Tin) then the claim is certainly true (by property P2), so let us assume

v �= root(Tin). Let p = parentTin
(v), and let s be any leaf of Tin that occurs later in

the �in-increasing enumeration σ than lastLeafσ (v). Then s /∈ Leaves(Tin[v]), and
so

∧
Tin

{s, lastLeafσ (v)} 
Tin p, which implies that:



54 G.T. Herman et al.

�in
(
lastLeafσ (v)

) − �in

(∧
Tin

{
s, lastLeafσ (v)

})

≥ �in
(
lastLeafσ (v)

) − �in(p) (A7)

But, since depthFin
(v) = �in(lastLeafσ (v)) − �in(v), we also have that

�in
(
lastLeafσ (v)

) − �in(p) = depthFin
(v) + �in(v) − �in(p) > λ (A8)

where the inequality follows from the definition of Vλ
1 and the facts that p =

parentTin
(v) and v ∈ Vλ

1 . Now it follows from (A7) and (A8) that:

�in
(
lastLeafσ (v)

) − �in

(∧
Tin

{
s, lastLeafσ (v)

})
> λ

Since this is true for every leaf s of Tin that occurs later in the �in-increasing enu-
meration σ than lastLeafσ (v), our claim is justified (by property P3).

If w is any node in Pathσ (v), then w ∈ lastLeafσ (v)⇓Tin and so it follows from
our claim (and P4) that w ∈ Nodes(Tout). Thus every node in Pathσ (v) lies in
v⇑Tin ∩ Nodes(Tout).

It remains only to prove that v⇑Tin ∩ Nodes(Tout) \ Pathσ (v) = ∅. To do this,
we suppose there is a node x ∈ v⇑Tin ∩ Nodes(Tout) \ Pathσ (v) and deduce a
contradiction. As x ∈ v⇑Tin \ Pathσ (v), we have that x /∈ lastLeafσ (v)⇓Tin and
so lastLeafσ (v) �= lastLeafσ (x). Moreover, each of the nodes lastLeafσ (x) and
lastLeafσ (v) is a leaf of Tout (by Lemma A3(b) and our claim).

Let c = ∧
Tout

{lastLeafσ (x), lastLeafσ (v)}. Then we have that c ∈ Crit(Tout),
c /∈ Leaves(Tout), and c = ∧

Tin
{lastLeafσ (x), lastLeafσ (v)} (by assertion (i) of

Lemma A1). The latter implies c �Tin v (as lastLeafσ (x) �Tin x �Tin v and
lastLeafσ (v) �Tin v); and c �Tin v implies depthFin

c ≤ depthFin
v ≤ λ (where the

second inequality follows from the fact that v ∈ Vλ
1 ⊆ Vλ). Hence c /∈ Uλ. But this

contradicts assertion (a) (since c ∈ Crit(Tout)\Leaves(Tout)). It follows that x can-
not exist, and so our proof of (c) is complete. �

We can now prove the main result of Sect. 2.4.2:

Proposition Let Fin = (Tin, �in) be a κ-FCTS, let λ > 0, and let Fout = (Tout, �out)

be the κ-FCTS that results from pruning Fin by removing branches of length ≤
λ using an �in-increasing enumeration σ of Leaves(Tin). Then the nodes of Fout
consist just of:

(i) The nodes of Uλ〈Fin〉.
(ii) The nodes of Pathσ (v,Tin) for each node v in Vλ

1〈Fin〉.

Proof As Uλ〈Fin〉 ⊆ Nodes(Tout) by Lemma A4(a), on putting T = Tin and F =
Fin in (2.1) and taking the intersection of each side with Nodes(Tout) we see that:

Nodes(Tout) = Uλ〈Fin〉 ∪
⋃

v∈Vλ〈Fin〉

(
v⇑Tin ∩ Nodes(Tout)

)

The proposition follows from this and assertions (b) and (c) of Lemma A4. �
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A.2 Properties of Simplification Step 3

Here we establish some properties of simplification step 3 that are used in our proof
of the Main Theorem and our justification of Algorithm 1.

For all j ∈ {1, . . . , |D(F)|}, we see from E1–E5 that Nodes(Fcrit〈δ〉) ⊆
Nodes(Fcrit〈δ′〉) whenever δ ≥ δ′. It follows that Fcrit〈·〉 has the following mono-
tonicity property:

Fcrit〈δ〉 � Fcrit〈δ′〉 whenever δ ≥ δ′ (A9)

In addition, Fcrit〈·〉 has the following four properties for every λ > 0 (as we will
explain below):

E6: For every c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}) and every
i ∈ {0, . . . , |D(F)| − 1}, c ∈ Nodes(Fcrit〈dF

i+1〉) if and only if, for every j ∈
{0, . . . , i}, �(c) − �(parent

Fcrit〈dFj 〉(c)) > d
F

j+1.

E7: For every c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}), c ∈
Nodes(Fcrit〈λ〉) if and only if there is no critical proper ancestor c′ of c in
F such that �(c) − �(c′) ≤ λ and c′ ∈ Nodes(Fcrit〈predF(�(c) − �(c′))〉).

E8: For every c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}), c ∈
Nodes(Fcrit〈λ〉) if �(c) − �(parent

Fcrit(c)) > λ.

E9: For every c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}), if c ∈
Nodes(Fcrit〈λ〉) then �(c) − �(parent

Fcrit〈λ〉(c)) > λ.

Our proof of the correctness of Algorithm 1 will be based on property E7. However,
E1–E3, E8, and E9 are the only properties of simplification step 3 that will be used
in our proof of the Main Theorem.

E6 is easily deduced from E5 by induction on i. Now we establish E7–E9. Let
c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}), and let λ be any positive
value. We first claim that, for any critical proper ancestor c′ of c in F, the following
four conditions are equivalent:

(a) There is some j ∈ {0, . . . , |D(F)| − 1} such that �(c) − �(c′) ≤ d
F

j+1 ≤ λ and

c′ ∈ Nodes(Fcrit〈dF
j 〉).

(b) There is some j ∈ {0, . . . , |D(F)| − 1} such that �(c) − �(c′) ≤ d
F

j+1 ≤ λ and

c′ ∈ Nodes(Fcrit〈predF(�(c) − �(c′))〉).
(c) �(c) − �(c′) ≤ λ and c′ ∈ Nodes(Fcrit〈predF(�(c) − �(c′))〉).
(d) There is some j ∈ {0, . . . , |D(F)| − 1} such that �(c) − �(c′) = d

F

j+1 ≤ λ and

c′ ∈ Nodes(Fcrit〈dF
j 〉).

