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Chapter 6 

Geometry of Complex Polynomial Maps of 

Degree Two and Three  
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The complex linear maps of Chapter 4 are generated by polynomials of 

degree one. When these maps are applied to figures in the complex 

plane, they affect them in a geometrically transparent way. In particular, 

any linear polynomial map takes lines to lines and circles to circles. As 

we have indicated in the previous chapter, this is not true for complex 

quadratic or cubic maps. The complexity of such maps is reflected in the 

intricacies of self-intersecting images of circles and other simple closed 

curves. In Chapters 11 and 12, we will see that this pattern continues, as 

we study polynomial maps of higher degree. The aim of the present 

chapter is to build experimental evidence to support a few important 

theorems describing the local and global geometry of complex 

polynomial maps. The theorems link this geometry to the problem of 

locating roots of the corresponding polynomials. The index of plane 

curves is the main tool in “lassoing roots”. Let us begin our rodeo 

adventure. 

6.1. Zeros and Preimages of Complex Polynomial Maps 

What do we know about the fundamental relation between polynomial 

equations and polynomial maps?  

Dealing with the real polynomial maps from plane to plane such as 

the real Viète map, we have seen that their image might not cover the 

entire target plane. You may wonder whether the same is true for 

complex polynomial maps. It turns out that this question is intimately 

related to solving polynomial equations over the complex numbers.  

In elementary school, we learn that solving an equation for a variable 

z is finding a number or a set of numbers for which a given numerical 

statement about z is true—presumably, the given numerical statement is 

an equation. Later we learn that an equation of the form f(z) = 0 is a 

question about zeros of the function f, a question about the preimage  

f 
–1(0) of zero. More generally, solving an equation of the form f(z) = w is 

equivalent to finding the set f –1(w).  

So, any polynomial equation can be interpreted as a question about 

certain properties of polynomial maps. For example, solving the 

quadratic equation  
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(3 + 2i)z2 + 5z –  7i  =  2 + 3i 

is equivalent to answering the question “Given P(z) = (3 + 2i)z2 + 5z – 7i, 

for what values of z is P(z) = 2 + 3i?” In other words, solving this 

polynomial equation is equivalent to finding the P-preimage set P-1(2+3i) 

of the point 2 + 3i.  

Note that the set P-1(2+3i) can be viewed also as the zero set Q-1(0) for 

a different quadratic polynomial Q(z) = P(z) – (2 + 3i): indeed, the 

equation P(z) = (2 + 3i) and P(z) – (2 + 3i) = 0 share the same set of 

solutions. Thus, describing the set P–1(2 + 3i) amounts to solving a new 

quadratic polynomial equation Q(z) = 0.  

Generally, the problem of finding P-1(w) for a given target point w, is 

equivalent to searching for the roots of a new polynomial Q(z) = P(z) – w 

of the same degree as P. As a result, the set P-1(w) and the root set Q-1(0) 

are identical. 

6.2  Geometrical Tools for Locating Preimages of Points under 

Complex Polynomial Maps 

At this point, we need to set a context for investigations. We hope that 

the reader will be engaged in the suggested software-based activities, 

while reading the text.  For readers that are not in an investigative mood, 

we include examples of few crucial experiments.  

VisuMatica depicts two copies of the complex plane identified 

respectively as the domain window and the range window. The user can 

specify a complex polynomial map acting from the domain to the range. 

The image of any figure created in the domain window appears 

simultaneously in the range window. Finally, we must be able to 

navigate within each complex plane—that is, shift the focus to any point 

and zoom in and out so that compact figures can be observed in their 

entirety. We can presume that contrasting the shapes of various 

geometric objects in the domain with their images in the range will 

provide useful information about the polynomial map itself. Let us 

illustrate how this basic idea works. 

Of course, any circle in the complex domain plane encloses all, some, 

or none of the solutions of the polynomial equation P(z) = w. We shall 
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investigate a possible relation between the position of the solutions z of 

the equation P(z) = w with respect to a circle S under our control and the 

position of w relative to the loop P(S)—the image of this circle. Perhaps, 

the index Ind(P(S), w) will tell us something about the solution set         

P
-1(w). Generally, you might wonder whether there is any connection 

between Ind(P(S), w) and Ind(S, z) for z from P-1(w). 

Since any equation P(z) = w is equivalent to another equation Q(z) = 

0, where Q(z) = P(z) – w, the P- and Q-images of S differ by a parallel 

shift by the vector w. This translation takes the pair (P(S), w) to the pair 

(Q(S), 0). The index, defined in terms of the total angular accumulation, 

clearly is invariant under translations of the union of a loop and a 

reference point: the angular measure is invariant under the translations 

(and locally under conformal maps in general). Therefore, Ind(P(S), w) = 

Ind(Q(S), 0), so we can concentrate first on calculating the index of Q(S) 

with respect to the origin 0.  

