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Chapter 1

Introduction

This chapter presents the physical and mathematical framework to un-

derstand the basics of molecular simulation and computational statistical

physics techniques. Section 1.1 recalls the aims of computational statis-

tical physics, gives some historical landmarks, and provides the orders of

magnitude of the quantities to be computed. Section 1.2 is a short sum-

mary of the most important concepts of statistical physics which will be of

constant use throughout this book. It is decomposed into three parts: the

static description of microscopic systems (unknowns, boundary conditions,

interaction potentials), the dynamics of isolated systems (the Hamiltonian

dynamics), and some elements on thermodynamic ensembles. We are then

in a position to define free energies in Section 1.3, discuss their relationships

with metastability issues, and finally classify the most common methods

currently used to compute free energy differences in terms of the mathe-

matical objects at hand. This classification is the basis of the construction

of the book, see Section 1.4 for more details.

1.1 Computational statistical physics: some landmarks

Before giving a detailed mathematical framework of computational statis-

tical physics, we first describe the scientific context, by recalling in Sec-

tion 1.1.1 some order of magnitudes for the quantities under investigation,

and by expliciting in Section 1.1.2 what we understand to be the current

aims of molecular simulation.

1
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Table 1.1 Some important physical constants or quantities in
quantum and statistical physics.

Physical constant Usual notation Value

Avogadro number NA 6.02× 1023

Boltzmann constant kB 1.381× 10−23 J/K
Reduced Planck constant ~ 1.054× 10−34 Js

Elementary charge e 1.602× 10−19 C
Electron mass me 9.11× 10−31 kg
Proton mass mp 1.67× 10−27 kg
Electron-Volt eV 1.602× 10−19 J

1.1.1 Some orders of magnitude

In the framework of statistical physics, matter is most often described at

the atomic level, either in a quantum or classical framework. Some of the

concepts developed in this introduction may however be used in other phys-

ical frameworks than molecular simulation (for instance, the Hamiltonian

dynamics presented in Section 1.2.2 is the fundamental evolution equation

in celestial mechanics).

In this book, only classical systems are considered. Some important

physical constants are recalled in Table 1.1. From those constants, the

orders of magnitudes of the classical description of matter at the microscopic

level can be inferred. The typical distances are expressed in Å (10−10 m),

the energies are of the order of kBT ' 4 × 10−21 J at room temperature,

and the typical times are of the order of 10−15 s when the proton mass is

the reference mass.

The orders of magnitude used in the microscopic description of mat-

ter are far from the orders of magnitude of the macroscopic quantities we

are used to. For instance, the number of particles under consideration in

a macroscopic sample of material is of the order of the Avogadro num-

ber NA ∼ 1023. For practical numerical computations of matter at the

microscopic level, following the dynamics of every atom would require sim-

ulating NA atoms and performing O(1015) time integration steps, which

is of course impossible! These numbers should be compared with the cur-

rent orders of magnitude of the problems that can be tackled with classi-

cal molecular simulation, such as the simulation of the complete satellite

tobacco mosaic virus [Freddolino et al. (2006)], which involved 1 million

atoms over 50 ns, or the folding simulations of the Villin headpiece,1 where

1See the website of the Folding@Home project: http://folding.stanford.edu/
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a trajectory of 500 µs was integrated for 2× 104 atoms.

To give some insight into such large numbers, it is helpful to compute

the number of moles of water on earth. Recall that one mole of water

corresponds to 18 mL, so that a standard glass of water contains roughly

10 moles, and a typical bathtub contains 105 mol. On the other hand, there

are approximately 1.3×1018 m3 of water in the oceans, i.e. 7.2×1022 mol,

a number comparable to the Avogadro number. This means that inferring

the macroscopic behavior of physical systems described at the microscopic

level by the dynamics of several millions of particles only is like inferring

the ocean’s dynamics from hydrodynamics in a bathtub...

Describing the macroscopic behavior of matter knowing its microscopic

description therefore seems out of reach. Statistical physics allows us to

bridge the gap between microscopic and macroscopic descriptions of mat-

ter, at least on a conceptual level. The question is whether the estimated

quantities for a system of N particles correctly approximate the macro-

scopic property, formally obtained in the thermodynamic limit N → +∞
(the density being kept fixed). In some cases, in particular for simple ho-

mogeneous systems, the macroscopic behavior is well approximated from

small-scale simulations, see Section 1.1.2.1. However, the convergence of

the estimated quantities as a function of the number of particles involved

in the simulation should be checked in all cases.

1.1.2 Aims of molecular simulation

Despite its intrinsic limitations on spatial and timescales, molecular simu-

lation, has been used and developed over the past 50 years, and its number

of users keeps increasing. As we understand it, it has two major aims

nowadays.

First, it can be used as a numerical microscope, which allows us to

perform “computer” experiments. This was the initial motivation for simu-

lations at the microscopic level: physical theories were tested on computers.

This use of molecular simulation is particularly clear in its historic develop-

ment, which was triggered and sustained by the physics of simple liquids.

Indeed, there was no good analytical theory for these systems, and the ob-

servation of computer trajectories was very helpful to guide the physicists’

intuition about what was happening in the system, for instance the mecha-

nisms leading to molecular diffusion. In particular, the pioneering works on

Monte-Carlo methods [Metropolis et al. (1953)], and the first molecular dy-

namics simulation [Alder and Wainwright (1956)] were performed because
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of such motivations. Today, understanding the behavior of matter at the

microscopic level can still be difficult from an experimental viewpoint (be-

cause of the high resolution required, both in time and in space), or because

we simply do not know what to look for! Numerical simulations are then a

valuable tool to test some ideas or obtain some data to process and analyze

in order to help assessing experimental setups. This is particularly true for

current nanoscale systems.

Another major aim of molecular simulation, maybe even more impor-

tant than the previous one, is to compute macroscopic quantities or thermo-

dynamic properties, typically through averages of some functionals of the

system. In this case, molecular simulation is a way to obtain quantitative

information on a system, instead of resorting to approximate theories, con-

structed for simplified models, and giving only qualitative answers. Some-

times, these properties are accessible through experiments, but in some

cases only numerical computations are possible since experiments may be

unfeasible or too costly (for instance, when high pressure or large temper-

ature regimes are considered, or when studying materials not yet synthe-

sized). More generally, molecular simulation is a tool to explore the links

between the microscopic and macroscopic properties of a material, allowing

to address modelling questions such as “Which microscopic ingredients are

necessary (and which are not) to observe a given macroscopic behavior?”

1.1.2.1 An example: the equation of state of Argon

Let us detail to some extent the second approach, and illustrate it with a

simple but realistic example. We consider microscopic systems composed

of N particles (typically atoms, i.e. nuclei together with their electronic

clouds), described by the positions of the particles q = (q1, · · · , qN ) ∈ D
and the associated momenta p = (p1, · · · , pN ) ∈ R3N . For physical and

biological systems currently studied, N is typically between 103 and 109.

The vector (q, p) is called the microscopic state or the configuration of the

system.

In the framework of statistical physics, macroscopic quantities of in-

terest are written as averages over thermodynamic ensembles, which are

probability measures on all the admissible microscopic configurations:

Eµ(A) =

∫

T∗D
A(q, p)µ(dq dp). (1.1)

In this expression, the function A is called an observable. The position vari-

able q = (q1, . . . , qN ) belongs to D, which is called the configuration space.



FREE ENERGY COMPUTATIONS - A Mathematical Perspective
© Imperial College Press
http://www.worldscibooks.com/mathematics/p579.html

April 20, 2010 10:37 World Scientific Book - 9in x 6in main˙enlib

Introduction 5

The set D is an open subset (possibly the whole) of Rn with n = 3N , or

D = Tn (where T = R/Z denotes the one-dimensional torus). The choice

of D depends on the boundary conditions at hand, see Section 1.2.1.1. For

the two choices mentioned above, the momentum variable p = (p1, . . . , pN )

belongs to Rn, so that the cotangent space T ∗D used in (1.1) can be identi-

fied with D×Rn. The set of all possible microscopic configurations (q, p) is

called the phase space. The probability measure µ has support on the phase

space and depends on the thermodynamic ensemble used, see Section 1.2

for further precision on the most common choices.

Remark 1.1 (Generalization to other configuration spaces).

All the results presented in this book may be generalized to the case when

the configuration space D is not Rn, but some open subset of Rn, with a

potential energy function which goes sufficiently fast to ∞ on ∂D to pre-

vent the dynamics from leaving the domain D. For the case of molecular

constraints, we refer to Section 3.3.6.2.

A statistical description through a probability measure µ is a convenient

description since the whole microscopic information is both unimportant

(what matters are average quantities, and not the positions of all particles

composing the system) and too large to be processed.

An example of an observable is the bulk pressure P in a Lennard-Jones

liquid. For particles of masses mi, described by their positions qi and their

momenta pi, it is given by P = Eµ(A) with

A(q, p) =
1

3|D|
N∑

i=1

( |pi|2
mi

− qi · ∂V
∂qi

(q)

)
,

where |D| is the physical volume of the box occupied by the fluid, and the

potential energy function V is made precise below, see (1.4)-(1.5).

In practice, such averages may yield results that are very close to ex-

perimental measurements, even for systems small in comparison to the ac-

tual sizes of macroscopic systems (provided the interaction potentials are

short-ranged). For example, the equation of state of Figure 1.1 has been

computed with a system of a few thousand particles only, a number which

is 20 orders of magnitude lower than the Avogadro number. The computed

results are compared with experimental measurements.2 The agreement is

very good in the case of Argon. Notice also that high-pressure results, not

easily obtained with experimental setups, can be computed.

2See for instance the NIST webpage http://webbook.nist.gov/chemistry/fluid/
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Fig. 1.1 Numerical equation of state of argon at T = 300 K (“+”) and experimental
reference curve (solid line). The picture on the right is a zoom on the low density/low
pressure part of the curve, where the ideal gas regime is plotted in dash-dotted line.

We will restrict ourselves in this book to static equilibrium properties

of the form of (1.1), and will not consider dynamical properties depend-

ing on the actual time evolution of the system (autocorrelation functions,

transport coefficients such as thermal conductivity, exit times out of some

region in phase space, ...).

1.2 Microscopic description of physical systems

The description of systems in statistical physics requires several ingredi-

ents: microscopic interaction laws between the constituents of matter and

possibly the environment (see Section 1.2.1), time evolution equations for

isolated systems (see Section 1.2.2), and the notion of thermodynamic en-

sembles, which are probability measures on the set of all possible micro-

scopic configurations, consistent with the macroscopic state of the system

(see Section 1.2.3).

1.2.1 Interactions

The interactions between the particles are taken into account through a

potential function V , depending on the positions q only. The total energy

of the system is given by the Hamiltonian

H(q, p) = Ekin(p) + V (q), (1.2)
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where the kinetic energy is

Ekin(p) =
1

2
pTM−1p, M =




m1 Id3 0
. . .

0 mN Id3


 .

The matrix M is called the mass matrix. A Hamiltonian such as (1.2)

is said to be separable since the energetic contributions of the momentum

and position variables can be added independently. An instance of a non-

separable Hamiltonian is the case when the mass-matrix depends on the

configuration q of the system.

Most Hamiltonians encountered in applications are separable, and we

will in any case restrict ourselves to separable Hamiltonians in this book.

Non-separable Hamiltonians may be considered for modelling purposes

(when working with internal coordinates, for rigid body dynamics for in-

stance), or for mathematical convenience (such as the modified Hamiltoni-

ans used in the backward analysis of Hamiltonian dynamics, see the refer-

ences at the end of Section 1.2.2.4).

In order to describe more precisely the interactions between the ele-

mentary constituents of the system, several points have to be made precise.

First, the boundary conditions of the system must be specified (see Sec-

tion 1.2.1.1). Then, we give more detail on the interaction potential V in

Section 1.2.1.2. This function is very important since it incorporates almost

all the physics of the problem. It is therefore no surprise that obtaining

reliable potential functions is still a very active research field.

1.2.1.1 Boundary conditions

Several boundary conditions can be imposed onto the system:

(i) Many current simulations are performed using periodic boundary

conditions, so that surface effects can be avoided and configurations

typically encountered in the bulk of the system can be obtained. In

this case, a particle interacts not only with all the particles in the

systems, but also with their periodic images (see Figure 1.2). In

practice, interactions are set to 0 when the distance between two

or several particles exceeds a given cut-off radii rcut. When cubic

domains of length L are considered as in Figure 1.2, the domain

length should be chosen so that rcut < L/2. This ensures that a

particle interacts either with the primitive particle, or at most one

of its periodic images;
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(ii) In some simulations, the system is allowed to visit the entire phys-

ical space (D = R3N ). This is the case for isolated systems, such

as molecules in vacuo. It may be convenient however to quotient

out rigid body motions in this case since the potential energy is

usually invariant under translations and rotations of the system;

(iii) It is sometimes necessary to consider confined systems. In this

case, the positions of the particles are restricted to some predefined

region of space, and some rules have to be set for reflections on

the boundaries of the system (such as specular reflection of the

momenta).

Let us finally mention that open systems with inflows or outflows of energy,

particles etc., are sometimes considered. In this case, there may be some

exchanges or forcing at the boundaries. Such situations are not considered

in this book.