Here (a) implies (b) because of the monotonicity property (A9) and the fact that if
�(c) − �(c′) ≤ d

F

j+1 then predF(�(c) − �(c′)) ≤ d
F
j . Evidently, (b) implies (c), and

(d) implies (a). For any critical proper ancestor c′ of c in F, �(c)− �(c′) = d
F

j+1 and

predF(�(c) − �(c′)) = d
F
j for some j ∈ {0, . . . , |D(F)| − 1}, and so (c) implies (d).

This justifies our claim that (a)–(d) are equivalent.
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Next, we observe that c ∈ Nodes(Fcrit〈λ〉) holds if and only if c satisfies �(c) −
�(parent

Fcrit〈dFj 〉(c)) > d
F

j+1 for all j ∈ {0, . . . , |D(F)| − 1} such that d
F

j+1 ≤ λ.

(This follows from E6 when λ ∈ D(F). It remains true if λ /∈ D(F), because of
E4.) So c /∈ Nodes(Fcrit〈λ〉) just if there is some j ∈ {0, . . . , |D(F)| − 1} such that
�(c) − �(parent

Fcrit〈dFj 〉(c)) ≤ d
F

j+1 ≤ λ. Thus c /∈ Nodes(Fcrit〈λ〉) just if (a) holds

for some critical proper ancestor c′ of c in F. Equivalently, c /∈ Nodes(Fcrit〈λ〉) just
if (c) holds for some critical proper ancestor c′ of c in F. This proves E7. E8 follows
from the “if” part of E7.

Suppose the node c violated E9. Then c ∈ Nodes(Fcrit〈λ〉). Moreover, when
c′ = parent

Fcrit〈λ〉(c) we would have that �(c) − �(c′) ≤ λ and also that c′ ∈
Nodes(Fcrit〈predF(�(c) − �(c′))〉), where the latter follows from the former, the
fact that c′ ∈ Nodes(Fcrit〈λ〉), and the monotonicity property (A9). But this would
contradict the “only if” part of E7. So E9 holds.

A.3 Justification of Algorithm 1

The correctness of Algorithm 1 will be deduced from Lemma A5 and Corollary A6
below.

Let F = (T , �) be any κ-FCTS, and let c be any node of Fcrit. Then we define
δλ(c,F) = ∞ if c ∈ Leaves(F) ∪ {LCN(F)} ∪ {root(F)}, and we define δλ(c,F) =
�(c) − �(aλ(c,F)) otherwise, where aλ(c,F) is the closest critical proper ancestor
c′ of c in F such that

either �(c) − �(c′) > λ

or �(c) − �
(
c′) ≤ λ and c′ ∈ Nodes

(
Fcrit〈predF

(
�(c) − �

(
c′))〉)

aλ(c,F) exists for all c ∈ Nodes(Fcrit)\ (Leaves(F)∪{LCN(F)}∪ {root(F)}), be-
cause when c′ = LCN(F) we see from E2 that c′ ∈ Nodes(Fcrit〈μ〉) for every μ ≥ 0
and so c′ must satisfy the “either” or the “or” condition. Now δλ(·,F) satisfies the
following condition:

Lemma A5 Let 0 ≤ μ ≤ λ and let F = (T , �) be any κ-FCTS. Then for all c ∈
Nodes(Fcrit) we have that δλ(c,F) > μ if and only if c ∈ Nodes(Fcrit〈μ〉).

Proof Suppose c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}). Then
δλ(c,F) > μ holds just if �(c) − �(aλ(c,F)) > μ, and since μ ≤ λ we see from
the definition of aλ(c,F) that this holds just if no critical proper ancestor c′ of c in
F satisfies �(c) − �(c′) ≤ μ and c′ ∈ Nodes(Fcrit〈predF(�(c) − �(c′))〉). So in this
case the lemma follows from E7.

The lemma also holds if c ∈ Leaves(F)∪{LCN(F)}∪{root(F)}, because in that
case δλ(c,F) = ∞ > μ and E1–E3 imply c ∈ Nodes(Fcrit〈μ〉). �
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Corollary A6 Let λ be any positive value, let F = (T , �) be any κ-FCTS, and let
c ∈ Nodes(Fcrit) \ (Leaves(F) ∪ {LCN(F)} ∪ {root(F)}). Then δλ(c,F) = �(c) −
�(a), where a is the closest critical proper ancestor c′ of c in F such that

either �(c) − �
(
c′) > λ

or �(c) − �
(
c′) ≤ λ and �(c) − �

(
c′) ≤ δλ

(
c′,F

)

Proof We just have to show that a = aλ(c,F). The definition of aλ(c,F) dif-
fers from the definition of a only in the or condition “�(c) − �(c′) ≤ λ and c′ ∈
Nodes(Fcrit〈predF(�(c) − �(c′))〉)”.

On putting μ = predF(�(c) − �(c′)) in Lemma A5, we see that this condition
holds if and only if �(c) − �(c′) ≤ λ and predF(�(c) − �(c′)) < δλ(c′,F), which
is equivalent to the or condition in the definition of a (because either δλ(c′,F) =
�(c) − �(aλ(c′,F)) ∈ D(F) or δλ(c′,F) = ∞). So a = aλ(c,F), as required. �

We can now explain why Algorithm 1 is correct. The algorithm sets (T , �) to a
clone of Fcrit

in = (T crit
in , �crit

in ). Writing F for (T , �), we claim that the label c.label

given by the algorithm to each node c of F = Fcrit is just the value δλ(c,F). Assum-
ing this claim is valid, the correctness of the algorithm follows from Lemma A5. So
it remains only to verify the claim.

The claim is certainly valid if c is root(F) or LCN(F), because those nodes are
given the label ∞.

We see that the algorithm does a top-down traversal of T [LCN(F)], during
which the procedure labelDescendants is executed once for each proper de-
scendant c of LCN(F) in F. When labelDescendants is executed for such a
node c that is a leaf, it gives c the label ∞. So the claim is valid for each proper
descendant c of LCN(F) that is a leaf.

When labelDescendants is executed for a proper descendant c of LCN(F)

that is not a leaf, the repeat loop in the procedure is executed. It follows from
Corollary A6 that this loop labels c with the value δλ(c,F). (Note that, when the
loop is executed, c′.label = δλ(c′,F) for each proper ancestor c′ of c in F.) There-
fore the claim is also valid for each proper descendant c of LCN(F) that is not a
leaf.