The scope of our investigation will be limited to varying the position 

and size of the circle S as well as the value of w. As you adjust these 

parameters while looking at the image P(S), you can get a feel for the 

geometry of the map P. 

Let us start with the familiar quadratic.  

6.3 The Quadratic Map 

Recall that the quadratic formula describes the roots of the quadratic 

polynomial P(z) = az
2 + bz + c. While it may be more complicated to 

calculate the values of the roots when a, b and c are complex numbers, 

the formula is just as valid because the same routine for completing the 

square applies. Therefore, our arguments will apply to all quadratic 

polynomials with complex coefficients. 

The quadratic formula gives us directions for calculating two roots. 

We would like to verify that these are the only roots a quadratic 

polynomial can have. While it may be common knowledge that quadratic 

polynomials have at most two roots, we need a formal argument that 

proves this fact. This argument can be generalized to prove that 

polynomials of degree n cannot have more than n roots. 
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The division of complex polynomials parallels the familiar division 

for integers. On many occasions, we will use the following important 

statement: 

Theorem 6.1 (Euclidean Division Algorithm for Polynomials)  

Given two polynomials P(z) and S(z), there exist a unique pair of 

polynomials Q(z), the quotient, and R(z), the remainder, such that 

P(z) = S(z)Q(z) + R(z) and deg(R) < deg(S). If the coefficients of P(z) 

and S(z) belong to a field F, then so do the coefficients of  Q(z) and 

R(z). 

In particular, given a polynomial P(z) of positive degree and a 

linear polynomial (z – q),  P(z) be uniquely expressed in the form      

(z – q)Q(z) + R where R is an element of F . 

This leads immediately to the conclusion that P(q) = R.1  Indeed, to 

see this, just substitute q for z. 

Suppose, using the quadratic formula, that we have found a root r1. 

Then the remainder from division of P(z) by z – r1 is 0, and P(z) =  

(z – r1)Q(z), where Q(z) is a polynomial of degree 1. Therefore, Q(z) has 

the form Q(z) = a(z – k). This means that P(z) = a(z – r1)(z – k) and 

evidently k is also a root. Suppose that r2 is another root. Then we can 

write P(r2) = a(r2 – r1)(r2 – k) = 0. This is possible only if r2 = k or r2 = 

r1, in other words, the polynomial has at most two distinct roots. 

Now look at the factored form P(z) = a(z – r1)(z – k) again. There are 

again two possibilities: r1 ≠ k or r1 = k. The former means that there are 

exactly two roots. The latter transforms the polynomial to the form P(z) 

= a(z – r1)
2, which has only one root. We refer to such polynomials as 

having a root of multiplicity 2. 

Monic complex quadratic polynomials, viewed as maps from C to C, 

are completely characterized by their roots. In contrast, monic real 

quadratic polynomials are not completely characterized by their real 

                                                 
1 This corollary is often called the Remainder Theorem. The Remainder theorem tells us 
that we can evaluate P(a) by dividing by x – a or find the remainder of division by x – a 
by evaluating P(a). 
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roots, because there exist real polynomials with few or no real roots at 

all.  

Over the span of our mathematical journey, we will accumulate 

overwelming evidence to support the following meta-theorem: 

 Algebra over the field of real numbers is much more “complex” 

than the algebra over the complex field. 

A polynomial can be written in a number of ways. For example,  

(x – 2)(x + 4), x2 + 2x – 8, (x – 1)2 – 9 all are different forms of the same 

polynomial; at the first glance, they provide different information about 

the polynomial. 

The following set of questions deals with the relation between some 

special forms of quadratic polynomials and the preimages of points 

under the corresponding polynomial maps. 

Exercise 6.1  

1. a. Find the preimage set P
-1(c) for the map  

P(z) = (z – a)(z – b) + c. 

b. Let Q(z) = (z – (2 + i))(z – (1 – i)) + (3 – 5i). Find a w, such 

that the set Q-1(w) = {2 + i, 1 – i}. 

c. Find the set Q-1(Q(2 + i)). 

2. a.  Let P(z) = (z – a)2 + q. Find a point w such that the preimage 

P
-1(w) contains only one point. Are there other possible values 

for w?  

b. R(z) = z2 – 4z + 9. Find a point w such that R-1(w) is a single 

point. 

c. T(z) = z2 – (2 + i)z + (1 + i). Find a point w such that T−1(w) is 

a single point. For a general quadratic polynomial T, derive a 

formula that expresses such a w in terms of the coefficients. 