1.2.1.2 Potential functions

Ab initio interaction potentials. Ideally, the interaction potentials

between the particles should be obtained in a non-empirical approach

by resorting to ab initio computations. Relying on the standard Born-

Oppenheimer assumption, the positions qi of the nuclei of charges Zi are

kept fixed, and the energy of the system is obtained by adding the Coulomb

interaction energies between the nuclei, and the electronic ground-state en-

ergy:

V (q1, . . . , qN ) =
∑

1≤i<j≤N

ZiZj

|qi − qj | + Velec(q1, . . . , qN ). (1.3)

Denote by M = Z1 + · · · + ZN the number of electrons. The system is

assumed to be neutral. The electronic ground-state energy is obtained by

minimizing the electronic problem over the Hilbert space H of admissible

wavefunctions, which is a subset of the space
∧M

m=1 L
2(R3,C) of antisym-

metric functions. We omit the spin variable for notational simplicity al-

though this variable is very important for quantitative computations. The

electronic problem then reads

Velec(q1, . . . , qN ) = inf
{〈

ψ, Ĥq1,...,qNψ
〉
H

∣∣∣ ψ ∈ H, ‖ψ‖L2 = 1
}
,

where the electronic Hamiltonian operator reads

Ĥq1,...,qN = −
M∑

m=1

1

2
∆xm

−
M∑

m=1

N∑

i=1

Zi

|xm − qi| +
∑

1≤n<m≤M

1

|xn − xm| .



FREE ENERGY COMPUTATIONS - A Mathematical Perspective
© Imperial College Press
http://www.worldscibooks.com/mathematics/p579.html

April 26, 2010 19:3 World Scientific Book - 9in x 6in main˙enlib

Introduction 9

A
B

A
B

A
BA

B

A
B

A
B

A
B

A
B

A
B

1 2

3
45

6

7 8 9

Fig. 1.2 System with periodic boundary conditions. The simulation cell is num-
bered “1”, and the other cells are obtained by translation. The particles inside the
primitive cell have interactions with particles in all the other cells.

We refer for instance to [Cancès et al. (2003)] for further precision on the

computation of ab initio interaction potentials. Such computations are

however very time-consuming, so that only small systems can be simulated

this way (using Born-Oppenheimer molecular dynamics [Niklasson et al.

(2006)] or the Car-Parrinello approach [Car and Parrinello (1985)]).

Empirical potentials. In practice, empirical formulas for the potential

energy function are used to study larger systems. These empirical formulae

are obtained by assuming a functional form for the interaction potential,

which depends on a set of parameters. These parameters may be chosen so

that the potential energy function is as close as possible to the function (1.3)

obtained from small ab initio computations. Alternatively, the parameters
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may be such that average properties computed from molecular simulations

match experimental thermodynamic properties such as the equation of state

of the material, its heat capacity, etc.

A very simple example of an empirical potential is the potential function

of a fluid composed of N particles, interacting through a pairwise additive

potential depending only on the distance between the particles:

V (q1, . . . , qN ) =
∑

1≤i<j≤N

V(|qi − qj |). (1.4)

For example, noble gases are well described using (1.4) when V is the
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Fig. 1.3 Lennard-Jones potential (1.5) where the distance and the energy are expressed
in terms of the equilibrium distance 21/6σ and the reference energy ε.

Lennard-Jones potential (depicted in Figure 1.3)

V(r) = 4 ε

((σ
r

)12

−
(σ
r

)6
)
. (1.5)

This potential depends on two parameters: an energy ε and a distance σ.

For argon for instance, ε = 1.66 × 10−21 J, and σ = 3.405 Å. The model

(1.4)-(1.5) is suitable for noble gases since these systems are monatomic

and the corresponding atoms have closed electronic shells. Therefore, the

dominant physical interaction is the weakly attractive long-range van der

Waals contribution, which scales as r−6.

Potential functions for molecules. Many molecular systems contain

molecules. Therefore, interaction potentials describing the existence of

bonds between atoms are required. This is modelled through interactions
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involving several atoms. To describe these potentials, it is convenient to

introduce the vector ri,j = qj − qi.

(1) The interactions of two atoms involved in a covalent bond can be

modelled via a harmonic potential energy

V2(qi, qi+1) =
k0
2

(|ri,i+1| − leq
)2
,

where leq is the equilibrium length;

(2) Three atoms can interact via the three-body interaction potential

energy

V3(qi, qi+1, qi+2) =
kθ
2
(θi − θeq)

2,

where the bond angle θi is

θi = arccos

(
ri,i+1

|ri,i+1| ·
ri+1,i+2

|ri+1,i+2|
)
,

while θeq is the equilibrium bond angle;

(3) Four atoms may experience the four-body interaction potential en-

ergy

V4(qi, qi+1, qi+2, qi+3) = utors(cosφi), (1.6)

where the dihedral angle φi is obtained from the relation

cosφi = − ri,i+1 × ri+1,i+2

|ri,i+1 × ri+1,i+2| ·
ri+1,i+2 × ri+2,i+3

|ri+1,i+2 × ri+2,i+3| .

Local interactions have to be complemented by non-bonded interactions:

van der Waals forces modelled by Lennard-Jones potentials, and Coulomb

interactions, see [Schlick (2002)] for further precision.

A typical example of a simple molecular system is depicted in Figure 1.4

(left), which corresponds to the pentane molecule in the so-called united-

atom representation (see [Ryckaert and Bellemans (1978)]). In this repre-

sentation, the hydrogen atoms are not explicitly represented. We label by

q1, . . . , q5 the positions of the carbon atoms in the pentane molecule, while

q6, . . . , qN are the positions of the solvent molecules. The solvent molecules

are assumed to interact with all the other atoms through a pairwise po-

tential Vsol depending only on the relative distance. The total interaction

energy then reads

V (q) = Vpentane(q1, . . . , q5) + Vsolvent(q6, . . . , qN ) + Vinteraction(q),
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with

Vsolvent(q6, . . . , qN ) =
∑

6≤i<j≤N

Vsol(|qi − qj |),

and

Vinteraction(q) =
5∑

i=1

∑

6≤j≤N

Vsol(|qi − qj |).

The interactions within the molecule are

Vpentane(q1, . . . , q5) =
4∑

i=1

V2(qi, qi+1) +
3∑

i=1

V3(qi, qi+1, qi+2)

+
2∑

i=1

V4(qi, qi+1, qi+2, qi+3),

where the dihedral potential function utors in (1.6) is given by an expression

of the form

utors(x) = c1(1− x) + 2c2(1− x2) + c3(1 + 3x− 4x3).

The parameters ci (i = 1, 2, 3) used in the united-atom model of [Ryckaert

and Bellemans (1978)] are such that there are three stable dihedral angles,

the one at φ = 0 being energetically more favorable than the others (see

Figure 1.4, right).
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Fig. 1.4 Left: Schematic representation of a pentane molecule in a solvent (projected on
a two-dimensional plane), and definition of the bond angles and dihedral angles. Right:
Typical shape of the potential for the dihedral angle.
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More realistic force fields. Pairwise additive potentials such as (1.4),

and two-, three- or four-body bonded interactions may however not be a

good approximation of the many-body ab initio potential function (1.3).

Many studies aim at proposing better empirical potential functions (or

force fields). Recent instances of such potentials are the (Modified)

Embedded-Atom Model potentials [Baskes (1992)], or bond-order poten-

tials of REBO [Tersoff (1989)] or ReaxFF [van Duin et al. (2001)] types,

which contain term depending on the local coordination of the atoms. The

latter potentials can even account for chemical reactions (i.e. bond break-

ings and bond formations).

Non-dimensional units. In practice, it is more convenient (and numer-

ically more stable) to work with non-dimensional quantities. In this case,

the manipulated numbers are all of order 1. In general, reduced units re-

quire the following reference quantities:

• a reference mass m0, for instance the mass of the heaviest or the

lightest atom in the system;

• a reference energy ε0, given by the magnitude of a typical inter-

action energy, or alternatively by kBT . This energy is therefore of

the order of 10−21 J;

• a reference length l0, given by the typical interaction distance, for

instance a covalent bond length when molecules are present in the

system. Usually, l0 is of the order of several angströms.

Moreover, other reference quantities can be derived from the above funda-

mental reference quantities. For instance, a reference time t0 is obtained

by requiring that the typical kinetic energy is of the order of magnitude of

the reference energy:

t0 =
m

1/2
0 l0

ε
1/2
0

. (1.7)

This time is typically of the order of the pico-second.

1.2.2 Dynamics of isolated systems

We consider in this section the time evolution of isolated systems described

at the microscopic level. After a general presentation of the Hamiltonian dy-

namics in its usual form in Section 1.2.2.1, some equivalent reformulations

are proposed in Section 1.2.2.2. We then recall some important properties
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of the dynamics in Section 1.2.2.3, and close the section with some elements

on the numerical analysis of time-discretization schemes (Section 1.2.2.4).

1.2.2.1 The Hamiltonian dynamics

For separable Hamiltonians, the evolution of isolated systems is governed

by the Hamiltonian dynamics





dq(t)

dt
= ∇pH(q(t), p(t)) = M−1p(t),

dp(t)

dt
= −∇qH(q(t), p(t)) = −∇V (q(t)).

(1.8)

Initial conditions

(q(0), p(0)) = (q0, p0) (1.9)

should be provided. Introducing the matrix

J =

(
0 Id3N

−Id3N 0

)
, (1.10)

and denoting x = (q, p) ∈ T ∗D, the Hamiltonian dynamics can be seen as

the first-order ordinary differential equation:

dx

dt
= J∇H(x) = J

(∇qH(q, p)

∇pH(q, p)

)
. (1.11)

The existence and uniqueness of trajectories typically follows from the

Cauchy-Lipschitz theorem. A sufficient condition is that ∇H is locally

Lipschitz continuous and H is bounded below. We will always assume in

the sequel that the Cauchy problem (1.8)-(1.9) is well-posed.

We denote by φt the flow of the Hamiltonian dynamics, i.e. the ap-

plication which associates to some initial condition (q0, p0) the solution

(q(t), p(t)) = φt(q
0, p0) to (1.8) at time t. Let us emphasize that (1.8) is an

autonomous equation since the system is assumed to be isolated, so that

the flow only depends on the duration time t of the trajectory, and not on

the initial and final times separately.

The flow is a semi-group: φt+u = φt ◦ φu for all t, u ≥ 0. Actually, it is

possible to define the backward evolution φ−t for t ≥ 0, using for instance

the reversibility of the dynamics (see (1.19) below), so that φt+u = φt ◦ φu

for all t, u ∈ R.
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1.2.2.2 Equivalent reformulations

When the Hamiltonian equation (1.8) is reformulated in terms of the posi-

tions only, it reads

M
d2q(t)

dt2
= −∇V (q),

which is Newton’s second law.

There are also more abstract reformulations of (1.8), which will be use-

ful below. The Poisson bracket for two smooth observables A1, A2 (i.e.

functions of (q, p)) is defined as

{A1, A2} = (∇qA1)
T ∇pA2 − (∇pA1)

T ∇qA2, (1.12)

where CT denotes the transpose of a matrix C. Notice that the Poisson

bracket can be rewritten as

{A1, A2} = (∇A1)
TJ∇A2.

Hamilton’s equations of motion, (1.8), are then equivalent to the following

transport equation: for any smooth observable A,

d

dt

[
A(q(t), p(t))

]
= {A,H} (q(t), p(t)). (1.13)

The concept of the Poisson bracket will be particularly useful to study

generalized Hamiltonian dynamics for system with mechanical constraints

(see Section 3.3). Some important properties of the Poisson bracket (1.12),

which can be checked by simple computations, are the following:

• Non-degeneracy : if for any compactly-supported smooth test func-

tion ϕ1, {ϕ1, ϕ2} = 0, then ϕ2 is a constant function.

For any compactly supported smooth test functions ϕ1, ϕ2, ϕ3,

• Skew-symmetry :

{ϕ1, ϕ2} = −{ϕ2, ϕ1} .
• Jacobi identity :

{ϕ1, {ϕ2, ϕ3}}+ {ϕ2, {ϕ3, ϕ1}}+ {ϕ3, {ϕ1, ϕ2}} = 0. (1.14)

• Leibniz’ rule:

{ϕ1ϕ2, ϕ3} = ϕ1 {ϕ2, ϕ3}+ ϕ2 {ϕ1, ϕ3} . (1.15)

• Divergence formula: ∫

T∗D
{ϕ1, ϕ2} dq dp = 0. (1.16)
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• Integration by parts:∫

T∗D
{ϕ1, ϕ2} ϕ3 dq dp =

∫

T∗D
{ϕ2, ϕ3} ϕ1 dq dp. (1.17)

The transport equation (1.13) (or equivalently the Hamiltonian equa-

tion (1.8)) may also be restated as an evolution equation for the phase

space density of the particles. Assume that the initial conditions (q0, p0)

are distributed according to some measure with density ψ0(q, p) with re-

spect to the phase space Lebesgue measure, and that each initial phase

space configuration is evolved according to the dynamics (1.8). Then the

configurations φt(q
0, p0) at time t are distributed according to a measure

with density ψ(t, q, p), whose evolution is governed by the following partial

differential equation (called the Liouville equation):

∂tψ = ∇qH · ∇pψ −∇pH · ∇qψ = {H,ψ} , ψ(0, q, p) = ψ0(q, p).

1.2.2.3 Properties of the Hamiltonian dynamics

The Hamiltonian dynamics has several interesting mathematical and struc-

tural properties:

(1) Symmetry. Since φt ◦ φ−t = Id,

φ−t = φ−1
t . (1.18)

(2) Reversibility. Consider the momentum reversal function

S(q, p) = (q,−p).