Thus the claim is valid for all nodes c of F= Fcrit, and Algorithm 1 is correct.

Appendix B: A Constructive Proof of Theorem 1

For any adjacency relation κ , any image I whose domain is finite and κ-connected,
any λ > 0, and any integer k ≥ 0, let us say that the image I is (λ, k)-good with
respect to κ if Λκ(I) > λ and Kκ(I) > k. Also, let us say that an image I′ is an
ε-perturbation of an image I if I′ has the same domain as I and ‖I′ − I‖∞ ≤ ε. Then
Theorem 1 can be deduced from the following lemma:
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Fundamental Lemma Let κ be any adjacency relation and Igood : S →R an image
whose domain S is finite and κ-connected. Let ε be a positive value, let k be a
nonnegative integer for which Igood is (4ε, k)-good with respect to κ , and let I′ be
an ε-perturbation of Igood. Then there is an essential isomorphism of FCTSκ(Igood)

to the (2ε, k)-simplification of FCTSκ(I′) that is level-preserving to within ε.

Proof of Theorem 1, assuming the Fundamental Lemma is valid Suppose I, λ, and
k satisfy the hypotheses of Theorem 1, so that 0 < λ < Λκ(I)/2 and 0 ≤ k < Kκ(I).
Let I′ be any image that satisfies the conditions stated in the theorem (i.e., let I′ be
any image whose domain is the same as that of I and which satisfies the condition
‖I′ − I‖∞ ≤ λ/2). Then we need to show that the conclusion of Theorem 1 holds—
i.e., that there is an essential isomorphism of the (λ, k)-simplification of FCTSκ(I′)
to FCTSκ(I) that is level-preserving to within λ/2. We now deduce this from the
Fundamental Lemma.

Let Igood = I, and let ε = λ/2. Then 4ε = 2λ < Λκ(I) = Λκ(Igood) and k <

Kκ(I) = Kκ(Igood), so that Igood is (4ε, k)-good with respect to κ . We also have that
‖I′ − Igood‖∞ = ‖I′ − I‖∞ ≤ λ/2 = ε, so that I′ is a ε-perturbation of Igood. Thus
Igood = I and I′ satisfy the hypotheses of the Fundamental Lemma, and must there-
fore satisfy the conclusion of the lemma, which implies the conclusion of Theorem 1
since 2ε = λ. �

We now prove the Fundamental Lemma by constructing an explicit essential iso-
morphism of FCTSκ(Igood) to the (2ε, k)-simplification of FCTSκ (I′) that is level-
preserving to within ε.

Let Fgood = (Tgood, �good) = FCTSκ(Igood), and let F′ = (T ′, �′) = FCTSκ(I′).
Let F1 = (T1, �1) be the κ-FCTS that results from pruning F′ by removing nodes
of size ≤ k, and let I1 be the image IF1 , so that F1 = FCTSκ(I1). Let F2 = (T2, �2)

be the κ-FCTS that results from pruning F1 by removing branches of length ≤ 2ε,
and let F3 = (T3, �3) be the κ-FCTS that results from eliminating internal edges
of length ≤ 2ε from Fcrit

2 . Then F3 = (T3, �3) is the (2ε, k)-simplification of
FCTSκ (I′), so what we want to do is to construct an essential isomorphism of
Fgood to F3 that is level-preserving to within ε. We will do this in three steps:

Step 1: We define a suitable mapping φ : Leaves(Tgood) → Leaves(T1).
Step 2: We show that φ is 1-to-1, and that the range of the mapping φ is exactly the

set of all the leaves of the subtree T2 of T1. Thereafter, we regard φ as a
bijection φ : Leaves(Tgood) → Leaves(T2).

Step 3: We extend φ to a mapping ϕ : Crit(Tgood) → Crit(T2) by defining
ϕ(u) = ∧

T2
φ[Leaves(Tgood[u])]. We then establish that, for all u,u′ ∈

Crit(Tgood), ϕ(u) 
T2 ϕ(u′) if and only if u 
Tgood u′, so that ϕ is
1-to-1 and order-preserving. We also show that the range of ϕ is the sub-
set Crit(T3) of Crit(T2), and that |�3(ϕ(u)) − �good(u)| ≤ ε for every
u ∈ Crit(Tgood). Hence we can regard ϕ as a mapping ϕ : Crit(Tgood) →
Crit(T3) and, when so regarded, ϕ is an essential isomorphism of Fgood to
F3 that is level-preserving to within ε.
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Note that the extension of φ to ϕ in step 3 is very natural because, if T is any
rooted tree and u ∈ Crit(T ), then u = ∧

T Leaves(T [u]). (In fact u ∈ Crit(T ) if
and only if u ∈ Nodes(T ) and u = ∧

T Leaves(T [u]).)

B.1 Step 1 of the Proof of the Fundamental Lemma

We begin by defining a class of symmetric and transitive relations (on spels) that
will be used in our definition of the mapping φ.

If I : S→ R is an image and τ ∈R, then we write s �I≥τ� t to mean that s, t ∈ S

and t ∈ Cκ(s, I, τ ). It is readily confirmed that �I≥τ� is a symmetric and transitive
relation (which depends on κ), and that s �I≥τ�s if and only if I(s) ≥ τ . Moreover,
if s �I≥τ1� t and t �I≥τ2�u then s �I≥min(τ1,τ2)�u.

Now let Cκ (v, Igood) be any leaf of Tgood, and let z be any spel such that

z ∈ arg min
u�Igood≥Igood(v)−2ε�v

I1(u) (B1)

It follows from (B1) that:

Cκ (z, I1) ⊇ {
u

∣
∣ u�Igood≥Igood(v)−2ε�v

} = Cκ

(
v, Igood, Igood(v) − 2ε

)
(B2)

Next, we define:

M
(
Cκ (v, Igood)

) = Leaves
(
T1

[
Cκ (z, I1)

])
(B3)

The set M(Cκ (v, Igood)) is well defined by (B3) for the following reasons. First, if v′
is any spel such that Cκ (v′, Igood) = Cκ (v, Igood) (so that Igood(v′) = Igood(v)) then
the condition obtained from (B1) when we replace v with v′ is equivalent to (B1).
Second, if z′ is any spel that belongs to the set in (B1), then Cκ(z′, I1) = Cκ (z, I1)

(since I1(z
′) = I1(z), and (B2) implies z′ ∈ Cκ (z, I1)).