3. Let P be a quadratic polynomial and w a point such that        

P
-1(w) consists of a single point. What can you say about the 

number of elements in the set P-1(u), where u ≠ w? 
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4. Consider a quadratic polynomial P with two distinct roots. 

Show that the point w from problem 2.a is the midpoint of the 

segment connecting the two roots. (In other words, w is the 

center of gravity of the system of two equal masses located at 

the two roots.) Explain what this statement says about the pair 

of real roots of a real quadratic polynomial. 

6.4 Root and Coefficient Representations 

As with real quadratic polynomials, we can parameterize the modular 

space of complex monic quadratic polynomials in two ways: by their 

roots and by their coefficients. In either case, we will need an ordered 

pair of complex parameters. Such pairs live in the space usually denoted 

by C2. A pair (z1, z2) of complex numbers (z1 = x1 + iy1, z2 = x2 + iy2) can 

also be viewed as an ordered four-tuple of real numbers (x1, y1, x2, y2), or 

as an element of a four-dimensional real space R4. Unfortunately, is not 

easy to visualize R4, especially via two-dimensional drawings. The best 

we can do now, is to refer to configurations of ordered pairs (z1, z2) in the 

complex plane C and think of C2 as a modular space of these 

configurations. 

Exercise 6.2  

1. The pair (2 – i, 3 + 2i) represents a monic quadratic polynomial 

P(z) in the complex root space C2.  

a. Find the representation of P(z) in the complex coefficient 

space C2. 

b. In the coefficient and root spaces, describe the set of all monic 

quadratic polynomials P(z), such that P(2 – i) = 0. 

c. In the coefficient and root spaces, describe the set of all monic 

quadratic polynomials P(z), such that P(3 + 2i) = 0. 

d. In the coefficient and root spaces, describe the set of all monic 

quadratic polynomials P(z), such that P(2 – i) = 0 and  

P(3 + 2i) = 0. 
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2. Find all monic quadratics Q(z) for which Q-1(1 + i) = {i, -i}. 

3. How many monic quadratic polynomials H(z) have the 

property H(2 – i) = i and H(3 + 2i) = -i? 

6.5 Lassoing Roots  

Let us start with a monic quadratic polynomial map P. Clearly, for a 

given z in C, finding P(z) is a straightforward calculation. On the other 

hand, for a given w, finding all the z’s with the property P
-1(w) = z 

requires the harder labor of solving a quadratic equation. 

We can study a map in two complementary ways. We can take a 

figure in the domain (a point, a segment, a circle, etc.) as a probe, and 

investigate its image under the map. On the other hand, we can take a 

probe figure in the range and investigate the geometry of its preimage. It 

may seem more natural to study the map in the other “direction”—from 

the domain to the range. However, we often actually gain greater insight 

into the nature of the map by working “against the flow”. For instance, 

we can investigate the geometry of a map P by studying the way the 

preimage set P-1(w) changes with the changing target w.  

Let us now use the index invariant to study the geometry of quadratic 

maps.  

As before, we start with a specific monic second degree polynomial 

P(z) whose roots are known. Suppose these roots are 2 + 3i and  

-1 – i. Then P(z) is the product of linear factors (z – 2 – 3i) and (z +1 + i). 

We mark the two roots in the domain window. The picture looks like 

this: 
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Fig. 6.1 VisuMatica helps to locate complex roots of a quadratic polynomial.  

We will use circles S in the domain window as lassos to capture the 

roots. The range window will show the P-image of the circle. The act of 

applying the map to S is equivalent to throwing the lasso. Let us cast one 

such lasso. 

 

Fig. 6.2 

Our first attempt (Fig. 6.2) has missed both roots. The image C = P(S) 

is only partially visible in the range window. To see the entire image, let 

us zoom out and shift the center of the range window. Note that the lasso 

C does not capture 0. (Fig. 6.3) 



The Shape of Algebra 

 
264

 

Fig. 6.3 

Clearly, the index of P(S) with respect to the point 0 is zero. And so is 

the index of S with respect to each of the roots. We need to experiment 

with a few more circles to find out what happens to the indices when the 

lasso captures one or more roots.  

Exercise 6.3  

1. Given P(z) = (z – (2 + 3i))(z – (-1 – i)), find the index of P(S) 

with respect to 0 when:  

a. 2 + 3i is inside the circle S and -1 – i is not; 

b. -1 – i is inside S and 2 + 3i is not; 

c. Both 2 + 3i and -1 – i are inside S. 