Then, the time-reversed evolution φ−t for t ≥ 0, defined by (1.18), is

easily seen to be equal to a forward evolution with momenta reversed

(the so-called backward flow):

φ−t = S ◦ φt ◦ S. (1.19)

(3) Energy conservation. The choice A = H in the Poisson bracket refor-

mulation of the Hamiltonian dynamics (1.13) leads to
dH(q(t), p(t))

dt
=

0, which means that

H(q(t), p(t)) = H(q0, p0).

(4) Volume preservation. For all measurable sets B ⊂ T ∗D, and for all

t ∈ R, ∫

φt(B)

dq dp =

∫

B

dq dp. (1.20)
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This identity, often referred to as Liouville’s theorem, is a consequence

of the equality

|jacφt(q, p)| = 1,

where jacφt(q, p) = det(∇φt(q, p)). The proof of the latter assertion

relies on the fact that the Hamiltonian vector field is divergence-free.

Lemma VII.3.1 in [Hairer et al. (2006)] then allows us to conclude.

(5) Symplecticity. The matrix J defined by (1.10) is antisymmetric and

orthogonal (JT = −J = J−1). For an open set U ∈ T ∗D, a mapping

g : U → R2dN is symplectic if ∇g(q, p) satisfies

(∇g)TJ∇g = J (1.21)

for all (q, p) ∈ U . It is easily shown that the flow φt is symplectic for

all t ∈ R (this is a result due to Poincaré). Actually, any symplectic

map is locally Hamiltonian (see Section VI.2 in [Hairer et al. (2006)]

for further precision), which shows that the symplecticity of the flow

is indeed a characteristic feature of Hamiltonian systems. Note that

the volume preservation property (1.20) is recovered as a consequence

of the symplecticity property since (1.21) with g = φt implies that

(det∇φt)
2 = 1. The symplecticity property is stronger, and can be

understood as the conservation of oriented elementary parallelograms,

see Section 3.5 in [Leimkuhler and Reich (2005)] for a pedagogical pre-

sentation.

1.2.2.4 Numerical integration

We discuss in this section numerical schemes to integrate (1.8). Let us

first mention a few reasons why it is both hopeless and useless to integrate

precisely the Hamiltonian dynamics in the context of molecular simulation:

(i) The Hamiltonian dynamics is known to be strongly sensitive to the ini-

tial conditions, or to numerical errors such as round-off errors: Small

differences between two initially close configurations are exponentially

magnified as time passes. Since the initial conditions can never be

known exactly for physical reasons in molecular systems (in particu-

lar because there are too many atoms whose positions and momenta

are required) and very long integration times are needed, this is a first

reason not to try to integrate too precisely the Hamiltonian dynam-

ics. The situation may of course be different in other application fields

where Hamiltonian dynamics are used for systems with less degrees

of freedom, such as celestial mechanics.
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(ii) Moreover, given the large number of particles in molecular simulations

(hence the numerical cost of evaluating forces) and the very small

time-steps that would be needed to integrate precisely the trajectory

are prohibitive.

(iii) Finally, the aim of many current computations in computational sta-

tistical physics is the evaluation of average properties along a long

trajectory (see the ergodicity assumption (1.30) below). Therefore, it

is sufficient to ensure a correct sampling rather than integrating pre-

cisely the trajectory. In particular, a basic requirement is the preser-

vation of the energy over long trajectories.

The above arguments led to the development of numerical techniques de-

voted to Hamiltonian systems, fully taking into account the energy preser-

vation as a basic first requirement. This requirement is more important

than the scheme’s order (i.e. the integer p such that the error between

the exact solution over a time interval ∆t and the numerical solution af-

ter one step of the numerical scheme is of order ∆tp+1), which determines

the convergence rate of the numerical approximation only on finite-time

intervals.

A very convenient algorithm to approximately preserve the energy was

proposed in [Verlet (1967)] (actually rediscovered by Verlet, since it was

already known by Störmer in the context of celestial mechanics at the be-

ginning of the 20th century, and even by Newton; see Section 1.3 in [Hairer

et al. (2003)] for historical precisions). The Verlet algorithm is nowadays

the standard integration scheme for Hamiltonian dynamics. Denoting by

(qn, pn) an approximation of (q(tn), p(tn)) at time tn = n∆t (where ∆t is

the time step), it reads




pn+1/2= pn − ∆t

2
∇V (qn),

qn+1 = qn +∆t M−1pn+1/2,

pn+1 = pn+1/2 − ∆t

2
∇V (qn+1).

(1.22)

The numerical flow associated with this scheme is denoted by ΦVerlet
∆t in the

sequel: (qn+1, pn+1) = ΦVerlet
∆t (qn, pn). It is easy to check that the scheme

is of order 2.

Stability requirements limit the time-step ∆t which can be used in prac-

tice. We now detail the study of the linear stability, for the one-dimensional

harmonic potential V (q) = ω2q2/2 of mass m = 1. In this case, the Verlet
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scheme reads

(
qn+1

pn+1

)
= A∆t

(
qn

pn

)
, A∆t =




1− (ω∆t)2

2
∆t

−ω2∆t

(
1− (ω∆t)2

4

)
1− (ω∆t)2

2


 .

The eigenvalues of the matrix A∆t have modulus 1 if and only if ω∆t < 2. In

this case, the trajectory (qn, pn)n≥0 is bounded. Otherwise, one eigenvalue

has a modulus strictly larger than 1, so that the trajectory (qn, pn)n≥0 is

not bounded in general. Besides, it is easily shown that the modified energy

H∆t(q, p) = H(q, p)− (ω∆t)2

4
q2

is preserved exactly: H∆t(q
n, pn) = H∆t(q

0, p0) for all n ≥ 0. Therefore,

when ω∆t < 2, the boundedness of the trajectory implies

sup
n∈N

∣∣∣H(qn, pn)−H(q0, p0)
∣∣∣ ≤ C∆t2.

For more general potentials, there is no simple rule to place an upper bound

on the time-step. However, the linear stability requirement suggests that

an admissible time-step should be a fraction of the fastest vibration period

in the system.

Actually, the positions qn obtained by the Verlet scheme (1.22) satisfy

M
qn+1 − 2qn + qn−1

∆t2
= −∇V (qn),

which is the simple centered finite-difference discretization for the equation

M
d2q

dt2
(t) = −∇V (q(t)). However, the very good properties of the numerical

method cannot be understood from this equation. It is important to keep

both variables q and p, and study the numerical flow ΦVerlet
∆t of (1.22).

Indeed, this application shares many qualitative properties with the exact

flow φt of (1.8); in particular, it is time reversible:

S ◦ ΦVerlet
∆t ◦ S = ΦVerlet

−∆t ,

where S(q, p) = (q,−p) is the momentum reversal operator; symmetric:
(
ΦVerlet

∆t

)−1
= ΦVerlet

−∆t ;

and symplectic: (∇ΦVerlet
∆t )TJ∇ΦVerlet

∆t = J . The latter property is of

paramount importance for the longtime integration of the Hamiltonian dy-

namics. A well-established result, recalled in the reference book [Hairer

et al. (2006)] on geometric numerical integration (see in particular Chap-

ters VIII and IX), is that, when ∆t is small enough, the energy of the
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system is conserved up to O(∆tp) error terms over very long times when

symplectic numerical schemes of order p are used (under some technical

assumptions).

More generally, the longtime stability properties of symplectic numeri-

cal methods applied to symplectic flows can be studied with the help of the

so-called backward analysis. Contrarily to standard error analysis where

the numerical trajectory is considered as an approximation of the true tra-

jectory of the exact problem, the backward analysis consists in interpreting

the numerical trajectory as the exact trajectory of some modified ordinary

differential equation, and then to study the properties of the modified prob-

lem. For symplectic methods approaching symplectic flows, the modified

equation is still Hamiltonian. Therefore, some modified energy is preserved

exactly. This property is finally used to show that the exact energy is pre-

served approximately. In fact, some rather involved analysis has to be used

since the modified Hamiltonian is defined as a formal series, which does not

converge in general. Some optimal truncations should then be considered,

and the modified energy is therefore not strictly preserved, but the error

terms are very small.

1.2.3 Thermodynamic ensembles

The macroscopic state of a system is described, within the framework of

statistical physics, by a probability measure µ on the phase space T ∗D =

D×R3N . Macroscopic features of the system are then computed as averages

of an observable A with respect to this measure, as given by (1.1):

Eµ(A) =

∫

T∗D
A(q, p)µ(dq dp).

We therefore call the measure µ the macroscopic state of the system.

The practical computation of the ensemble average requires numerical

techniques to sample configurations (qn, pn) according to the probability

measure µ (or possibly according to a measure µ̃ very close to µ, the differ-

ence between µ and µ̃ originating from errors in the numerical integration

of a continuous dynamics for instance, see Section 2.3.1.1 for further preci-

sion). The ensemble average (1.1) is then approximated by

lim
N→+∞

1

N

N∑
n=1

A(qn, pn). (1.23)

The numerical techniques of course depend on the thermodynamic ensemble

at hand. Most methods generate a sequence of microscopic configurations
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(qn, pn)n≥1 from a time-discrete dynamics, so that the successive configu-

rations are not independent.

We present more thoroughly in this section two very commonly used

thermodynamic ensembles, namely the microcanonical ensemble (Sec-

tion 1.2.3.1) and the canonical ensemble (Section 1.2.3.2). These ensembles

describe respectively isolated systems, and systems at a fixed temperature

(in contact with a so-called thermostat or energy reservoir). We also men-

tion some other thermodynamic ensembles in Section 1.2.3.3, for the sake

of completeness.

1.2.3.1 The microcanonical ensemble

The thermodynamic ensemble naturally associated with the Hamiltonian

dynamics (1.8) is the microcanonical ensemble, which describes isolated

systems at constant energy. This ensemble is also often termed NVE en-

semble, the capital letters referring to the invariants of the system, namely

the number of particles N , the volume of the simulation box V , and the

energy E.

The corresponding probability measure is the normalized uniform prob-

ability measure on the set S(E) of configurations at the given energy levelE:

S(E) =
{
(q, p) ∈ T ∗D

∣∣∣ H(q, p) = E
}
.

We present three ways to understand this idea.

An explicit construction. The building block for the construction of

the microcanonical measure is the measure δH(q,p)−E(dq dp), where the con-

ditioning relies on level sets of constant total energy. This measure can be

obtained by an explicit construction, using a limiting procedure. Consider

a given energy level E, some small energy variation ∆E > 0, and define

N∆E(E) =
{
(q, p) ∈ T ∗D

∣∣∣ E ≤ H(q, p) ≤ E +∆E
}
.

Then, the following integral of a given test function A expresses the fact

that the set N∆E(E) is endowed with a uniform measure:

ΠE,∆E(A) =
1

∆E

∫

N∆E(E)

A(q, p) dq dp.

In the limit ∆E → 0, a measure supported on the submanifold S(E) is

recovered. Notice that this measure is not normalized to 1 a priori. The

measure δH(q,p)−E(dq dp) is defined through the expectations of any ob-

servable A as∫

S(E)

A(q, p) δH(q,p)−E(dq dp) = lim
∆E→0

1

∆E

∫

N∆E(E)

A(q, p) dq dp. (1.24)
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The construction highlights the fact that the regions where |∇H| is large

have a lower weight in the average since the volume of the infinitesimal

domain included in N∆E(E) and centered at (q, p) ∈ S(E) is proportional

to |∇H(q, p)|−1, see Figure 1.5. This observation is consistent with the

result (1.26) below, obtained with the co-area formula, and motivates the

factor |∇H(q, p)|−1 on the right-hand side of (1.26).

Once the measure δH(q,p)−E(dq dp) is defined, the microcanonical mea-

sure is obtained by a suitable normalization:

µmc,E(dq dp) = Z−1
E δH(q,p)−E(dq dp),

where the partition function used in the normalization

ZE =

∫

S(E)

δH(q,p)−E(dq dp)

is assumed to be finite. See the discussion after (1.28) for some sufficient

conditions to this end.

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������

������
������
������
������
������
����������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

S(E)

S(E +∆E)

∇H(q1, p1) ∇H(q2, p2)

Fig. 1.5 Limiting procedure used to construct the microcanonical measure. The volume
of the infinitesimal domain between S(E) and S(E + ∆E) centered at a given point
(q, p) ∈ T ∗D is proportional to |∇H|−1.

An alternative definition of the microcanonical measure. The

measure δH(q,p)−E(dq dp) for a given energy level E has support in S(E),

and is defined by the following relation: for all test functions f : T ∗D → R
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and g : R→ R,∫

T∗D
g(H(q, p)) f(q, p) dq dp =

∫

R
g(E)

∫

S(E)

f(q, p) δH(q,p)−E(dq dp) dE.

(1.25)

By the co-area formula (see (3.12)), an alternative expression of the measure

δH(q,p)−E(dq dp) is

δH(q,p)−E(dq dp) =
σS(E)(dq dp)

|∇H(q, p)| , (1.26)

where σS(E)(dq dp) is the area measure induced by the Lebesgue measure

on the manifold S(E) when the phase space is endowed with the standard

Euclidean scalar product (see Remark 3.4 and Section 3.3.2.1 for further

precision on the definition of surface measures).

The microcanonical measure can then be rewritten as

µmc,E(dq dp) = Z−1
E δH(q,p)−E(dq dp) = Z−1

E

σS(E)(dq dp)

|∇H(q, p)| , (1.27)

with

ZE =

∫

S(E)

δH(q,p)−E(dq dp) =

∫

S(E)

σS(E)(dq dp)

|∇H(q, p)| . (1.28)

The partition function ZE is finite for instance when S(E) is bounded and

|∇H| 6= 0 on this set. Since we consider only separable Hamiltonians, the

condition |∇H(q, p)| = 0 is equivalent to p = 0 and ∇V (q) = 0. Therefore,

|∇H| 6= 0 is ensured as soon as ∇V (q) 6= 0 for all configurations (q, 0) ∈
S(E).