We can now define the mapping φ : Leaves(Tgood) → Leaves(T1) by defining
φ(Cκ (v, Igood)) to be the element of M(Cκ (v, Igood)) that occurs later in the �1-
increasing leaf enumeration that is used in pruning (T1, �1) (to produce (T2, �2))
than all other elements of M(Cκ (v, Igood)). Note that if M(Cκ (v, Igood)) has just one
element, then φ(Cκ (v, Igood)) is that element.

This completes step 1 of the proof of the Fundamental Lemma.

B.2 Some Useful Observations

Steps 2 and 3 of the proof of the Fundamental Lemma will be based on the following
observations:

A. If (T , �) = FCTSκ(I), where I is an arbitrary image whose domain is finite and
κ-connected, and ∅ �= S ⊆ Nodes(T ), then �(

∧
T S) is the greatest real value τ

such that s �I≥τ� t for all spels s, t ∈ ⋃
S.
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B. Whenever ∅ �= L � L′ ⊆ Leaves(Tgood) and
∧

Tgood
L′ �= ∧

Tgood
L, we have

that �good(
∧

Tgood
L′) < �good(

∧
Tgood

L) − 4ε.
C. If v ∈ v ∈ Leaves(Tgood), u ∈ Nodes(Tgood), and v ��Tgood u, then we have that

�good(
∧

Tgood
{u,v}) < �good(v) − 4ε = Igood(v) − 4ε.

D. If Cκ (v, Igood) ∈ Leaves(Tgood) and u�Igood≥Igood(v)−4ε�v, then we have that
u�Igood≥Igood(u)�v or, equivalently, Cκ (u, Igood) ⊇ Cκ (v, Igood).

E. If Cκ (x, I1) ∈ Leaves(T1), then Cκ (x, I1) ∈ Leaves(T2) if and only if there is
no node Cκ (y, I1) ∈ Leaves(T1) that satisfies both of the following conditions:
(i) x �I1≥I1(x)−2ε�y

(ii) The leaf Cκ(y, I1) occurs later in the �1-increasing leaf enumeration that is
used in pruning (T1, �1) to produce (T2, �2) than the leaf Cκ (x, I1).

Here A is a consequence of the definitions of FCTSκ(I) and
∧

T S. (The special
case of A in which S ⊆ Leaves(T ) is of particular interest; note that in this case
s ∈ ⋃

S if and only if Cκ (s, I) ∈ S.) B is a consequence of the fact that Λκ(Igood) >

4ε, C can be deduced from B by putting L = {v} and L′ = {v} ∪ Leaves(Tgood[u]),
and D can be deduced from A and C.

Assertion E is a consequence of A and the fact that (T2, �2) is the result of
pruning (T1, �1) by removing branches of length ≤ 2ε. In view of assertion (ii) of
Lemma A1, we also have the following related fact:

E′. �1(
∧

T1
{z, z′}) < min(�1(z), �1(z′)) − 2ε whenever z and z′ are distinct leaves

of T2.

We could of course replace �1 with �2 in E′. Moreover, in view of assertion (i) of
Lemma A1, we could also replace

∧
T1

with
∧

T2
.

Now let x be any spel in S. As F1 is the result of pruning FCTSκ (I′) = (T ′, �′)
by removing nodes of size ≤ k, and I1 = IF1 , we see from the definition of IF1 that
I1(x) = max{�′(u) | u ∈ Nodes(T ′), |u| ≥ k + 1, and x ∈ u}. This is equivalent to

I1(x) = max
{
I′(y)

∣
∣ y ∈ S, x ∈ Cκ

(
y, I′), and

∣
∣Cκ

(
y, I′)∣∣ ≥ k + 1

}
(B4)

since the nodes u ∈ Nodes(T ′) for which x ∈ u are just the sets Cκ (y, I′) for which
x ∈ Cκ (y, I′). Now we claim that:

I1(x) = max
{
τ

∣
∣
∣
∣Cκ

(
x, I′, τ

)∣
∣ ≥ k + 1

}
(B5)

To see this, we first observe that if y satisfies x ∈ Cκ (y, I′) then y also satisfies
Cκ (y, I′) = Cκ(x, I′, I′(y)). It follows from this observation that each element of
the set {I′(y) | y ∈ S, x ∈ Cκ (y, I′), and |Cκ (y, I′)| ≥ k + 1} in (B4) belongs to the
set {I′(y) | y ∈ S and |Cκ (x, I′, I′(y))| ≥ k + 1} and therefore belongs to the set {τ |
|Cκ (x, I′, τ )| ≥ k + 1} in our claim (B5). So the right side of (B5) is no less than the
right side of (B4); it remains to show that it is no greater.

For every τ ≤ I′(x), let y(τ, x) be any spel in arg mins∈Cκ (x,I′,τ ) I′(s), so that
I′(y(τ, x)) ≥ τ , and it is easy to see that

Cκ

(
y(τ, x), I′) = Cκ

(
x, I′, τ

)
(B6)

since I′ ≥ I′(y(τ, x)) at every spel in Cκ (x, I′, τ ). Now if τ0 is any element of the
set {τ | |Cκ (x, I′, τ )| ≥ k + 1}, then we have that I′(y(τ0, x)) ≥ τ0 and we see from
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(B6) that |Cκ (y(τ0, x), I′)| ≥ k + 1 and x ∈ Cκ(y(τ0, x), I′), so that I′(y(τ0, x)) is
an element of {I′(y) | y ∈ S, x ∈ Cκ (y, I′), and |Cκ (y, I′)| ≥ k + 1} that is no less
than τ0. This shows that the right side of (B4) is no less than the right side of (B5).
Hence the right sides of (B4) and (B5) are equal, and so our claim (B5) follows from
(B4).

Next, we establish the following properties of I1:

F. I1 is an ε-perturbation of Igood, and if (Ia, Ib) = (I1, Igood) or (Igood, I1) then for
any τ, δ ∈ R and any spels s, t, u ∈ S we have that:
(i) If s �Ia≥τ� t then s �Ib≥τ−ε� t .

(ii) If s �Ia≥Ia(u)−δ� t then s �Ib≥Ib(u)−δ−2ε� t .