2. Describe what happens to the shape of P(S) as you vary the 

position and the size of S. What are the possible numbers of 

regions in which P(S) divides the plane? Compare your 

observations to the curves in the following Fig. 6.4.  

6.5.1 Reflections on Exercise 6.3 

The image of a circle can take on a variety of shapes under a monic 

quadratic complex polynomial map. Figure 6.4 shows four possibilities. 
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Fig. 6.4 Images of circles under complex quadratic polynomial maps 

When S captures both roots in the domain, the point 0 is inside the 

loop P(S). Moreover, in this case, Ind(P(S), 0) = 2. When only one root is 

captured, Ind(P(S), 0) = 1. When both roots are outside the circle, the 

point 0 is also outside the loop P(S) and Ind(P(S), 0) = 0. In fact, the 

same phenomenon can be observed when we replace the circle with any 

closed curve with no self-intersections (recall that such curves are called 

simple), say with an ellipse. 

These observations naturally lead to a conjecture:  

Conjecture 6.1 For any complex (quadratic) polynomial P, the 

number of roots inside a simple loop S is equal to Ind(P(S), 0). 

6.6 The Quadratic Polynomial with Roots of Multiplicity 2 

There are special cases that will force us to refine this conjecture. One 

possible source of trouble is related to polynomials with roots of 

multiplicity 2—the case when P(z) = (z – h)2. Note that real polynomials 

with multiple roots have already proved to be exceptional among real 

polynomials (see Chapter 2). 

Exercise 6.4  

Consider P(z) = (z – (2 – i))2. Use a circle S to lasso the single root 

of multiplicity two of P(z). 

1. What is the index of P(S) with respect to 0 when the point 2 – i 

is inside S? 

2. Refine Conjecture 6.1 to include quadratic polynomials with a 

single root of multiplicity 2. Check your new conjecture 
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experimentally by investigating a different quadratic 

polynomial with a single root. 

6.6.1 Reflections on Exercise 6.4 

Let P(z) = (z – r)2. Of course, this polynomial has only one root r, and 

any circle S that captures this root cannot capture another root (because 

there isn’t one). On the other hand, in Fig. 6.4, the curve P(S) wraps 

around the origin twice. Therefore, if P(z) = (z – r)2, in order to satisfy 

the original conjecture, one has to count the root r twice. So the 

conjecture should be refined: 

Conjecture 6.2 For any complex (quadratic) polynomial P, the 

number of roots inside a simple loop S, counted with their 

multiplicities, is equal to Ind(P(S), 0). 
 

In Chapter 11, we will see that this kind of statement is valid for 

polynomials of any degree. 

Using VisuMatica to approximate solutions of quadratic equations via 

the index invariant is relatively time consuming. From a practical 

vantage point, there are more efficient methods to approximate 

polynomial roots (for example, a complex version of the Newton’s 

Method (Hubbard (2002)) requires only a few calculations at each 

step). However, we believe that the lassoing procedure provides a better 

insight into the geometry of the approximation process.  

6.7 The Local Geometry of Complex Quadratic Maps 

We have seen that complex polynomials can map a circle into a more 

complicated self-intersecting curve. In contrast, a linear polynomial 

map—a composition of translations, rotations and dilations—takes 

circles into circles. What happens to a circle under a complex quadratic 

map? In particular, what happens to a very small circle under such a 

map? How will the image of such a micro-circle change as its center 

moves about the complex plane? To tackle these questions, let us start 

with a few numerical experiments in VisuMatica.  
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Fig. 6.5 The images of shrinking families of circles (on the left) and rectangles (on 

the right) under a complex quadratic map 

Consider the polynomial P(z) = z
2 – 2iz + 2. Figure 6.5, the left 

diagram, depicts the P-images of a shrinking circle family centered at 2 + 

3i with integer diameters decreasing from 8 to 1. 

The image family reflects the geometry of the polynomial map, 

resulting in a beautiful morphing of shapes. 

The images of circles under quadratic maps (see Figs. 6.4, 6.5) belong 

to a remarkable family of curves called epicycloids. To imagine an 

epicycloid, consider the following planetary model. Assume that the 

orbit of Earth around the Sun and the orbit of the Moon around the Earth 

are circular and lie in the same plane (a fairly accurate approximation). 

The Moon orbit, as viewed from outside the orbital plane and directly 

above the Sun, is an epicycloid (see Fig. 6.4). In Chapters 11 and 12, we 

will investigate in greater generality the relation between complex 

polynomial maps and such “planetary” motions.  