The microcanonical measure as an ergodic limit. Practitioners of-

ten see microcanonical averages as ergodic limits over Hamiltonian tra-

jectories. Notice first that µmc,E(dq dp) is invariant by the Hamiltonian

dynamics flow φt for all energy levels E. Indeed, by the conditioning for-

mula (1.25), ∫

R
g(E)

∫

S(E)

f(φt(q, p)) δH(q,p)−E(dq dp) dE

=

∫

T∗D
g(H(q, p)) f(φt(q, p)) dq dp

=

∫

T∗D
g(H ◦ φ−t(Q,P )) f(Q,P ) dQdP

=

∫

T∗D
g(H(Q,P )) f(Q,P ) dQdP

=

∫

R
g(E)

∫

S(E)

f(q, p) δH(q,p)−E(dq dp) dE,
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where we have used the change of variables (Q,P ) = φt(q, p) and the in-

variance of the Hamiltonian by the flow φt. Therefore,

∫

S(E)

f(q, p) δH(q,p)−E(dq dp) =

∫

S(E)

f ◦ φt(q, p) δH(q,p)−E(dq dp) (1.29)

for all times t ∈ R, which shows the claimed invariance. A more intuitive

way to understand this equality is to realize that

1

∆E

∫

N∆E(E)

f(Q,P ) dQdP =
1

∆E

∫

N∆E(E)

f ◦ φt(q, p) dq dp

by the same change of variables as above, and then to use (1.24) to ob-

tain (1.29) in the limit ∆E → 0.

In view of the preservation of the microcanonical measure by the Hamil-

tonian flow, the following ergodicity assumption can therefore be consid-

ered: Thermodynamic integrals of the form (1.1) are computed as trajec-

torial averages

∫

S(E)

A(q, p)µmc,E(dq dp) = lim
T→+∞

1

T

∫ T

0

A(φt(q, p)) dt, (1.30)

where φt is the flow of the Hamiltonian dynamics (1.8), and the initial

condition (q0, p0) is such that H(q0, p0) = E.

Ergodicity can be rigorously shown for completely integrable systems

and their perturbations (see for instance [Arnol’d (1989)]). In general how-

ever, no convergence result can be stated, and examples of non-ergodicity

can be found. A simple instance of non-ergodicity is the following. Consider

the one-dimensional double-well potential

V (q) =
(
q2 − 1

)2
. (1.31)

The submanifolds S(E) for E < 1 are composed of two simply connected

subdomains, and ergodicity can only be expected in a given connected

component (see Figure 1.6). Other instances of non-ergodicity cases are

situations when there are other invariants than the energy (such as the

total momentum of the system, for instance). In those cases, ergodicity is

possible only with respect to the Lebesgue measure conditioned to the set

of all the invariants of the dynamics.

From a numerical viewpoint, the computation of averages according

to the right-hand side of (1.30) requires very stable algorithms allowing a
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Fig. 1.6 Accessible positions in the energy surface H(q, p) = 0.6 for the double-well
potential (1.31). If the dynamics starts in one of the connected components, it remains
there.

longtime integration of the Hamiltonian dynamics with a very good preser-

vation of the energy, such as the Verlet algorithm (1.22). The numeri-

cal analysis of microcanonical sampling methods based on these properties

(in the very particular case of completely integrable systems) can be read

in [Cancès et al. (2004, 2005)]. There exist also stochastic methods based

on constrained diffusion processes to sample the microcanonical measure,

see [Faou (2006); Faou and Lelièvre (2009)]. The aim of these methods is

to destroy all invariants of the dynamics, except the energy.

1.2.3.2 The canonical ensemble

In many physical situations, systems in contact with some energy thermo-

stat are considered, rather than isolated systems with a fixed energy. In

this case, the energy of the system fluctuates. It however has a fixed tem-

perature. In this situation, the microscopic configurations are distributed

according to the so-called canonical measure. The canonical ensemble is

also often termed NVT ensemble, since the number of particles N , the

volume V and the temperature T are fixed.

We first define the canonical measure, then give some elements on its

derivation from a principle of entropy maximization under constraints, and

close this section with a brief presentation of some techniques to sample

the canonical measure.
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Definition of the canonical measure. We assume in the sequel that

e−βV ∈ L1(D). The canonical probability measure µ on T ∗D reads

µ(dq dp) = Z−1
µ exp(−βH(q, p)) dq dp, (1.32)

where β = 1/(kBT ) (T denotes the temperature and kB the Boltzmann

constant). The normalization constant

Zµ =

∫

T∗D
exp(−βH(q, p)) dq dp

in (1.32) is called the partition function. When the Hamiltonian H is

separable, the canonical measure is of the tensorized form

µ(dq dp) = ν(dq)κ(dp),

where ν and κ are the two following probability measures:

ν(dq) = Z−1
ν e−βV (q) dq, Zν =

∫

D
e−βV (q) dq, (1.33)

and

κ(dp) =

(
β

2π

)3N/2 N∏

i=1

m
−3/2
i exp

(
−β

2
pTM−1p

)
dp. (1.34)

Under µ, the position a and the momentum p are independent random vari-

ables. Therefore, sampling configurations (q, p) according to the canonical

measure µ(dq dp) can be performed by independently sampling positions

according to ν(dq) and momenta according to κ(dp).

It is straightforward to sample from κ since the momenta are Gaussian

random variables. The actual issue is therefore to sample from ν. Appro-

priate methods are presented in Sections 2.1 and 2.2.

Some elements on the derivation of the canonical measure. The

expression (1.32) of the canonical probability measure can be obtained by

maximizing the entropy under the constraint that the energy is fixed in

average. Such a derivation is performed in [Balian (2007)] for instance.

The constraint that the average energy of the system is fixed formalizes the

idea that the system under study exchanges energy with the thermostat or

energy reservoir to which it is coupled. The energy is therefore not fixed,

but it has nonetheless a well-defined average value.

Consider a measure which has a density ρ(q, p) with respect to the

Lebesgue measure. The constraints on the admissible functions ρ(q, p) are

ρ ≥ 0,

∫

T∗D
ρ(q, p) dq dp = 1,

∫

T∗D
Hρ(q, p) dq dp = E (1.35)
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for some energy level E. The first two conditions ensure that ρ is the density

of a probability measure, while the last one expresses the conservation of

the energy in average.

The statistical entropy is defined as

S(ρ) = −
∫

T∗D
ρ(q, p) ln ρ(q, p) dq dp. (1.36)

It quantifies the amount of information missing, or the “degree of disorder”

as is sometimes stated in a more physical language. The entropy is non-

positive since x lnx−x+1 ≥ 0 for all x > 0. We refer to Chapter 3 in [Balian

(2007)] for further precision on the properties of S. The statistical entropy

allows us to give a rigorous meaning to the idea that a thermodynamic

measure is (quoting [Balian (2007)], Section 4.1.3) “the most disordered

macrostate possible compatible with the data,” or, equivalently, the measure

which “contains no more information than is strictly necessary to take the

data into account.” The amount of information or disorder is quantified by

the entropy.

The canonical measure is recovered as the solution to the following op-

timization problem

sup
{
S(ρ), ρ ∈ L1(T ∗D), ρ ≥ 0,

∫

T∗D
ρ = 1,

∫

T∗D
Hρ = E

}
. (1.37)

Formally, the Euler-Lagrange equation satisfied by an extremum reads

S′(ρ) + λ+ γH = 0,

where λ, γ are the Lagrange multipliers associated with the two constraints

in (1.37) (normalization and average energy fixed). Since S′(ρ) = 1 + ln ρ,

a candidate maximizer in (1.37) is the measure with density

exp (−1− λ− γH(q, p)) .

Usually, the Lagrange multiplier γ associated with the energy constraint

is denoted by β, and exp(1 + λ) = Z is a normalization constant. The

Lagrange multiplier β exists and is unique since

β 7→ E(β) =

∫

T∗D
H e−βH

∫

T∗D
e−βH

is an increasing function. This is a consequence of the positivity of the

derivative of the average energy

E ′(β) =

∫

T∗D
(H − E(β))2 e−βH

∫

T∗D
e−βH
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when H is not constant.

It is easy to verify that the canonical measure is indeed the unique

maximizer of (1.37), as shown in Section 4.2 of [Balian (2007)]. For the

sake of completeness, we sketch the proof of this statement. Consider an

arbitrary function satisfying (1.35). Using the inequality lnx ≤ x−1 (with

equality if and only if x = 1):
∫

T∗D
ρ1 ln ρ2 −

∫

T∗D
ρ1 ln ρ1 =

∫

T∗D
ρ1 ln

(
ρ2
ρ1

)
≤

∫

T∗D
ρ1 − ρ2 = 0

when ρ1 and ρ2 satisfy the constraints (1.35). Equality holds if and

only if ρ1(q, p) = ρ2(q, p) almost everywhere. Then, choosing ρ2(q, p) =

Z−1 exp(−βH(q, p)), it holds, for any ρ satisfying the constraints (1.35):

−
∫

T∗D
ρ ln ρ ≤ −

∫

T∗D
ρ ln

(
Z−1e−βH

) ≤ lnZ + β

∫

T∗D
H ρ.

In view of the energy constraint (last condition in (1.35)),

S(ρ) ≤ lnZ + βE = S
(
Z−1e−βH

)
,

with equality if and only if ρ(q, p) = Z−1 exp(−βH(q, p)). This shows that

the canonical measure is indeed the unique maximizer of the entropy under

the constraints (1.35).

Sampling the canonical measure. Let us now describe briefly some

techniques to sample the canonical measure (1.32). We will rely on these

methods in Section 1.3.4 when we present methods to compute free energy

differences. The techniques we consider here are stochastic dynamics t 7→
(qt, pt) which are ergodic for the canonical measure, in the sense that the

expectation of a given observable

Eµ(A) =

∫

T∗D
A(q, p)µ(dq dp),

where µ is the canonical measure (1.32), can be obtained as an ergodic limit

Eµ(A) = lim
T→+∞

1

T

∫ T

0

A(qt, pt) dt (1.38)

over one realization of the stochastic dynamics. The dynamics we use are

motivated solely by the ergodicity property (1.38), and should therefore be

seen as a sampling mean. We do not care whether the evolution is physi-

cally relevant since we are only interested in time-independent equilibrium

properties.
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As will be seen in more detail in Section 2.2.3, (1.38) holds under mild

assumptions on the potential for the Langevin dynamics

{
dqt = M−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+ σ dWt,
(1.39)

where Wt is a standard dN -dimensional Brownian motion, and γ, σ > 0

verify

σ2 =
2γ

β
. (1.40)

The relation (1.40) is called fluctuation-dissipation relation since it relates

the magnitude of the dissipative term −γM−1pt dt and the magnitude of

the random term σ dWt. The Langevin dynamics may be seen as the su-

perposition of a Hamiltonian dynamics, which preserves the energy, and

a stochastic process on the momenta which ensures that the energy levels

are visited according to their weight in the canonical ensemble. The latter

condition fixes the magnitude of the random term.

Actually, since the difficult task is the sampling of the configurational

part ν of the canonical measure, we could consider a dynamics on the

configurational space only, such as the overdamped Langevin dynamics (see

Section 2.2.2 for further precision, and Section 2.2.4 for a motivation of the

terminology):

dqt = −∇V (qt) dt+

√
2

β
dWt, (1.41)

where Wt is again a standard dN -dimensional Brownian motion. Under

reasonable assumptions on the potential, this dynamics satisfies

Eν(A) =

∫

D
A(q) ν(dq) = lim

T→+∞
1

T

∫ T

0

A(qt) dt,

where ν is given in (1.33). Intuitively, each term in (1.41) can be motivated

as follows: the gradient force −∇V (qt) ensures that the energy decreases

(which in turn, ensures that the visited configurations are likely enough),

while the random noise term supplies some energy so that the temperature

is correct. The precise balance between the drift term which removes energy

in average and the stochastic term is determined by the condition that the

canonical measure is preserved by the dynamics (1.41).
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1.2.3.3 Other thermodynamic ensembles

We saw in Section 1.2.3.2 that the Boltzmann-Gibbs probability mea-

sure (1.32) can be seen as the phase space probability measure maximizing

the statistical entropy among the set of phase space probability measures

compatible with the observed macroscopic data (in this case, average en-

ergy given). The derivation performed for an average energy fixed may be

performed for any average thermodynamic quantity, leading to other ther-

modynamic ensembles. The choice of the ensemble amounts to choosing

which quantities are fixed exactly or in average.

We present in this section a general derivation of thermodynamic en-

sembles associated with a given set of constraints, and next focus on two ex-

amples, the isobaric-isothermal ensemble (NPT) where the number of par-

ticles, the pressure and the temperature are fixed, and the grand-canonical

ensemble (µVT) where the chemical potential, the volume and the tem-

perature are fixed. Many other cases could be treated in a similar fashion

(fixed temperature and magnetization for a spin system, fixed temperature

and average velocity for a fluid, etc.). This section is not necessary for

understanding the remainder of the book, and can be omitted in a first

reading.

General derivation. Assume that the microscopic state of the system is

described by (q, p, x), where (q, p) denotes as above a phase space configu-

ration, and where x ∈ X is some additional degree of freedom. We denote

by Dx and T ∗Dx the set of admissible positions q and configurations (q, p)

for a given value of x, so that the set of admissible configurations (q, p, x)

is the space

E =
⋃

x∈X
T ∗Dx × {x}.