To see that I1 has these properties, let x be any spel in S and note that Cκ(x, Igood,

τ ) ⊆ Cκ (x, I′, τ − ε) for every τ ∈ R since ‖I′ − Igood‖∞ ≤ ε. On putting
τ = Igood(x), we deduce that Cκ (x, I′, Igood(x) − ε) ⊇ Cκ (x, Igood, Igood(x)) =
Cκ (x, Igood), whence |Cκ (x, I′, Igood(x) − ε)| ≥ |Cκ (x, Igood)| ≥ k + 1 (as
Kκ(Igood) > k). It follows from this and (B5) that I1(x) ≥ Igood(x)− ε. On the other
hand, whenever τ > Igood(x) + ε we have that I′(x) < τ (as ‖I′ − Igood‖∞ ≤ ε),
which implies that |Cκ (x, I′, τ )| = 0 and hence (by (B5)) that I1(x) < τ . From this
it follows that I1(x) ≤ Igood(x) + ε. This shows that I1 is an ε-perturbation of Igood,
as F asserts. Now (i) follows immediately, and (ii) can be deduced from (i) by
putting τ = Ia(u) − δ, since the fact that Ia is an ε-perturbation of Ib implies that
Ia(u) − δ ≥ Ib(u) − δ − ε for every u ∈ S.

B.3 Step 2 of the Proof of the Fundamental Lemma

The main goals of this step are to show that the mapping φ defined in step 1 of
the proof is 1-to-1 and that the range of φ is exactly the subset Leaves(T2) of
Leaves(T1). This will allow us to regard φ as a bijection φ : Leaves(Tgood) →
Leaves(T2).

We first state and prove the following easy lemma:

Lemma B1 Let Cκ (v, Igood) be any leaf of Tgood, let x be any spel in S that satisfies
x �Igood≥Igood(v)−2ε�v, and let s be any leaf of T1 such that s �T1 Cκ (x, I1). Then
s ∈ M(Cκ (v, Igood)).

Proof Let z be a spel that satisfies (B1) with respect to v. Then (B2) implies
that x ∈ Cκ(z, I1) and hence that Cκ (x, I1) �T1 Cκ (z, I1). This and (B3) imply
s ∈ M(Cκ (v, Igood)). �

Next, we establish the following properties of M and the mapping φ:

G. The following are true for any leaf Cκ (v, Igood) of Tgood:
(a) If Cκ (y, I1) ∈ M(Cκ (v, Igood)), then:
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(i) y �Igood≥Igood(v)−4ε�v

(ii) y �Igood≥Igood(y)�v

(iii) y �I1≥I1(y)−2ε�v

(b) If Cκ (y, I1) = φ(Cκ (v, Igood)), then:
(i) Igood(v) + ε ≥ I1(y) ≥ I1(v) ≥ Igood(v) − ε

(ii) y �Igood≥Igood(v)−2ε�v

(iii) Cκ (y, I1) ∈ Leaves(T2)

To establish (a), let Cκ (v, Igood) be any leaf of Tgood and let Cκ(y, I1) be an ar-
bitrary element of M(Cκ (v, Igood)). Then it follows from the definition of the set
M(Cκ (v, Igood)) that Cκ (y, I1) ⊆ Cκ (z, I1) for some spel z that satisfies the condi-
tion v �Igood≥Igood(v)−2ε�z (which implies Igood(z) ≥ Igood(v)−2ε). Since Cκ (y, I1)

⊆ Cκ (z, I1), we have that z�I1≥I1(z)�y. This implies z�Igood≥Igood(z)−2ε�y (in
view of assertion (ii) of F), which implies z�Igood≥Igood(v)−4ε�y (as Igood(z) ≥
Igood(v) − 2ε).

Combining z�Igood≥Igood(v)−4ε�y with v �Igood≥Igood(v)−2ε�z, we deduce asser-
tion (i) of (a). Now (ii) follows from (i) and D because Cκ (v, Igood) ∈ Leaves(Tgood),
and (iii) follows from (ii) and F.

Now we establish (b). Suppose Cκ (y, I1) = φ(Cκ (v, Igood)). Consider the node
Cκ (v, I1) of T1. Let s be a leaf of T1 such that s �T1 Cκ (v, I1). Then we have
that s ∈ M(Cκ (v, Igood)), by Lemma B1. Hence �1(Cκ (y, I1)) ≥ �1(s) (as s cannot
occur later in the �1-increasing leaf enumeration that is used in pruning (T1, �1)

than φ(Cκ (v, Igood)) = Cκ (y, I1), by the definition of φ(Cκ (v, Igood))). Therefore

I1(y) = �1
(
Cκ (y, I1)

) ≥ �1(s) ≥ �1
(
Cκ (v, I1)

) = I1(v) (B7)

which establishes the second inequality of assertion (i) of (b). The third inequality
of (i) follows from F. Now Igood(v) ≥ Igood(y) (by assertion (ii) of (a)). This implies
Igood(v) ≥ I1(y)− ε (by F), which is equivalent to the first inequality of assertion (i)
of (b). This establishes assertion (i) of (b). It follows from F and assertion (i) of (b)
that Igood(y) ≥ Igood(v) − 2ε. Assertion (ii) of (b) follows from this and assertion
(ii) of (a).

To see that assertion (iii) of (b) holds, let Cκ(w, I1) be any leaf of T1 that occurs
later in the �1-increasing leaf enumeration that is used in pruning (T1, �1) than
φ(Cκ (v, Igood)) = Cκ (y, I1). Then it follows from the definitions of φ(Cκ (v, Igood))

and of an �1-increasing leaf enumeration that:

• Cκ (w, I1) /∈M(Cκ (v, Igood))

• I1(w) = �1(Cκ (w, I1)) ≥ �1(Cκ (y, I1)) = I1(y)

As I1(w) ≥ I1(y), (B7) implies that I1(w) ≥ I1(v), and now it follows from F that
Igood(w) ≥ Igood(v)− 2ε. So Cκ(v, Igood) ��Tgood Cκ (w, Igood); otherwise the spel w

would satisfy w�Igood≥Igood(w)�v, which would imply that w�Igood≥Igood(v)−2ε�v

(since Igood(w) ≥ Igood(v) − 2ε), which would in turn imply that Cκ (w, I1) is an
element of M(Cκ (v, Igood)) (by Lemma B1), which is false as we saw above.