In what follows, we use the term singularity or singular point to 

indicate that a point is atypical or exceptional with respect to the map.2  

 

 
 

 

                                                 
2 A more technical definition asserts that, for a singular point, the rank of the Jacobian of 
the map drops to a smaller value than its rank for typical points.  
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Exercise 6.5  

1. Define P(z) = z2 – 2iz + 2 in VisuMatica and construct the circle 

S with center 1 – i and diameter 8. Shrink S while carefully 

investigating its image3. Describe how the shape of P(S) 

changes as the diameter of S tends to zero. What can you say 

about the position of the point P(2 + i) relative to the curve 

P(S)? Does P(S) go through a stage where the curve develops a 

distinct singularity (a so called cusp)? 

2. Consider the familiar Viète map V from the real root to the real 

coefficient plane. It is defined by linear and quadratic 

polynomials in x and y. Pick a small circle S in the root plane, 

centered at the point A = (1, 2). Describe the behavior of the 

curve V(S) as S shrinks toward its center. Use the zoom tools. 

How is this behavior different from the one you observed in 

question 1? Repeat the experiment for B = (1, 1).  

3. Verify that P = z2 – 2iz + 2 can be written as P(z) = (z – i)2 + 3. 

Pick the center of S to be i and repeat the experiments from 

Problem 1. How do the results vary from those of question 1? If 

you continue to shrink S towards the center i, what can be said 

about the position of the point P(i) relative to the curve P(S)? 

4. Connect your observations in 1 and 2 with the results of 

Exercise 6.1, in particular, with the counting elements in the 

sets P-1(w), where w is in the vicinity of i. 

5. Can you detect, using Fig. 6.5, the left diagram, or the images 

you have generated in Example 1, a special role of the point i 

in connection with the map P? What behavior do the two 

shrinking families of curves have in common as they “cross” 

the point i? 

                                                 
3You might need to adjust the scale in each window to be able to observe how P(S) 
changes during this process. 
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6.7.1 Reflections on Exercise 6.5 

The preceding exercise reveals an important property of complex 

quadratic polynomial maps. For the majority of points p in the complex 

plane, the image of a tiny circle S with its center at p is a simple loop 

P(S). As S shrinks toward its center, the shape of P(S) comes closer and 

closer to a “true” circle centered at P(p). In other words, on a 

microscopic scale, circles are mapped to nearly perfect circles. This 

happens because P can be approximated by a complex linear polynomial 

map near p — a composition of a shift by the vector P(p) – p, followed 

by a dilation (determined by the map4) and by a rotation about P(p). In 

fact, our experiments suggest that the map P, as its linear approximation, 

is one-to-one in small neighborhoods of a typical point p. On the other 

hand, this pattern of behavior breaks down at the singular point! In its 

vicinity, the map P ceases to be a 1-to-1 map. In Chapters 11-12, we 

shall discuss in some detail the behavior of P in the vicinity of its 

singularity. The point i in Examples 3–5 above is such a singular point. 

Recall (see Chapter 4) that complex linear polynomial maps are 

conformal (i.e., preserve angles between smooth curves). Thus, at a 

typical, non-singular point p, a complex quadratic map P is seems to be 

conformal. Again, this property fails at the singular point. 

To see this, we can look at what P does to polygons instead of circles. 

Figure 6.5, the right diagram, shows the images of a shrinking family of 

rectangles under the map P(z) = z2 – 2iz + 2. Notice that, although the 

shapes of the P-images are distorted rectangles (the straight edges of the 

rectangles are mapped into arcs of quadratic curves rather than into 

straight segments), the angles at their vertices remain 90°—the map P 

seems to be conformal! Note that the distortion appears to diminish as 

the images shrink. 

When is a point p singular for a map? Singular points are singular 

because the map behaves qualitatively differently in the vicinity of these 

points. The crudest change in behavior (that we know of) occurs when p 

is such that the set P-1(P(p)) consists of a single element. For all other 

                                                 
4For a monic polynomial z2 + bz + c, the dilation factor is |2p + b|. 
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points p in the plane, this set has two elements. This local behavior of the 

map P is described by saying that P(p) is a ramification point for P (see 

Definition 8.1 for a more general description of the notion). 

Completing the square is a more direct way of identifying such a 

singular point. If P(z) = (z – h)2 + k, then h is the singular point. By 

solving the equation (z – h) 2 + k = w, it is easy to check that any point w 

≠ k in the range plane has exactly two pre-images. For any point q ≠ h in 

the domain, we can always find its neighborhood U small enough, so that 

for any point z in U, the number of elements of the set P-1(P(z)) is 2. But 

for the singular point q = h, the set P-1(P(q)) consists of a single point h. 