Denote by λ(dq dp dx) some reference measure on E . This measure expresses

the a priori information available on the system. Here, we will consider a

reference measure of the form

λ(dq dp dx) = 1(q,p)∈T∗Dx
dq dp π(dx).

The conditional measure with respect to the parameter x (i.e. the mea-

sure obtained in the (q, p) variables when the parameter x is kept fixed) is

the usual Lebesgue measure on the set of admissible configurations. The

reference measure π on the variable x depends on the problem at hand.

Consider then a measure ρ(dq dp dx) describing the macroscopic state of

the system, and several observables A1, . . . , AM , functions of (q, p, x), whose
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averages are fixed. We assume that the measure ρ(dq dp dx) is absolutely

continuous with respect to the reference measure λ(dq dp dx), and denote,

with an abuse of notation, by ρ(q, p, x) the corresponding density. In this

setting, the entropy is defined as

Sλ(ρ) = −
∫

E
ρ(q, p, x) ln ρ(q, p, x)λ(dq dp dx),

and the probability measure describing the system is obtained as the solu-

tion of the following maximization problem:

sup
ρ∈S(A0

1,...,A
0
M )

{
Sλ(ρ)

}
, (1.42)

with

S(A0
1, . . . , A

0
M )

=

{
ρ ∈ L1(λ)

∣∣∣∣ ρ ≥ 0,

∫

E
ρ dλ = 1,

∫

E
Aiρ dλ = A0

i , ∀i ∈ {1, . . . ,M}
}
.

The necessary condition to be satisfied by an extremum of (1.42) reads

S′
λ(ρ) + α0 +

M∑

i=1

αiAi = 0.

Therefore,

ρ(q, p, x) = Z−1 exp

(
M∑

i=1

αiAi(q, p, x)

)
. (1.43)

Remark 1.2 (Nonequilibrium steady states). Let us stress that the

above derivation is performed under the assumption that the system is at

equilibrium. In particular, no notion of dynamics is required. For nonequi-

librium systems in a steady state, the dynamics has to be made precise. It

is not always clear whether a stationary probability measure exists, and,

when it exists, whether it is unique and whether the distribution of the mi-

croscopic configurations converges to it. There are some positive results,

see [Rey-Bellet (2006)] in the case of heat transport in one-dimensional

atom chains. In general however, no explicit expression of the invariant

measure is available, in contrast to formulas such as (1.43).
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Isobaric-isothermal ensemble (NPT). Let us now present a first ap-

plication of the above general derivation. Isobaric-isothermal ensembles are

characterized by the fact that the energy and the volume of the system are

fixed in average only. Consider for example a periodic system for which

the size of the unit cell can vary in one direction, and denote by x > 0

the length of unit cell in this direction (while it is fixed to L in the two

remaining directions). Then,

Dx =
[
xT× (LT)2

]N
, T ∗Dx =

[
xT× (LT)2

]N × R3N .

We choose a uniform measure on all possible volumes:

X = (0,+∞), λ(dq dp dx) = 1(q,p)∈T∗Dx
1x>0 dq dp dx.

The constraints to be taken into account are A1 = H (average energy fixed),

and A2(x, q, p) = xL2 (average volume fixed).

Applying the results of the general derivation to the NPT case, it is

easily seen that the probability measure describing the equilibrium is

ρNPT(dq dp dx) = Z−1
NPT e−βPL2x e−βH(q,p) 1{q∈[xT×(LT)2]N} dq dp dx,

where the Lagrange multiplier associated with the volume constraint is

written as βP . The quantity P can be identified with the pressure.

Grand canonical ensemble (µVT). We now describe a second applica-

tion of the above general derivation. Consider a fluid of N indistinguishable

particles. The additional variable describing the microscopic state of the

system is the number N ∈ N∗ of particles contained in a periodic cubic

box of volume L3. For a given number N of particles, the set of admissible

configurations is

T ∗DN = (LT)3N × R3N .

The reference measure for the number N of particles

+∞∑
n=1

1

n!
δn(dN)

is the uniform measure on the set of positive integers, up to factors n! which

are related to the indistinguishability of the particles. (See for instance

Chapter 3 in [Minlos (2000)] for further precision on the construction of

the reference measure for the grand-canonical ensemble.) Therefore,

λ(dq dp dN) =
+∞∑
n=1

1

n!
1(q,p)∈T∗Dn

dq dp δn(dN).
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We denote by Hn the Hamiltonian function on each space T ∗Dn, which is

a function of the variables (q1, . . . , qn, p1, . . . , pn). The Hamiltonian H is

then defined as H(q, p, n) = Hn(q, p) for (q, p) ∈ T ∗Dn.

The constraints to be taken into account are A1 = H (average energy

fixed) and A2(x, q,N) = N (average number of particles fixed). Apply-

ing the results of the general derivation, the grand-canonical equilibrium

measure reads:

ρµVT(dq dp dN) = Z−1
µVT

+∞∑
n=1

eβµn

n!
e−βHn(q,p) 1(q,p)∈T∗Dn

dq dp δn(dN),

(1.44)

where βµ is the Lagrange multiplier associated with the average number

constraint.3 The parameter µ can be identified with the chemical potential.

1.3 Free energy and its numerical computation

Free energy is a central concept in thermodynamics and in modern studies

on biochemical and physical systems. The statistical physics definition of

this quantity as the logarithm of the partition function

F = − 1

β
ln

∫

T∗D
e−βH(q,p) dq dp

is motivated in Section 1.3.1.

In many applications, the important quantity is actually the free energy

difference between various macroscopic states of the system, rather than

the free energy itself. Free energy differences allow to quantify the relative

likelihood of different states. A state should be understood here as either

(i) the collection of all possible microscopic configurations, distributed ac-

cording to the canonical measure (1.32), and satisfying a given macro-

scopic constraint ξ(q) = z, where ξ : D → Rm with m small. In this

case, z is the index of the state; or

(ii) the collection of all possible microscopic configurations distributed

according to the canonical measure associated with a Hamiltonian

depending on some parameter λ. The parameter λ is then the index

of the state.

3The notation µ for the chemical potential, standard in the physics and chemistry
literature, should not be confused with the notation used for the canonical measure
throughout this book.
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This is explained in more detail in Section 1.3.2, where two examples are

also provided.

Beside these practical motivations to compute free energy differences,

a more numerical motivation is to use the free energy to devise algorithms

which overcome sampling barriers. Indeed, it is often the case in prac-

tice that approximations (1.23) to ensemble averages exhibit a slow conver-

gence. The trajectory generated by the numerical method typically remains

trapped for a long time in some region of the phase space, and hops only

occasionally to another region, where it also remains trapped for a long

time. This occurs as soon as there exist several regions of phase space sep-

arated by very low probability areas. Such regions are called metastable.

The concept of metastability may be formalized in various ways, see Sec-

tion 2.3.2.2. Chemical and physical intuitions may guide the practitioners

of the field toward the identification of some slowly evolving degree of free-

dom responsible for the metastable behavior of the system. This quantity

is a function ξ(q) of the configuration of the system, where ξ : D → Rm

with m small. The framework to consider is therefore the case of transitions

indexed by a reaction coordinate. If the function ξ is well chosen (i.e. if the

dynamics in the direction orthogonal to ξ is not too metastable), the free

energy can be used as a biasing potential to accelerate the sampling (1.23),

see Section 1.3.3.

It is thus important to accurately compute free energy differences in

order to assess the relative likelihood of physical states or to build efficient

algorithms to overcome sampling barriers. The most important techniques

to this end are briefly presented in Section 1.3.4, and then detailed in the

following chapters.

1.3.1 Absolute free energy

We first define the free energy in Section 1.3.1.1, and then motivate this def-

inition from a macroscopic thermodynamics perspective (Section 1.3.1.2).

1.3.1.1 Definition

We restrict ourselves throughout the book to the canonical ensemble,

though most of the concepts and numerical methods considered can be

extended to other thermodynamic ensembles (see Section 1.2.3.3). The

absolute free energy of a system is defined as

F = − 1

β
lnZµ, (1.45)
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where Zµ is the partition function

Zµ =

∫

T∗D
e−βH(q,p) dq dp. (1.46)

Since the potential energy function V (hence the Hamiltonian H) is defined

only up to an additive constant when empirical potential functions are used,

so is the absolute free energy. However, this has no consequence on free

energy differences, see Section 1.3.2 below.

The free energy (1.45) is called the Helmholtz free energy. Similar free

energies can be considered for other thermodynamic ensembles. They are

also logarithms of the partition functions multiplied by a factor −β−1.

When the isobaric-isothermal ensemble (NPT) is considered, the associated

free energy is called the Gibbs free energy.

For separable Hamiltonians (1.2), the partition function can be rewrit-

ten as

Zµ = Zν

(
2π

β

)3N/2 N∏

i=1

m
3/2
i , Zν =

∫

D
e−βV (q) dq,

and the only difficulty is the computation of the configurational partition

function Zν . This partition function cannot be computed as such in gen-

eral. It however has a simple expression for some specific systems, such as

the ideal gas, or solids at low temperature (resorting to the phonon spec-

trum, i.e. assuming that the interactions can be approximated by a sum of

harmonic interactions), see [Frenkel and Smit (2002); Rickman and LeSar

(2002)].

1.3.1.2 Relationship with macroscopic thermodynamics

We now motivate the definition (1.45) of the free energy, and also comment

on the limits of the theory.

Analogy with the definition in thermodynamics. A first motivation

for the definition (1.45) relies on an analogy with macroscopic thermody-

namics, where the Helmholtz free energy of a system at constant tempera-

ture T is defined as

F = U − TS, (1.47)
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U being the internal energy of the system, and S its entropy. The micro-

scopic definition of the internal energy is the average energy as given by

the laws of statistical physics:

Eµ(H) = Z−1
µ

∫

T?D
H(q, p) e−βH(q,p) dq dp, (1.48)

where the normalization constant Zµ is given by (1.46). Besides, the micro-

scopic quantity, proportional to the statistical entropy (1.36) encountered

in Section 1.2.3.2,

Σ = −kB

∫

T?D
ln

(
dµ

dq dp

)
dµ (1.49)

is proportional to the mathematical relative entropy of the canonical mea-

sure (1.32) with respect to the Lebesgue measure dq dp. It has many similar-

ities with the (macroscopic) thermodynamic entropy S, as shown in [Gibbs

(1902)]. Replacing U and S in (1.47) by their microscopic counterparts de-

fined in (1.48) and (1.49) respectively, we obtain a quantity F which should

be similar to some free energy:

F = Eµ(H)− TΣ = − 1

β
lnZµ. (1.50)

Work and heat exchanges. A second motivation for the defini-

tion (1.45) relies on a decomposition of energy exchanges into work and

heat for isothermal transformations. This requires however the notion of

free energy differences, so that the corresponding discussion is postponed

to Section 1.3.2.1.

Validity and relevance of these motivations. In spite of the for-

mal analogies highlighted above, the relationships between the microscopic

definition of the free energy or entropy, and their counterparts in classi-

cal macroscopic thermodynamics are still not completely clear. Quoting

[Balian (2007)] (see Section 3.4.6):

Notwithstanding the many interrelations which have been es-
tablished between the different kinds of entropy, the identifica-
tion of the thermodynamic entropy and the statistical entropy
has not yet been accepted universally. While the former can be
measured more or less directly for systems in thermodynamic
equilibrium and thus appears to be a property of the system
itself, the latter refers to the knowledge of the system by an
observer and does have a nature which is partially subjective,
or at least anthropocentric and relative. It certainly may ap-
pear paradoxical that these two quantities would be equal to
one another.
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1.3.2 Relative free energies

As mentioned above, the quantity of interest in many applications and in

this book is not the absolute free energy, but the free energy differences

between various states. Typical examples studied by computer simulations

include the solvation free energy (which is the free energy difference between

a molecule in vacuo and its counterpart surrounded by solvent molecules),

and the binding free energy of two molecules (this free energy difference

determines whether a new drug can have an efficient action on a given

protein for example). See [Chipot and Pohorille (2007b)] for other relevant

examples in chemistry and biophysics.

In this section, we describe more precisely what we mean by states, and

how a transition between two states can be defined. As already hinted

at in the introduction to this section, two cases should be considered: al-

chemical transitions (Section 1.3.2.1) and transitions indexed by a reaction

coordinate (Section 1.3.2.2). In order to fix the ideas, we illustrate each

type of transition with a typical example: computation of chemical poten-

tial through Widom insertion in the alchemical case (see Section 1.3.2.3),

and dimer molecule in a solvent in the reaction coordinate case (see Sec-

tion 1.3.2.4). These examples will also be our running examples for the

numerical illustrations throughout the book.

1.3.2.1 Alchemical transitions

The so-called alchemical case considers transitions indexed by an exter-

nal parameter λ, independent of the microscopic phase space configura-

tion (q, p). Typical examples are the intensity of an applied magnetic field

for a spin system, or the constants used in the empirical force fields (such

as the energy ε or the length σ in the Lennard-Jones potential (1.5)). See

Section 1.3.2.3 below and Section 2.8 in [Chipot and Pohorille (2007a)] for

more examples. The name “alchemical” refers to the fact that the nature of

the particles at hand can be modified in the computer simulation by chang-

ing the parameters of the potential describing the molecular interactions.