Since Cκ (v, Igood) ��Tgood Cκ (w, Igood), it follows from C and A that w does not
satisfy w�Igood≥Igood(v)−4ε�v. This and assertion (ii) of F imply that w does not
satisfy w�I1≥I1(v)−2ε�v, and so (since I1(y) ≥ I1(v), by (B7)) w does not satisfy
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w�I1≥I1(y)−2ε�v. But we know from assertion (iii) of (a) that y �I1≥I1(y)−2ε�v,
so w also does not satisfy w�I1≥I1(y)−2ε�y. As Cκ (w, I1) is an arbitrary leaf of T1
that occurs later in the �1-increasing leaf enumeration used in pruning (T1, �1) than
the leaf φ(Cκ (v, Igood)), we see from E that φ(Cκ (v, Igood)) ∈ Leaves(T2)—i.e.,
assertion (iii) of (b) holds.

Since φ(Cκ (v, Igood)) ∈ Leaves(T2) for every leaf Cκ (v, Igood) of Tgood, we can
regard φ as a mapping φ : Leaves(Tgood) → Leaves(T2), and we will do this from
now on.

We next show that φ : Leaves(Tgood) → Leaves(T2) is 1-to-1:

H. φ(v) �= φ(v′) whenever v and v′ are distinct leaves of Tgood.

Indeed, let Cκ (va, Igood) and Cκ (vb, Igood) be any two distinct leaves of Tgood. To
establish H, it is enough to show that M(Cκ (va, Igood)) and M(Cκ (vb, Igood)) are
disjoint. Suppose this is not the case. Then there is a leaf Cκ (x, I1) of T1 such that
Cκ (x, I1) ∈ M(Cκ(va, Igood)) and Cκ (x, I1) ∈ M(Cκ (vb, Igood)). Now assertion (i) of
part (a) of G implies that va �Igood≥Igood(va)−4ε�x and that vb �Igood≥Igood(vb)−4ε�x.

Assuming without loss of generality that Igood(va) ≤ Igood(vb), these two prop-
erties imply that va �Igood≥Igood(va)−4ε�vb, which is impossible in view of C and A.
This contradiction establishes H and shows that φ is 1-to-1.

Next, we show that:

I. Leaves(T2) \ φ[Leaves(Tgood)] = ∅
To justify I, let Cκ (x, I1) be any element of Leaves(T1) \ φ[Leaves(Tgood)]. Then
what we need to show is that Cκ(x, I1) /∈ Leaves(T2).

Let Cκ(v, Igood) be a leaf of Tgood such that Cκ (x, Igood) ⊇ Cκ (v, Igood). Then
x �Igood≥Igood(x)�v and so it follows from F that x �I1≥I1(x)−2ε�v. Let Cκ (y, I1) =
φ(Cκ (v, Igood)). We now claim that:

• Cκ (y, I1) occurs later in the �1-increasing leaf enumeration that is used in pruning
(T1, �1) than Cκ(x, I1).

Now we justify this claim. Just one of the following is true:

(a) Igood(v) − 2ε > Igood(x)

(b) Igood(x) ≥ Igood(v) − 2ε

In case (a) it follows from F that I1(v) > I1(x), and so I1(y) > I1(x) (since
I1(y) ≥ I1(v), by assertion (i) of part (b) of G); thus our claim is valid.

In case (b), we first observe that, since x �Igood≥Igood(x)�v, (b) implies that
x �Igood≥Igood(v)−2ε�v, so that Cκ(x, I1) ∈M(Cκ (v, Igood)) (by Lemma B1). There-
fore Cκ(x, I1) ∈ M(Cκ (v, Igood)) \ {φ(Cκ (v, Igood))}, because Cκ (x, I1) is an el-
ement of Leaves(T1) \ φ[Leaves(Tgood)]. As Cκ (y, I1) = φ(Cκ (v, Igood)) and
Cκ (x, I1) ∈ M(Cκ (v, Igood)) \ {φ(Cκ (v, Igood))}, it follows from the definition of
φ that our claim is again valid.

In either case, we have that x �I1≥I1(x)−2ε�v (as we saw above), and the claim
implies I1(y) ≥ I1(x). So, since we see from assertion (iii) of part (a) of G that
v �I1≥I1(y)−2ε�y, we also have that x �I1≥I1(x)−2ε�y. From this, E, and the above
claim, we deduce that Cκ (x, I1) /∈ Leaves(T2). This justifies I.
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It follows from H and I that φ : Leaves(Tgood) → Leaves(T2) is a bijection. This
completes step 2 of the proof of the Fundamental Lemma.

B.4 Step 3 of the Proof of the Fundamental Lemma

We now extend φ to a mapping ϕ : Crit(Tgood) → Crit(T2) by defining ϕ(u) =∧
T2

φ[Leaves(Tgood[u])]. We will establish two properties of the mapping ϕ which
together imply that ϕ is an essential isomorphism of Fgood to F3. The first property
is that, for all u,u′ ∈ Crit(Tgood), ϕ(u) 
T2 ϕ(u′) if and only if u 
Tgood u′ (so that
ϕ is an order-preserving injection). The second property is that ϕ[Crit(Tgood)] =
Crit(T3). To establish these two properties, we first show that:

J. |�2(
∧

T2
φ[L]) − �good(

∧
Tgood

L)| ≤ ε whenever ∅ �= L ⊆ Leaves(Tgood).

Indeed, suppose ∅ �= L ⊆ Leaves(Tgood). If |L| = 1, then J is an immediate conse-
quence of assertion (i) of part (b) of G, so we will assume |L| ≥ 2.

For brevity, we will write τL for �good(
∧

Tgood
L) and τφ[L] for �2(

∧
T2

φ[L]), so
that J can be written as |τφ[L] − τL| ≤ ε.

We first show that τφ[L] ≥ τL − ε. For this purpose, let Cκ (x, I1) and Cκ (y, I1)

be any two distinct elements of φ[L]. Then Cκ(x, I1) = φ(Cκ (u, Igood)) and
Cκ (y, I1) = φ(Cκ (v, Igood)), where Cκ (u, Igood) and Cκ (v, Igood) are two distinct
elements of L. From A and the definition of τL we see that u�Igood≥τL�v. This and
F imply that u�I1≥τL−ε�v. We see from the definition of φ and assertion (iii) of
part (a) of G that x �I1≥I1(x)−2ε�u and y �I1≥I1(y)−2ε�v. Combining the last three
observations, we deduce that:

x �I1≥min
(
τL−ε,I1(x)−2ε,I1(y)−2ε

)�y (B8)

However, it follows from C and the definition of τL that

τL ≤ �good

(∧
Tgood

{
Cκ (u, Igood),Cκ (v, Igood)

})

< min
(
�good

(
Cκ(u, Igood)

) − 4ε, �good
(
Cκ (v, Igood)

) − 4ε
)

= min
(
Igood(u) − 4ε, Igood(v) − 4ε

)

which implies that τL − ε < min(Igood(u) − 5ε, Igood(v) − 5ε), which implies that
τL − ε < min(I1(u) − 4ε, I1(v) − 4ε) (in view of F), which in turn implies that
τL − ε < min(I1(x) − 4ε, I1(y) − 4ε) (by assertion (i) of part (b) of G). So (B8) can
be simplified to x �I1≥τL−ε�y. It now follows from A that τφ[L] ≥ τL − ε (since
Cκ (x, I1) and Cκ (y, I1) are arbitrary distinct elements of φ[L]), as required.