Furthermore, no matter how small the neighborhood U of h is, there 

always are points z in U, such that the cardinality of P
-1(P(z)) is 2. In 

other words, the cardinality of the preimage is not constant in U. 

One may ask, is P conformal at the singular point p = h? Figure 6.6 

below shows the P-images of a family of rectangles with the left bottom 

corner at the point p = -1 – 2i. Surprisingly, the images do not look like 

curved rectangles at all! Rather, they are curved triangles converging to 

the point (1, 2). Where is the image of p? One might expect that the 

pattern in Fig. 6.6 would reveal its location. What is going on? 

 

Fig. 6.6  

The elusive fourth vertex is the point P(-1 – 2i) = 1 + 2i! The map 

“opens” the 90° angle at i into a 180° angle at the point 1 + 2i, thus, 
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doubling the size of the angle in the domain. That is why you do not see 

the corner—the map transforms it into a perfectly straight line. Clearly, 

this is a violation of conformality. 

Exercise 6.6 

1. Explain why P(z) = z2 – 2iz + 2 maps the imaginary number line 

into the real number line. 

2.  In VisuMatica, define the map P(z) = z2 – 2iz + 2. Draw an 

angle—a pair of rays emanating from the point i. Compare the 

measure of the angle in the domain window with the measure of 

the angle formed by image curves. Repeat the experiment for 

other angles with the vertex at i. Make a conjecture about the 

relation between the angular measures in the domain and in the 

range. 

 

Fig. 6.7 

Figure 6.7 shows the image of a family of rectangles passing through 

a singular point of a different quadratic polynomial map. You can see the 

gradual transformation of a curved rectangle into a triangle and then back 

into a curved rectangle, but the latter rectangle has a different shape—the 
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measure of one of its angles is greater than 180°! Note that the other 

three angles remain at 90°. 

As you see, the behavior of the map P(z) = (z – h)2 + k drastically 

changes at the singular point h—apparently, there P fails to be conformal 

and 1-to-1. This suggests that the geometry of a complex polynomial 

map in the vicinity of its singularity is worth further investigation. 

 

Fig. 6.8 

 

Fig. 6.9 
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Let us start with a particular example: P(z) = (z – i)2 + 1. Figure 6.8 

shows the P-image of a circle S of radius 1.5 with the center at the point  

- 0.1 + i. 

Figure 6.9 shows the image of the circle of the same radius with the 

center located “exactly” at the singular point i. Its image looks strikingly 

like a perfect circle! (Maybe, after all, the map is conformal at i?) 

Exercise 6.6 (continuation) 

3. Prove that the image under the map P(z) = (z – i)2 + 1 of any 

circle centered at i is a circle. 

The next diagram shows the image of a circle of radius 1.5 centered at 

the point 0.05 + i. 

 

Fig. 6.10 

Yet another figure depicts the image of the circle of the same radius 

1.5 but centered at 0.1 + i. This image looks similar to that of the first 

circle (Fig. 6.8). 
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Fig. 6.11 

6.7.2 More Reflections 

All four figures above describe the dynamics of the P-images of a circle 

S of fixed radius, that moves in the plane so that the trajectory of its 

center passes through the singular point h of P (for the specific map 

chosen, the singular point is i and the radius of S is 1.5). As the center 

passes through h = i, the curve P(S) becomes a perfect circle centered at 

P(h) (for this map, P(h) = 1). But there is something odd about this 

image. The images P(S), with the center of S on either side of h along the 

trajectory, appear to be double loops. This suggests that the intermediate 

circular image (see Fig. 6.9) is really a double loop as well.  

Indeed, squaring a complex number doubles its argument—its angular 

polar coordinate. Thus, as z runs around S, (z – i) runs around a circle of 

radius 1.5 centered at 0 and (z – i)2 runs twice around the circle of radius 

(1.5)2 centered at 0. Therefore, the map (z – i)2 + 1 —the composition of 

the map (z – i)2 with a shift by the vector (1, 0)—wraps the image of S 

twice around the circle of radius (1.5)2 with center at (1, 0). As a result, 

the map P from S to P(S) is a two-to-one map, a map of degree 2. 

Will this result hold as we shrink the circle toward the center i? In 

other words, what is the microscopic behavior of P at i? Let us take a 

smaller circle and drag its center along the same trajectory. Figure 6.12 
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shows the image of the circle centered at 0.01 + i of radius 0.05. Notice a 

significant difference in the scales of the domain and range windows. 