For a given value of λ, the system is described by a Hamiltonian Hλ. A

state is then the collection of all possible microscopic configurations T ∗D,

distributed according to the canonical measure

µλ(dq dp) =
1

Zλ
e−βHλ(q,p) dq dp, Zλ =

∫

T∗D
e−βHλ(q,p) dq dp. (1.51)

An alchemical transition transforms the state λ = 0 into the state λ = 1.
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The corresponding free energy difference is

F (1)− F (0) = −β−1 ln




∫

T∗D
e−βH1(q,p) dq dp

∫

T∗D
e−βH0(q,p) dq dp


 . (1.52)

It is often the case that Hλ depends on λ only through the potential en-

ergy Vλ. In this case, the free energy difference simplifies as

F (1)− F (0) = −β−1 ln




∫

D
e−βV1(q) dq

∫

D
e−βV0(q) dq


 . (1.53)

Work and heat exchanges in a reversible isothermal transforma-

tion. Now that alchemical transitions have been defined, we can come

back to the motivation of the definition of free energy in terms of work and

heat exchanges, see Section 1.3.1.2. An alchemical transformation can be

considered as isothermal since there is a common thermodynamic temper-

ature in the family of measures (1.51), defined through the factor β.

In accordance with (1.48), the energy of the state described by Hλ is

U(λ) = Eµλ
(Hλ) = Z−1

λ

∫

T?D
Hλ(q, p) e

−βHλ(q,p) dq dp,

while, in view of (1.49), the corresponding microscopic entropy is

S(λ) = −kB

∫

T∗D
ln

(
dµλ

dq dp

)
µλ(dq dp).

A simple computation shows that

d

dλ
Eµλ

(Hλ) = Eµλ

(
∂Hλ

∂λ

)
−β

[
Eµλ

(
Hλ

∂Hλ

∂λ

)
− Eµλ

(Hλ)Eµλ

(
∂Hλ

∂λ

)]
.

This relation can be rewritten by decomposing the energy variation of the

system (as λ changes) as a work contribution, supplemented with some heat

exchange:

dU

dλ
=

dW

dλ
+

dQ

dλ
,

dQ

dλ
= T

dS

dλ
. (1.54)

Here, W is the so-called reversible work, by definition equal to the variation

of the free-energy F (λ) = −β−1 lnZλ:

dW

dλ
= F ′(λ) = Eµλ

(
∂Hλ

∂λ

)
.
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The equality (1.54) has a well-known analogue in standard thermodynam-

ics: During a reversible isothermal transformation dλ, the heat exchanged

with the thermostat, defined as the energy variation minus the exerted work

dU − δW = δQ, is an exact differential δQ = TdS involving the entropy S

of the system. This interpretation of (1.54) in terms of standard thermody-

namics is due to Boltzmann in its original research on the microscopic in-

terpretation of macroscopic thermodynamics (see Section 1.5 in [Gallavotti

(1999)] for further precision). Note that in this microscopic framework the

heat exchange is related to the variation of the weight Z−1
λ e−βHλ(q,p) of

the configurations during a reversible transformation.

1.3.2.2 Transitions indexed by a reaction coordinate

In the reaction coordinate case, the Hamiltonian of the system is kept fixed.

A state is a measure on a submanifold of the phase space. These subman-

ifolds are the level sets of some function, the so-called reaction coordinate,

ξ : D → Rm,

with m ≤ 3N . Examples of such functions are dihedral angles, or dis-

tances between two molecular subgroups, as in the example presented in

Section 1.3.2.4 below. To ξ is associated a foliation of the phase space into

submanifolds Σ(z) = {q ∈ D | ξ(q) = z}, so that

D =
⋃

z∈Rm

Σ(z).

We assume in the sequel that the submanifolds Σ(z) are simply connected,4

and that Σ(z1) 6= Σ(z2) when z1 6= z2.

The free energy difference is related to the relative likelihoods of

marginal distributions with respect to ξ. For the canonical measure (1.32),

the marginal distribution is by definition

µξ(dz) =

(
1

Zµ

∫

Σ(z)×R3N

e−βH(q,p) δξ(q)−z(dq) dp

)
dz.

It is the image of the measure µ by ξ. The measure δξ(q)−z(dq) is defined

as in (1.25) and (1.26) through the relation δξ(q)−z(dq) dz = dq, see also

Sections 3.2.1 and 3.3.2 for further precision. In particular, it can be written

as

δξ(q)−z(dq) =
σΣ(z)(dq)

|∇ξ(q)| , (1.55)

4This will be important to state ergodicity results for dynamics constrained to remain
on Σ(z).
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where σΣ(z)(dq) is the area measure induced by the Lebesgue measure on

the manifold Σ(z) when D is equipped with the standard Euclidean scalar

product. The free energy is then defined as the log-density of the marginal

distribution:

e−βF (z) dz = µξ(dz).

Thus, exp(−β[F (1)−F (0)]) can be interpreted as the relative likelihood of

states in Σ(1) compared to states in Σ(0). More explicitly,

F (z) = −β−1 ln

(
1

Zµ

∫

Σ(z)×R3N

e−βH(q,p) δξ(q)−z(dq) dp

)
. (1.56)

The free energy can therefore also be seen as some effective potential as-

sociated with ξ. The function z 7→ F (z) is called potential of mean force.

This terminology is motivated by the fact that F ′(z), called the mean force,

is some average force exerted on the system when the reaction coordinate

is kept constant, see Chapter 3 for further precision.

The free energy difference between the state Σ(0) and the state Σ(1) is

finally defined as

F (1)− F (0) = −β−1 ln




∫

Σ(1)×R3N

e−βH(q,p) δξ(q)−1(dq) dp

∫

Σ(0)×R3N

e−βH(q,p) δξ(q)(dq) dp


 . (1.57)

For separable Hamiltonians, (1.2), the free energy difference can be rewrit-

ten as

F (1)− F (0) = −β−1 ln




∫

Σ(1)

e−βV (q) δξ(q)−1(dq)

∫

Σ(0)

e−βV (q) δξ(q)(dq)


 . (1.58)

Notice that when |∇ξ| is constant, the free energy difference F (1) − F (0)

only depends upon ξ through Σ(1) and Σ(0) in view of (1.55).

Remark 1.3 (Choice of the reaction coordinate). For a given folia-

tion of the configurational space, the free energy difference depends in gen-

eral on the choice of the reaction coordinate indexing this foliation. Indeed,

consider another reaction coordinate ξ̃, defining the same level sets, with in

particular

Σ̃(0) =
{
q
∣∣∣ ξ̃(q) = 0

}
=

{
q
∣∣ ξ(q) = 0

}
= Σ(0), (1.59)
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and a similar relation for z = 1. For instance, ξ̃ = f(ξ) with any one-to-

one increasing function f : [0, 1] → [0, 1] has the same level sets as ξ, and

satisfies (1.59).

In general, the associated free energy differences F (1) − F (0) and

F̃ (1)−F̃ (0) are different. Indeed, the surface measure σΣ(0)(dq) is somehow

intrinsic (it depends only on the submanifold Σ(0) = Σ̃(0) and on the ambi-

ent scalar product), while the measure δξ(q)−z(dq) depends on the gradients

of the reaction coordinates through the factors |∇ξ(q)|−1, see the right-hand

side of (1.55). It is therefore a modelling choice to decide which reaction

coordinate to use, in particular when comparing results of numerical simu-

lations to experimental measurements. Of course, there are no such issues

in the alchemical case.

Remark 1.4 (Relation with the alchemical setting).

Alchemical transitions can be considered as a special case of transitions

indexed by a reaction coordinate, upon introducing the extended variable

Q = (λ, q) and the reaction coordinate ξ(Q) = λ. In this case, the geometry

of the submanifolds is very simple since |∇ξ(Q)| = 1. The level sets are

Σ(λ) = {λ}×D, and the measure δξ(Q)−λ(dQ) in the extended space is the

Lebesgue measure dq on D.

Besides, the reaction coordinate case is sometimes considered as a lim-

iting case of the alchemical case, using the family of Hamiltonians

Hη
λ(q) = V (q) +

1

2η

(
ξ(q)− λ

)2

+
1

2
pTM−1p,

and letting η → +∞. See Section 5.1.2 for further precision.

1.3.2.3 A typical alchemical transition: Widom insertion

We describe here the running example used to illustrate simulation results

for alchemical transitions. We consider a fluid composed of N particles and

enclosed in a domain D = (LT)d, where the physical dimension is d = 2.

The chemical potential is defined as

µ = F (N + 1)− F (N),

where F (N) is the free energy of the system composed of N particles in the

canonical ensemble for the domain (LT)d at a given inverse temperature β.

In fact, the chemical potential is equal, in the thermodynamic limit, to the

Lagrange multiplier µ used to define the grand-canonical measure (1.44)

(see Section 5.6.3 in [Balian (2007)]).
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The chemical potential can be rewritten as

µ = µid + µex,

where the so-called “ideal gas contribution” µid comes from the kinetic part

of the partition function, and has an analytic expression (see [Frenkel and

Smit (2002)]). The challenge is the computation of the “excess chemical

potential” µex, which arises from interactions between the fluid particles.

Denoting by qN ∈ DN = (LT)dN the positions of N particles,

µex = −β−1 ln




∫

DN+1

e−βVN+1(q
N+1) dqN+1

Ld

∫

DN

e−βVN (qN ) dqN


 , (1.60)

where VN (qN ) is the potential energy function for a fluid composed of N

particles, and DN = (LT)dN is the associated configuration space. Notice

that µex = 0 when the potential functions are VN = VN+1 = 0 thanks to

the factor Ld in (1.60).

Denoting the canonical measure for a fluid of N particles by

µN (dqN ) = Z−1
N e−βVN (qN ) dqN , ZN =

∫

DN

e−βV (qN ) dqN ,

and defining the energy difference between a fluid of N and N +1 particles

as

∆NV (qN , q) = VN+1(q
N+1)− VN (qN ),

when qN+1 = (qN , q), the chemical potential (1.60) can be rewritten in the

form (1.53) upon defining a potential function on DN+1:

Vλ(q
N , q) = VN (qN ) + λ∆NV (qN , q). (1.61)

Indeed,

µex = − 1

β
ln




∫

DN+1

e−βV1(q
N+1) dqN+1

∫

DN+1

e−βV0(q
N+1) dqN+1


 .

Another expression of the excess chemical potential, which will be useful

for later purposes, is:

µex = −β−1 ln

(
1

Ld

∫

DN×D1

e−β∆NV (qN ,q1) µN (dqN ) dq1
)
. (1.62)

The idea of the alchemical transition is therefore to go from a system

of N + 1 particles where one of the particles does not have any interaction
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with the others, to a system of N+1 fully interacting particles. When there

are sufficiently many particles in the simulation box, adding an extra one

requires some energy since some space must be created. The alchemical

transition consists in progressively switching on the interactions with the

(N + 1)-th particle.

The computational results presented in this book have been obtained

for a system with pairwise interactions, so that

VN (qN ) =
∑

1≤i<j≤N

V(|qi − qj |).

As in [Hendrix and Jarzynski (2001); Oberhofer et al. (2005)], we use a

smoothed Lennard-Jones potential (in order to avoid the singularities at

the origin). This potential reads

V(r) =




a− br2, 0 ≤ r ≤ 0.8σ,

ΦLJ(r) + c(r − rcut)− d, 0.8σ ≤ r ≤ rcut,

0, r ≥ rcut,

(1.63)

where

ΦLJ(r) = 2ε

(
1

2

(σ
r

)12

−
(σ
r

)6
)
,

is the Lennard-Jones potential expressed in length units such that the equi-

librium position corresponds to r = σ: Φ′
LJ(σ) = 0. The value rcut = 2.5σ

is a prescribed cut-off radius. The numbers a, b, c, d ensure that the poten-

tial is C1.

1.3.2.4 A typical transition indexed by a reaction coordinate:

Dimer in a solvent

We now describe the running example used to illustrate simulation results

for transitions indexed by a reaction coordinate. We consider a system

composed of N particles in a two-dimensional periodic box of side length

L. Among these particles, two particles (numbered 1 and 2 in the following)

are designated to form a dimer while the others are solvent particles.

All particles, except the two particles forming the dimer, interact

through the purely repulsive WCA pair potential, which is a truncated

Lennard-Jones potential [Dellago et al. (1999); Straub et al. (1988)]:

VWCA(r) =





4ε

[(σ
r

)12

−
(σ
r

)6
]
+ ε if r ≤ r0,

0 if r > r0,
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where r denotes the distance between two particles, ε and σ are two positive

parameters and r0 = 21/6σ. The interaction potential between the two

particles of the dimer is a double-well potential

VS(r) = h

[
1− (r − r0 − w)2

w2

]2
, (1.64)

where h and w are two positive parameters. The total energy of the system

is therefore, for q ∈ (LT)dN with d = 2,

V (q) = VS(|q1−q2|)+
∑

3≤i<j≤N

VWCA(|qi−qj |)+
∑

i=1,2

∑

3≤j≤N

VWCA(|qi−qj |),

where q1 and q2 are the positions of the two particles forming the dimer.

The potential VS has two energy minima. The first one, at r = r0, corre-

sponds to the compact state. The second one, at r = r0 + 2w, corresponds

to the stretched state. The height of the energy barrier separating the two

states is h. Figure 1.7 presents a schematic view of the system.
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Fig. 1.7 Schematic views of the system, when the dimer is in the compact state (Left),
and in the stretched state (Right). The interaction of the particles forming the dimer is
described by a double-well potential. All the other interactions are of WCA form.