To complete the proof of J, we show that τL ≥ τφ[L] − ε. This time we let
Cκ (u, Igood) and Cκ (v, Igood) be any two distinct elements of L, and then de-
fine Cκ (x, I1) = φ(Cκ (u, Igood)) and Cκ (y, I1) = φ(Cκ (v, Igood)), so that Cκ (x, I1),
Cκ (y, I1) ∈ φ[L]. From A and the definition of τφ[L] we see that x �I1≥τφ[L]�y. This
and F imply that x �Igood≥τφ[L]−ε�y. We see from assertion (ii) of part (b) of G that
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u�Igood≥Igood(u)−2ε�x; we similarly have that v �Igood≥Igood(v)−2ε�y. Combining
the last three observations, we see that:

u�Igood≥min
(
τφ[L]−ε,Igood(u)−2ε,Igood(v)−2ε

)�v (B9)

However, it follows from the definition of τφ[L] and E′ that:

τφ[L] ≤ �2

(∧
T2

{
φ
(
Cκ(u, Igood)

)
, φ

(
Cκ(v, Igood)

)})

< min
(
�2

(
φ
(
Cκ(u, Igood)

))
, �2

(
φ
(
Cκ(v, Igood)

))) − 2ε

= min
(
�2

(
Cκ (x, I1)

)
, �2

(
Cκ(y, I1)

)) − 2ε = min
(
I1(x), I1(y)

) − 2ε

Hence τφ[L] − ε < min(I1(x)− 3ε, I1(y)− 3ε), which (by assertion (i) of part (b) of
G) implies τφ[L] −ε < min(Igood(u)−2ε, Igood(v)−2ε). We now see from (B9) that
u�Igood≥τφ[L]−ε�v. It follows from this and A that τL ≥ τφ[L]−ε (since Cκ (u, Igood)

and Cκ (v, Igood) are arbitrary distinct elements of L), as required. Thus we have
established J.

From B and J, we deduce:

K. Whenever ∅ �= L ⊆ L′ ⊆ Leaves(Tgood),
∧

Tgood
L′ = ∧

Tgood
L if and only if

�2(
∧

T2
φ[L]) − �2(

∧
T2

φ[L′]) ≤ 2ε.

As we show in Appendix C, it is not difficult to deduce from K that:

L. For all u ∈ Crit(Tgood), Leaves(T2[ϕ(u)]) = ϕ[Leaves(Tgood[u])].
M. For all x ∈ ϕ[Crit(Tgood)], there is no y ∈ x↓T2 ∩ Crit(T2) that satisfies the

condition �2(x) − �2(y) ≤ 2ε.
N. For all x ∈ Crit(T2), some z ∈ x⇓T2 ∩ ϕ[Crit(Tgood)] satisfies the condition

�2(x) − �2(z) ≤ 2ε.

We mention here that N is proved by showing that for every x ∈ Crit(T2) the node
z = ϕ(

∧
Tgood

ϕ−1[Leaves(T2[x])]) has the stated property.
Using L, it is quite easy to show that:

O. For all u,u′ ∈ Crit(Tgood), ϕ(u) 
T2 ϕ(u′) if and only if u 
Tgood u′.

Details of the proof of O are given in Appendix C. It follows from O that ϕ is an
order-preserving injection.

As F3 = (T3, �3) is the result of eliminating internal edges of length ≤ 2ε from
Fcrit

2 , it follows from M and property E8 of simplification step 3 that ϕ must satisfy
ϕ[Crit(Tgood)] ⊆ Crit(T2) ∩ Nodes(T3) = Crit(T3). Moreover, N implies that,
for all x ∈ Crit(T2) \ ϕ[Crit(Tgood)], some z ∈ x↓T2 ∩ ϕ[Crit(Tgood)] satisfies
�2(x) − �2(z) ≤ 2ε. We therefore have that:

• For all x ∈ Crit(T2) \ ϕ[Crit(Tgood)], some z ∈ x↓T2 ∩ Crit(T3) satisfies the
condition �2(x) − �2(z) ≤ 2ε.

From this and property E9 of simplification step 3 we deduce that ϕ satisfies
(Crit(T2) \ ϕ[Crit(Tgood)]) ∩ Nodes(T3) = ∅. Equivalently, ϕ satisfies the con-
dition Crit(T3) \ ϕ[Crit(Tgood)] = ∅. Thus ϕ[Crit(Tgood)] = Crit(T3). So the
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order-preserving injection ϕ can be regarded as a bijection ϕ : Crit(Tgood) →
Crit(T3). When so regarded, ϕ is an essential isomorphism of Fgood to F3. Fi-
nally, ϕ is level-preserving to within ε because, for any node u ∈ Crit(Tgood),
we deduce from J (on putting L = Leaves(Tgood[u]), so that

∧
Tgood

L = u) that
|�3(ϕ(u)) − �good(u)| ≤ ε.

This completes the proof of the Fundamental Lemma.

Appendix C: Justification of Assertions L, M, N, and O in Step 3
of the Proof of the Fundamental Lemma

For any rooted tree T and any u ∈ Crit(T ), we write LT u to denote the set
Leaves(T [u]) = {v ∈ Leaves(T ) | u 
T v}. It is readily confirmed that the fol-
lowing are true in any rooted tree T :

If ∅ �= L ⊆ L′ ⊆ Leaves(T ), then:
∧

T L′ 
T
∧

T L (C1)

If ∅ �= L ⊆ Leaves(T ), then: LT
∧

T L ⊇ L (C2)

If u ∈ Crit(T ), then:
∧

T LT u = u (C3)

If u ∈ Crit(T ) and L �LT u, then:
∧

T L ≺T u = ∧
T LT u (C4)

If u,v ∈ Crit(T ), then: LT v = LT u if and only if v = u (C5)

If u,v ∈ Crit(T ), then: LT v �LT u if and only if v ≺T u (C6)

For all L ⊆ Leaves(Tgood) and all L′ ⊆ Leaves(T2), we write φL to mean φ[L]
and we write φ−1L to mean φ−1[L].