 

Fig. 6.12  

Zooming in further, take a close look at the image of the tiny circle S 

with radius 0.005 and center at 0.0005 + i.  We notice that this circle also 

encloses point i. Despite the scaling (by a factor ~ 300) the images in 

Fig. 6.13, are remarkably similar to the ones in Figs. 6.8 and 6.11.  

 

Fig. 6.13 
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The basic structure of the quadratic polynomial map P in a small 

neighborhood of the singular point i appears to be independent on the 

radius of the test circle. The same double wrapping takes place for any 

circle centered at the singular point: as z circles i once, its image P(z) 

wraps around the center P(i) twice. In the vicinity of the singularity i, the 

map P is two-to-one. At the same time, in the vicinity of any z ≠ i, the 

map P is one-to-one. 

In Chapters 11 and 12 we will present a rigorous argument that will 

prove analytically the validity of our VisuMatica-based observations. 

6.8 The Monic Cubic Polynomial Equation 

The solution of the real cubic equation has a long and interesting 

history.5  There is a formula that generates the solutions of any cubic 

equation from its coefficients, but the process is cumbersome to apply 

and difficult to interpret (see Chapter 8). Even when the formula 

produces a real solution, its intermediate steps venture into the field of 

complex numbers. In fact, efforts to solve the cubic equation (and, 

paradoxically, not the quadratic equation) led to the invention of 

complex algebra in the first place. 

The cubic polynomial maps (or, simply, the cubics) take us to a level 

of mathematical richness and complexity well beyond that of quadratics. 

Figure 6.14 illustrates this complexity by showing a representative 

gallery of images of a circle under a complex cubic map. 

                                                 
5
See Chapter 8 for a more detailed account of the mathematical history of the cubic 

equation formula. 



Geometry of Complex Polynomial Maps of Degree Two and Three 

 
277

 

 

Fig. 6.14 A gallery of circle images under complex cubic polynomial maps 

In general, the cubic has three distinct roots. We investigated, for 

quadratic maps, the relationship between the number of roots inside a test 

loop and the index of its image curve. We observed that the number of 

roots within a circle S, counted with their multiplicities, equals the index 

of P(S) with respect to the origin. Does this relation also hold for cubics?  

Exercise 6.7  

1. Pick three distinct non-real numbers r1, r2, r3. Define a cubic 

polynomial map R(z) = (z – r1)(z – r2)(z – r3) in VisuMatica. 
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a. Construct a circle around the three roots of the equation R(z) = 

0. What is the index of the image of the circle with respect to 0? 

b. Construct a circle that includes two but not three of the roots. 

What is its index with respect to 0? 

c. Construct a circle that includes exactly one root. What is the 

index of the image of the circle with respect to 0? 

d. Construct a circle that excludes all three roots. What is the 

index of the image of the circle with respect to 0? 

e. What is the diameter of the smallest circle S that includes all 

three roots and where is its center located? Predict the value of 

Ind(P(S), 0) and check the prediction with VisuMatica. 

2. Pick a non-real number r. Define a cubic polynomial map P(z) 

= (z – r)3. 

a. Construct a circle S about the root r. What is the index of P(S) 

with respect to 0? 

b. Construct a circle S that excludes the root. What is the index of 

P(S) with respect to 0? 

3. Pick two distinct non-real numbers, r1 and r2. Define a cubic 

polynomial map T(z) = (z – r1)
2(z – r2) in VisuMatica.  

a. Construct a circle S that contains both roots of T. What is the 

value of Ind(T(S), 0)? 

b. Construct a circle S that contains only r2. What is the value of 

Ind(T(S), 0)? 

c. Construct a circle S that contains only r1. What is the value of 

Ind(T(S), 0)? 

d. Construct a circle S that does not contain either root. What is 

Ind(T(S), 0)? 

4. Using VisuMatica, relate the root count inside a circle S to the 

index Ind(P(S), w) for: 
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a. P(z) = (z – r1)(z – r2)(z – r3) + w;  S contains r1, but not r2, r3. 

b. P(z) = (z – r1)
2(z – r2) + w;  S contains r1, but not r2. 

c. P(z) = (z – r)3 + w;  S contains r. 

5. Based on these observations, extend Conjecture 6.2 so that it 

will apply to complex polynomials of degree n. 

6. For any cubic polynomial P(z), show that 

a. There are no more than two critical values w, such that  

P(z) = (z – r1)
2(z – r2) + w (for some numbers r1 ≠ r2). Note that 

w = P(r1). 

b. There is no more than one critical value w, such that  

P(z) = (z – r)3 + w  (for some number r). Note that w = P(r). 

c. Cases (a) and (b) are mutually exclusive: a polynomial that can 

be represented in one form, cannot be represented in the other. 