The reaction coordinate used to describe the transition from the com-

pact to the stretched state is the normalized bond length

ξ(q) =
|q1 − q2| − r0

2w
, (1.65)

of the dimer molecule. The compact state (resp. the stretched state) cor-

responds to the value z = 0 (resp. z = 1) of the reaction coordinate.

1.3.3 Free energy and metastability

Standard molecular simulation techniques such as those that will be pre-

sented in Chapter 2 often experience difficulties in sampling metastable po-

tentials. Potentials are called metastable when the corresponding canonical
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measure has several regions of high probability separated by low-probability

regions. Typical numerical methods spend a lot of time in one given

metastable basin, and only rarely escape it to visit another basin. These

escapes are rare but fast events. The notion of metastability may be formal-

ized and quantified in several ways, see Section 2.3.2.2 for a more detailed

discussion. Some examples of metastable potentials are described in Sec-

tions 1.3.3.1 and 1.3.3.2 below.

We motivate in this section the interest of free energy methods for the

sampling of metastable potentials. Such methods can be used provided

the low- and high-probability regions of the systems are the level sets of

some function ξ(q), which is still called a reaction coordinate. Alternatively,

ξ(q) can be seen as some slowly evolving degrees of freedom encoding some

coarse-grained information on the system. The free energy associated with

ξ may then be used as a biasing potential enforcing transitions from one

metastable basin to another. We show an instance of this strategy in Sec-

tion 1.3.3.3 for the potentials considered in Sections 1.3.3.1 and 1.3.3.2. Of

course the reliability of the method crucially depends on the choice of the

reaction coordinate. This is a very important problem in practice, unfor-

tunately rather ill-posed.

1.3.3.1 A simple example of metastable dynamics

Consider the potential energy

V (x, y) =
1

6

[
4(1− x2 − y2)2 + 2(x2 − 2)2 + ((x+ y)2 − 1)2

+((x− y)2 − 1)2
]
,

(1.66)

and a single particle q = (x, y) evolving according to the overdamped

Langevin dynamics:

dqt = −∇V (qt) dt+

√
2

β
dWt.

Figure 1.8 presents the level sets of the potential (1.66) and a typical tra-

jectory.

The overdamped Langevin dynamics can be shown to be ergodic for

the canonical probability measure ν(dq) = Z−1 exp(−βV (q)) dq (see Sec-

tion 2.2.2 for more detail on the overdamped Langevin dynamics and its

numerical implementation). The dynamics projected in the y variable is

irrelevant, whereas the time evolution of the x variable shows that it is

a “slow” variable. If the average position Eν(x) is computed as a time-

average along a trajectory, the convergence is very slow (compared to the
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convergence of the average Eν(y) for instance). This suggests to choose

ξ(x, y) = x.

x coordinate

y 
co

or
di

na
te

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

0.0 2000 4000 6000 8000 10000

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Time
x 

co
or

di
na

te

Fig. 1.8 Left: Level sets of the potential (1.66). Right: Projected trajectory in the x
variable for ∆t = 0.01, β = 6.

For later purposes, we compute the free energy profile for the reaction

coordinate ξ(x, y) = x:

F (x2)− F (x1) = −β−1 ln

(
ψξ(x2)

ψξ(x1)

)
, (1.67)

where the marginals ψξ of the equilibrium canonical distribution are

ψξ(x) =

∫

R
e−βV (x,y) dy.

This profile is illustrated in Figure 1.9, together with

F ′(x) =

∫

R
∂xV (x, y) e−βV (x,y) dy
∫

R
e−βV (x,y) dy

.

Notice that F ′ is the opposite of the averaged force experienced in the

direction of the reaction coordinate (the so-called mean force). There is

a high free energy barrier at x = 0, which corresponds to a small value

of ψξ(x). This barrier is at the origin of the metastable behavior since it

separates two regions of high probability.

1.3.3.2 Entropic and energetic barriers

Free energy barriers can have two origins, related to either energetic or

entropic bottlenecks. We give below two toy examples of purely energetic

and purely entropic barriers. Of course, in general, both components are
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Fig. 1.9 Left: Potential of mean force for the potential plotted in Figure 1.8, using
the x coordinate as reaction coordinate. From top to bottom: β = 2 (dotted line), β = 3
(dashed line), β = 4 (solid line). Right: Associated mean forces.

mixed, and it is not so obvious to decide whether the metastability of the

dynamics rather has an energetic or an entropic origin (except in some

limiting temperature regime, see the discussion at the end of this section).

Purely energetic barrier. Consider q = (q1, . . . , qN ) ∈ RN , p ∈ RN ,

and

H(q, p) = W (q1) + V (q2, . . . , qN ) +
1

2
pTM−1p, (1.68)

where W is a one-dimensional double-well potential W (q1) = h(q21 − 1)2

with h large enough. Then, choosing the first coordinate q1 as a reaction

coordinate: ξ(q) = q1, it holds (up to a multiplicative constant which does

not depend on z):

e−βF (z) =

∫

R2N−1

e−βH(z,q2,...,qN ,p1,...,pN ) dq2 . . . dqN dp1 . . . dpN ,

so that

F (z2)− F (z1) = W (z2)−W (z1).

In this case, it is clear that free energy barriers are purely of energetic

origin.

Purely entropic barrier. Entropic barriers are often encountered in

complex systems with many degrees of freedom. In this case, the system

typically has enough energy to overcome the energetic barriers it can en-

counter, but has not, somehow, got its energy concentrated in the right

modes or directions. It is expected that entropic barriers increase with the
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Fig. 1.10 Left: Potential for which entropic barriers have to be overcome, in the case
L1 = 2, L2 = 4 and L3 = 2. The potential is 0 in the region enclosed by the curve, and
+∞ outside. Right: Associated free energy profile when the x coordinate is the reaction
coordinate (β = 1).

dimensionality of the system (think of a random walk in a high-dimensional

space).

A toy model of an entropic barrier is the potential presented in Fig-

ure 1.10. The potential is zero inside the curve, and +∞ outside, so that

the system is confined in the bone-shaped region. Here, q = (x, y) ∈ D =

{q ∈ R2 | V (q) = 0}. Denote by d the width of the tunnel between the two

metastable regions, by 2L1 its length, by L2 the length of the transition

region, and by L3 the length of the initial and final rectangular domains,

which are of heights ∆. We choose ξ(q) = x as the reaction coordinate.

Then,

F (x) =





−β−1 ln d when |x| ≤ L1,

−β−1 ln

(
d+

∆− δ

L2
(|x| − L1)

)
when L1 ≤ |x| ≤ L1 + L2,

−β−1 ln∆ when L1 + L2 ≤ |x| ≤ L1 + L2 + L3.
(1.69)

There is a free energy barrier in the tunnel region, arising from the contrac-

tion of the phase space volume: Less configurations are accessible, although

the energy has not changed. This barrier has no energy component in it

since the average energy for a fixed value of the reaction coordinate is zero.

Figure 1.11 presents a typical trajectory in the case L1 = L3 = 2,

L2 = ∆ = 4, δ = 0.2, for a Metropolis random walk with isotropic Gaus-

sian moves of variance 2τ/β (see Section 2.1.2 for further precision on the

Metropolis algorithm). Here, this amounts to proposing a new position q̃n+1

as
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Fig. 1.11 Typical trajectory of the variable x for the potential presented in Figure 1.10,
when a Metropolis dynamics is used, for the parameters τ = 0.1 and β = 1. The time
variable is defined as the number of iterations times the typical time τ .

q̃n+1 = qn +

√
2τ

β
Gn,

where (Gn)n≥0 are independent and identically distributed centered Gaus-

sian random variables of identity covariance; and setting qn+1 = q̃n+1 when

q̃n+1 ∈ D, and qn+1 = qn otherwise. The simulation results show that the x

coordinate only significantly varies on long timescales, which is a typical

signature of metastability.

Temperature dependence of the free energy barrier. The temper-

ature dependence of the free energy barrier is a good indicator of the nature

of the bottleneck. Indeed, in the case of a purely energetic barrier (1.68),

the ratio of the marginal distributions

e−β(F (z1)−F (z0)) = e−β(W (z1)−W (z0))

varies exponentially as a function of β, whereas, for the example (1.69)

of purely entropic barrier, this ratio does not depend on β. In general,

it is expected that free energy barriers at low temperatures (i.e. in the

limit β → +∞) are mostly of energetic nature, in accordance with large

deviation principles [Freidlin and Wentzell (1998)]. On the other hand, at

high temperatures (in the limit β → 0),

F (z1)− F (z0) = − 1

β
ln




∫

D
e−βV (q) δξ(q)−z1(dq)

∫

D
e−βV (q) δξ(q)−z0(dq)




' − 1

β
ln




∫

D
δξ(q)−z1(dq)

∫

D
δξ(q)−z0(dq)


 ,
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provided the integrals

I(z) =

∫

D
δξ(q)−z(dq)

are finite for z0 and z1. In this case the free energy difference is controlled

at first order by the entropic contribution. Indeed, I(z) measures the ac-

cessible phase space for the constraint ξ(q) = z, and some entropy can be

defined from this volume according to Boltzmann’s definition of the entropy

as the logarithm of a density of states.

1.3.3.3 Free energy biased sampling

In the simple examples considered in Sections 1.3.3.1 and 1.3.3.2, the slowly

evolving variable is known. There is a clear free energy barrier when using

ξ(x, y) = x as a reaction coordinate for (1.67) and (1.69). It is then possible

to bias the dynamics in the x variable in order to remove the free energy

barrier. More precisely, we now sample the modified potential

V (q)− F (ξ(q)).

Notice that the free energy associated to the reaction coordinate ξ for this

modified potential is constant:

−β−1 ln

∫

Σ(z)

e−β(V−F◦ξ)(q) δξ(q)−z(dq) = β−1 lnZµ.

The above formula is a consequence of the definition (1.56) of the free energy

F (z), using also the equality F (ξ(q)) = F (z) on Σ(z). The marginal law of

Z−1 e−β(V−F◦ξ)(q) dq along ξ is therefore the uniform law.

If ξ completely describes the metastability of the potential V as in the

previous examples, the modified potential V −F ◦ξ is no longer metastable.

An efficient importance sampling method can then be obtained, especially

when F does not vary too much (see Section 2.4.1.4 for further precision

on importance sampling). We now numerically illustrate this strategy.

Application to the two-dimensional double-well potential. Con-

sider the system described by the potential (1.66). Figure 1.12 presents the

new potential V −F ◦ξ (where the free energy bias, computed with standard

quadrature rules, has been applied for |x| ≤ 1.7) and a typical trajectory

of the overdamped Langevin dynamics for the potential V − F ◦ ξ, pro-

jected on the x coordinate. The comparison with Figure 1.8 shows that the

transitions from the region x < 0 to the region x > 0 are now sufficiently

frequent in order to attain good sampling accuracies.
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Fig. 1.12 Left: Modified potential V − F ◦ ξ. Right: Projected trajectory in the x
variable for ∆t = 0.01, β = 6 for the dynamics associated with the modified potential.

Application to the entropic barrier problem. Figure 1.13 presents

the results for a Metropolis random-walk dynamics biased by the free en-

ergy (1.69) in the case of the potential presented in Figure 1.10 (see Sec-

tion 1.3.3.2 for a brief description of the dynamics). As in the previous

case, the metastability is removed, and many transitions are observed from

one well to the other (compare with Figure 1.11). The effect of the free

energy bias is to increase the likelihood of regions close to the transition

zone, so that many more crossings are attempted.
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Fig. 1.13 Typical trajectory for the potential exhibiting an entropic barrier when the
dynamics is biased by the analytically-known free energy. The numerical parameters are
the same as for Figure 1.11.

1.3.4 Computational techniques for free energy differences

We present in this section the key ideas behind the methods currently

available to compute free energy differences. Some of these techniques are
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suited both for alchemical transitions and transitions indexed by a reaction

coordinate, but not all of them. In our opinion, the currently available

techniques fall within the following four classes:

(i) The first technique, dating back to [Kirkwood (1935)], is thermody-

namic integration, which mimics the quasi-static evolution of a system

as a succession of equilibrium samplings (this amounts to an infinitely

slow switching between the initial and final states). In practice, it

allows to compute free energy differences by integrating the deriva-

tive of the free energy, which happens to be a canonical average for a

fixed value of the reaction coordinate or alchemical parameter. This

technique can be used both for alchemical transitions and transitions

indexed by reaction coordinates, see Chapter 3;

(ii) The second one is based on straightforward sampling methods. In

the alchemical case, the free energy perturbation method , introduced

in [Zwanzig (1954)], recasts free energy differences as usual canonical

averages (see Section 2.4.1). In the reaction coordinate case, usual

sampling methods can also be employed, relying on histogram methods

(see Section 2.5);

(iii) A more recent class of methods relies on dynamics with an imposed

schedule for the reaction coordinate or the alchemical parameter.

These techniques therefore use nonequilibrium dynamics. Equilibrium

properties can however be recovered from the nonequilibrium trajecto-

ries with a suitable exponential reweighting, see [Jarzynski (1997b, a)].

This technique can handle both alchemical transitions and transitions

indexed by reaction coordinates, see Chapter 4. It also has many

similarities with free-energy perturbation since the corresponding free-

energy estimators have the same mathematical structure (exponential

averages);

(iv) Finally, adaptive biasing dynamics may be used in the reaction coor-

dinate case. The switching schedule is not imposed a priori, but a

biasing term in the dynamics forces the transition by penalizing the

regions which have already been visited. This biasing term can be a

biasing force as for the Adaptive Biasing Force technique of [Darve

and Porohille (2001)], or a biasing potential as for the Wang-Landau

method [Wang and Landau (2001b, a)], nonequilibrium metadynam-

ics [Iannuzzi et al. (2003)] or Self-Healing Umbrella Sampling [Marsili

et al. (2006)].
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We refer to Figure 1.14 for a schematic comparison of the computational

methods in the reaction coordinate case.