If x 
T2 y or y 
T2 x, and λ is any positive value, then we write x ≈λ y to mean
that |�2(y) − �2(x)| ≤ λ, and write x ≺λ y to mean that �2(y) − �2(x) > λ; in the
latter case we must have that x ≺T2 y. For brevity, we will write

∧
good and

∧
2 to

mean
∧

Tgood
and

∧
T2

, and write Lgood and L2 to mean LTgood and LT2 . Note that
the definition of the mapping ϕ can be rewritten in terms of φ and Lgood as follows:

ϕ(u)
def= ∧

2 φLgoodu (C7)

If ∅ �= L ⊆ L′ ⊆ Leaves(Tgood), then ∅ �= φL ⊆ φL′ ⊆ Leaves(T2) and so∧
2 φL′ 
T2

∧
2 φL (by (C1)). Hence assertion K can be restated as follows (for

all nonempty sets L ⊆ L′ ⊆ Leaves(Tgood)):
∧

2 φL′ ≈2ε

∧
2 φL if and only if

∧
good L′ = ∧

good L (C8)

When ∅ �= L ⊆ L′ ⊆ Leaves(Tgood), the negations of
∧

2 φL ≈2ε

∧
2 φL′ and∧

good L′ = ∧
good L are

∧
2 φL′ ≺2ε

∧
2 φL and

∧
good L′ ≺Tgood

∧
good L respec-

tively (since
∧

good L′ 
Tgood

∧
good L and

∧
2 φL′ 
T2

∧
2 φL), so (C8) can also

be stated as follows (for all nonempty sets L ⊆ L′ ⊆ Leaves(Tgood)):
∧

2 φL′ ≺2ε

∧
2 φL if and only if

∧
good L′ ≺Tgood

∧
good L (C9)
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C.1 Proof of Assertion L

In view of (C7), L can be restated as follows:

• For all u ∈ Crit(Tgood), we have that L2
∧

2 φLgoodu = φLgoodu. Equivalently,
φ−1L2

∧
2 φLgoodu = Lgoodu.

To prove this, let u ∈ Crit(Tgood). Then we successively deduce:

L2
∧

2 φLgoodu ⊇ φLgoodu
[
by (C2)

]

φ−1L2
∧

2 φLgoodu ⊇ φ−1φLgoodu

φ−1L2
∧

2 φLgoodu ⊇ Lgoodu (C10)

The result will follow from (C10) if we can show that the following is not true:

φ−1L2
∧

2 φLgoodu �Lgoodu (C11)

To do this, we derive a contradiction from (C11) as follows:
∧

good φ−1L2
∧

2 φLgoodu ≺Tgood

∧
good Lgoodu

[
by (C11) and (C4)

]

∧
2 φφ−1L2

∧
2 φLgoodu ≺2ε

∧
2 φLgoodu

[
by (C9) and (C10)

]

∧
2 L2

∧
2 φLgoodu ≺2ε

∧
2 φLgoodu

∧
2 φLgoodu ≺2ε

∧
2 φLgoodu

[
by (C3)

]

C.2 Proof of Assertion M

In view of (C7), M is equivalent to:

• If x = ∧
2 φLgoodu for some u ∈ Crit(Tgood), and if y ∈ Crit(T2) satisfies y ≺T2

x, then y ≺2ε x.

To prove this, suppose x = ∧
2 φLgoodu for some u ∈ Crit(Tgood), and y ∈

Crit(T2) satisfies y ≺T2 x. Then we can successively deduce:

y ≺T2

∧
2 φLgoodu [because y ≺T2 x]

L2y �L2
∧

2 φLgoodu
[
by (C6)

]

L2y � φLgoodu
[
by (C2)

]

φ−1L2y �Lgoodu
∧

good φ−1L2y ≺Tgood

∧
good Lgoodu

[
by (C4)

]

∧
2 φφ−1L2y ≺2ε

∧
2 φLgoodu

[
by (C9) and (C12)

]

∧
2 L2y ≺2ε

∧
2 φLgoodu

y ≺2ε

∧
2 φLgoodu

[
by (C3)

]

(C12)

This proves that y ≺2ε x.
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C.3 Proof of Assertion N

In view of (C7),
∧

2 φLgood
∧

good φ−1L2x ∈ ϕ[Crit(Tgood)] for every node x
of T2. So N can be proved by establishing that:

• For all x ∈ Crit(T2), the node z = ∧
2 φLgood

∧
good φ−1L2x satisfies z 
T2 x

and x ≈2ε z.

To prove this, let x ∈ Crit(T2) and let z = ∧
2 φLgood

∧
good φ−1L2x. Then we

successively deduce:

Lgood
∧

good φ−1L2x ⊇ φ−1L2x
[
by (C2)

]

V φLgood
∧

good φ−1L2x ⊇ φφ−1L2x

φLgood
∧

good φ−1L2x ⊇ L2x
∧

2 φLgood
∧

good φ−1L2x 
T2

∧
2 L2x

[
by (C1)

]

∧
2 φLgood

∧
good φ−1L2x 
T2 x

[
by (C3)

]

(C13)

This proves that z 
T2 x. We can also successively deduce:
∧

good Lgood
∧

good φ−1L2x = ∧
good φ−1L2x

[
by (C3)

]

∧
2 φLgood

∧
good φ−1L2x ≈2ε

∧
2 φφ−1L2x

[
by (C8) and (C13)

]

∧
2 φLgood

∧
good φ−1L2x ≈2ε

∧
2 L2x

∧
2 φLgood

∧
good φ−1L2x ≈2ε x

[
by (C3)

]

This proves that z ≈2ε x.

C.4 Proof of Assertion O

Let u,u′ ∈ Crit(Tgood). Then:

u 
Tgood u′ just if Lgoodu ⊇ Lgoodu′ [
by (C5) and (C6)

]

just if φLgoodu ⊇ φLgoodu′

just if L2ϕ(u) ⊇ L2ϕ
(
u′) [by assertion L]

just if ϕ(u) 
T2 ϕ
(
u′) [

by (C5) and (C6)
]
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