We now give a flavor of these approaches, preferentially in the alchemical

setting for simplicity. The remainder of the book is devoted to a thorough

presentation of these techniques. Recall that the free energy is defined,

up to an additive constant (unimportant as long as free energy differences

are concerned), by (1.52) or (1.53) in the alchemical case, and by (1.57)

or (1.58) in the reaction coordinate case.

(a) Histogram method: sample points
around the level sets are generated.

(b) Thermodynamic integration: a pro-
jected dynamics is used to sample each
“slice” of the phase space.

(c) Nonequilibrium dynamics: the
switching is imposed a priori and is the
same for all trajectories.

(d) Adaptive dynamics: the system is
forced to leave regions where the sam-
pling is sufficient.

Fig. 1.14 Cartoon comparison of the different techniques to compute free energy differ-
ences in the reaction coordinate case.
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1.3.4.1 Thermodynamic integration

Thermodynamic integration consists in remarking that

F (λ)− F (0) =

∫ λ

0

F ′(s) ds, (1.70)

and that the derivative

F ′(λ) =

∫

T∗D

∂Hλ

∂λ
(q, p) e−βHλ(q,p) dq dp

∫

T∗D
e−βHλ(q,p) dq dp

is the canonical average of ∂λHλ with respect to the canonical measure

µλ(dq dp) = Z−1
λ e−βHλ(q,p) dq dp.

In practice, F ′(λi) is computed using classical sampling techniques for a

sequence of values λi ∈ [0, 1]. The integral on the right-hand side of (1.70)

is then integrated numerically to obtain the free energy difference profile.

The extension to transitions indexed by a reaction coordinate is presented

in Chapter 3 (for dynamics in position space in Section 3.2 and phase space

dynamics in Section 3.3).

1.3.4.2 Methods based on straightforward sampling

Free energy perturbation. Free energy perturbation is a technique

which is restricted to the computation of free energy differences in the

alchemical case (see however Remark 1.4 for an extension of the alchemical

setting to the reaction coordinate case). It consists in rewriting the free

energy difference as

∆F = −β−1 ln

∫

T∗D
e−β(H1−H0)dµ0.

An approximation of ∆F is then obtained by generating configura-

tions (qn, pn) distributed according to µ0 and computing the empirical

average

1

N

N∑
n=1

e−β(H1−H0)(q
n,pn).

However, the initial and the final distributions µ0 and µ1 often hardly

overlap. Intermediate steps should then be considered, or some importance

sampling strategy should be used to improve the numerical accuracy, see

Section 2.4.1.

It is also possible to resort to bridge sampling. In this case, the free

energy difference ∆F is estimated using sample points from µ0 and µ1, see

Section 2.4.2.
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Histogram methods. In the reaction coordinate case, a naive algorithm

to compute approximate free energy differences would be to sample con-

figurations using a simple dynamics ergodic with respect to the canonical

measure (see Chapter 2 for further precision), and to compute approxima-

tions of the marginal law in the reaction coordinate. More precisely, this

can be done in practice by discretizing the values of the reaction coordinate

into small intervals, and approximating the free energy by computing the

canonical average of the indicator function of these intervals in the limit

when the interval width ∆z goes to 0. Defining

χz,∆z(q) =
1

∆z
1|ξ(q)−z|≤∆z/2,

it holds

− 1

β
lnEµ(χz,∆z) = − 1

β
ln

(
1

Zµ

∫

T∗D

1|ξ(q)−z|≤∆z/2

∆z
e−βH(q,p) dq dp

)

−→ F (z) = − 1

β
ln

(
1

Zµ

∫

T∗D
e−βH(q,p) δξ(q)−z(dq) dp

)
(1.71)

when ∆z → 0. However, the metastable features of the dynamics used for

sampling usually prevent such a simple strategy from being efficient, see

Section 1.3.3. The idea of histogram methods is to sample configurations

centered on some level set Σ(z), typically by sampling canonical measures

associated with modified potentials

V (q) +
1

2η

(
ξ(q)− z

)2

,

where η > 0 is a small parameter, and to construct a global sample for

the canonical measure µ(dq dp) by concatenating the sample points (with

some appropriate weighting factor), see Section 2.5 for further precision.

Once this global sample is obtained, an approximation of the free energy is

obtained with (1.71) (for ∆z small enough).

1.3.4.3 Nonequilibrium dynamics

Free energy differences can be expressed as a nonlinear average

over nonequilibrium trajectories, using the so-called Jarzynski equality,

see (1.74) below. This equality can easily be obtained for a system governed

by Hamiltonian dynamics, with initial conditions at equilibrium, canoni-

cally distributed according to µ0, and subjected to a switching schedule

Λ : [0, T ] → R with Λ(0) = 0 and Λ(T ) = 1. More precisely, we con-

sider initial conditions (q(0), p(0)) ∼ µ0, which are evolved according to
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the following non-autonomous ordinary differential equation for 0 ≤ t ≤ T

(compare with (1.8)):




dq

dt
(t) = ∇pHΛ(t)(q(t), p(t)),

dp

dt
(t) = −∇qHΛ(t)(q(t), p(t)).

(1.72)

Defining by φΛ the associated flow, the work performed on the system

starting from some initial conditions (q, p) is

W(q, p) =

∫ T

0

∂HΛ(t)

∂λ
(φΛ

t (q, p)) Λ
′(t) dt = H1(φ

Λ
T (q, p))−H0(q, p). (1.73)

The last equality is obtained by noticing that

d

dt

(
HΛ(t)(φ

Λ
t (q, p))

)
=

∂HΛ(t)

∂λ
(φΛ

t (q, p)) Λ
′(t) +

(∇qHΛ(t)(φ
Λ
t (q, p))

∇pHΛ(t)(φ
Λ
t (q, p))

)
· ∂tφΛ

t (q, p)),

and the second term on the right-hand side vanishes in view of (1.72).

Then,
∫

T∗D
e−βW(q,p) dµ0(q, p) = Z−1

0

∫

T∗D
e−βH1(φ

Λ
T (q,p)) dq dp.

Since φΛ
T defines a change of variables of Jacobian 1, the above equality can

be restated as

Eµ0(e
−βW) =

Z1

Z0
= e−β(F (1)−F (0)), (1.74)

where the expectation is taken with respect to initial conditions distributed

according to µ0. The extension to stochastic dynamics, for transitions

indexed by a reaction coordinate or an alchemical parameter, is presented

in Chapter 4.

In view of the equality (1.74), it is already clear that the lowest values

of the work dominate the nonlinear average (1.74), and the distribution of

weights e−βW(q,p) is often degenerate in practice. This prevents in general

an accurate numerical computation of the (1.74), and raises issues very

similar to the ones encountered with free-energy perturbation. Refined

strategies are therefore needed to use nonequilibrium methods in practice

(see Chapters 4 and 6).
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1.3.4.4 Adaptive dynamics

Adaptive dynamics may be seen as some adaptive importance sampling

strategy, with a biasing potential at time t function of the reaction coor-

dinate. The biasing potential converges in the longtime limit to the free

energy by construction of the dynamics.

To illustrate this strategy, we consider the case of the Adaptive Biasing

Force (ABF) method [Darve and Porohille (2001); Hénin and Chipot (2004)]

in the simple example when the reaction coordinate ξ(q) = q1 has values

in T, while the remaining coordinates q2...N belong to RN−1. Recall that,

when ξ adequately describes the metastabilities of the system, the dynamics

biased by the free energy is less metastable than the original dynamics (see

Section 1.3.3 for two typical examples).

Let us assume that we know the free energy F . Denoting by qt =

(q1,t, q2...N,t) the current configuration of the system, the overdamped

Langevin dynamics associated with the modified potential V − F ◦ ξ reads




dqt = −
(
∇V (qt)− F ′(q1,t) e1

)
dt+

√
2

β
dWt,

F ′(z) = Eν

(
∂q1V (q)

∣∣∣ ξ(q) = z
)
=

∫

RN−1

∂q1V (z, q2...N ) e−βV (z,q2...N ) dq2...N
∫

RN−1

e−βV (z,q2...N ) dq2...N

,

(1.75)

where e1 = (1, 0, . . . , 0)T is the unit vector in the q1 direction. Denote by

ν̃(dq) = Z̃−1 exp
(
− β(V (q)− F (q1))

)
dq

the stationary measure of the process (1.75). The equilibrium mean force

F ′(z) can actually be rewritten as a canonical average with respect to ν̃,

conditionally on q1 = z:

F ′(z) = Eν

(
∂q1V (q)

∣∣∣ ξ(q) = z
)
= Eν̃

(
∂q1V (q)

∣∣∣ ξ(q) = z
)
. (1.76)

Indeed, the bias F (ξ(q)) is constant when ξ(q) is kept constant. There-

fore, conditional averages with respect to ν̃ for ξ(q) = z fixed are equal

to conditional averages with respect to the canonical measure (1.33) since

the factor e−βF (ξ(q)) cancels out in the numerator and denominator of the

conditional average.

Now, of course, F is not known in practice. In view of (1.75)-(1.76),

it seems natural to replace, in the dynamics (1.75), the conditional ex-

pectation with respect to the stationary measure in the expression of the
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equilibrium mean force, by the conditional expectation with respect to the

current law of qt:



dqt = −
(
∇V (qt)− F ′

t (q1,t) e1

)
dt+

√
2

β
dWt,

F ′
t(z) = E

(
∂q1V (qt)

∣∣∣ ξ(qt) = z
)
.

(1.77)

Notice that the biasing potential Ft now explicitly depends on the time

variable. Denoting by ψt(q) dq the law of qt at time t (intuitively, the

distribution of configurations obtained by simulating an infinite number of

replicas interacting only through the common bias they are constructing),

the biasing force F ′(z) can be rewritten in a form closer to the expression

in (1.75):

F ′
t (z) =

∫

RN−1

∂q1V (z, q2...N )ψt(z, q2...N ) dq2...N
∫

RN−1

ψt(z, q2...N ) dq2...N

.

We now motivate why the adaptive dynamics (1.77) may be relevant.

The distribution of the variable ξ(qt) = q1,t is given by the marginal law

with density

ψξ
t (z) =

∫

RN−1

ψt(z, q2...N ) dq2...N .

A simple computation (see Section 5.2.3.1) shows that

∂tψ
ξ
t (z) =

1

β
∂2
zψ

ξ
t (z).

The above diffusion equation implies that ψξ
t converges (exponentially fast)

to the uniform distribution on T. Therefore, the metastable features asso-

ciated with ξ are suppressed. Heuristically, the simple diffusion equation

in the direction q1 is not too surprising since the biasing force F ′
t aims pre-

cisely at counteracting in average the force experienced by the system in

the direction q1.

Besides, the dynamics (1.77) in the q2...N variable (at fixed z) is an

overdamped Langevin dynamics associated with the potential V (z, q2...N ).

Assuming that the dynamics is at equilibrium conditionnally on the z vari-

able, the distribution of the variable q2...N at fixed z is equal to the canonical

conditional distribution:

ψt(z, q2...N )

ψξ
t (z)

dq2...N = Z−1
z e−βV (z,q2...N ) dq2...N .
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Recall also that the marginal law ψξ
t converges to the uniform law. On

the other hand, ν̃(dq) is the unique probability measure whose marginal

distribution in the ξ variable is the uniform law, while the conditional

distributions at fixed values of ξ are equal to the canonical conditional

distributions. This motivates the convergence of ψt(q) dq towards ν̃(dq),

and therefore the convergence of Ft towards F .

The above presentation naturally suggests a parallel implementation of

the dynamics through many replicas constructing a shared biasing poten-

tial. This plain parallel implementation can be enhanced through some

selection process on the replicas (see Section 6.2). There exist also adap-

tive dynamics where the biasing potential Ft is updated, in contrast to

the method presented here where the derivative of the biasing potential is

updated. See Section 5.1 for further precision.

1.4 Summary of the mathematical tools and structure of

the book

Table 1.2 presents in a synthetic manner the techniques used from a math-

ematical viewpoint for each of the methods presented in Section 1.3.4. This

explains the construction of the book: we present the methods in what we

consider to be the increasing order of mathematical complexity.

Table 1.2 Mathematical theories used for each free energy technique (MCs =
Markov chains, SDEs = Stochastic differential equations).

Free energy perturbation Time homogeneous MCs and SDEs Chapter 2
Histogram methods Time homogeneous MCs and SDEs Chapter 2

Thermodynamic integration Projected SDEs and MCs Chapter 3
Nonequilibrium dynamics Nonhomogenous MCs and SDEs Chapter 4

Adaptive dynamics Nonlinear SDEs and MCs Chapter 5
Selection procedures Particle systems and jump processes Chapter 6

For the reader’s convenience, see the dependency diagram in Figure 1.15,

which highlights the prerequisites for each chapter. In particular, Sec-

tions 2.1 and 2.2 cover some material which will be of constant use for the

remainder of the book.
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Sec. 4.3.2

Chap. 1

Sec. 3.1

Sec. 2.1, 2.2, 2.3

Sec. 2.4, 2.5 Sec. 3.3

Sec. 4.1, 4.2, 4.4 Sec. 6.1

Sec. 4.3.1Sec. 3.2

Chap. 5 Sec. 6.2

Fig. 1.15 Interdependence of the chapters and sections.