Hint: Start with the coefficient form P(z) = z3 + bz
2 + cz + d and 

interpret the z-identities P(z) = (z – r1)
2(z – r2) + w  and P(z) =  

(z – r) 3 + w  as systems of equations with respect to {r1, r2, w} 

or {r, w}, respectively. 

7. Consider a quadratic polynomial Q(z) = (z – r1)(z – r2) with 

distinct roots. Define P(z) = (z3/3) – (r1+ r2)(z
2/2) + (r1r2)z (the 

reader familiar with the notion of complex derivative (see 

Chapter 11), will recognize that the derivative of P(z) is equal 

to Q(z)).  

 Using VisuMatica, investigate the behavior of P(z) in the 

vicinity of r1 and r2. In particular, compute the index Ind(P(S), 

P(r1)) for a small circle S surrounding r1. Repeat the experiment 

for r2. Now pick a circle which captures both r1 and r2. 

Compute Ind(P(S), P(r1)) and Ind(P(S), P(r2)). Formulate a 

conjecture generalizing your observations. 

Figures 6.15 and 6.16 may give you some feeling for the geometry of 

a cubic polynomial map of the form P(z) = (z3/3) – (r1+ r2)(z
2/2) + (r1r2)z 
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in the vicinity of the singular points r1 and r2. The specific polynomial 

used in these illustrations is P(z) = z
3/3 – (1 + 0.5i)z2 + 2iz with 

singularities at z = 2 and z = i. Note that the images of concentric circles 

develop cusp-shaped singularities exactly at the critical values P(2) and 

P(i). 

 

Fig. 6.15  

 

Fig. 6.16 
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Figure 6.16 shows the same intricate pattern of closed curves 

generated by the same map: the only difference is the presence of two 

small circles around the singular points z = 2 and z = i in the domain 

window. The two circles are not exactly centered on the singularities. It 

hard to see their images in the range window, but a close examination 

reveals small double loops surrounding P(2) and P(i), very similar to the 

ones in Figs. 6.12 or 6.13. It appears that, in small neighborhoods of the 

singular points 2 and i, the map P behaves like a quadratic map in the 

vicinity of its only singularity!  

However, if we investigate a map of the form  

P(z) = (z3/3) – (r1+ r2)(z
2/2) + (r1r2)z 

with r1 = r2 = r, i.e. a map of the form P(z) = z3/3 – rz
2 + r2

z, then its 

behavior in the vicinity of the singular point r is drastically different. We 

leave to the reader the pleasure of discovering the difference. 

 

Fig. 6.17 A qualitative picture of a typical cubic complex polynomial map P: the 

surface above is the domain of P, the plane below is its range, the obvious 

projection models the map. The map has two ramification points, the P-images of 

the zeros of the derivative P’. The simple curve on the surface projects to a self-

intersecting curve in the plane.  
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Take a look at the stack of three disks with cuts shown in Fig. 6.17. 

The top and bottom disks have a single cut and the middle disk has two 

cuts. The disks are glued together along the banks of the cuts. To 

understand the geometry of this construction will require stretching your 

imagination. The figure portrays a surface Σ with self-intersections 

residing in a three-dimensional space. The surface intersects itself along 

two rays—the locus where the gluings were performed. In a way, we 

would like to ignore the self-intersections of Σ. 

Imagine crawling along the surface Σ. Let us impose some travel 

restrictions. As we approach a self-intersection ray, following a 

particular sheet, we must switch to a different sheet—crossing a self-

intersection curve and staying on the same sheet is forbidden. With these 

travel rules in place, Σ acquires the same topology as the standard disk. 

This may be hard to imagine. It is especially difficult to visualize the 

topology of Σ in the vicinity of the two special points (call them a and b) 

where the cuts originate. We must convince ourselves that the surface is 

basically the same there, as at any other point, provided our topological 

travel guidebook is enforced.  

To get a better feel for the guidance it provides, let us follow a loop γ 

in Σ. Unlike the surface, γ has no self-intersections—it is a simple loop 

which traps a and b. The curve γ crosses the two self-intersection rays of 

Σ at four distinct points. The shadow that γ casts on the plane Π below Σ 

is a remarkably familiar triple loop: it like an image of a circle under a 

cubic polynomial map (see Fig. 6.14)! Note that a simple loop γ in Σ that 

goes around only one of the two special points a and b, visits only two 

sheets. Its projection is a double loop in the plane Π (of index 2 with 

respect to the projection of the special point), similar to the tiny double 

loop in Fig. 6.16.  

Perhaps the projection P of Σ on Π can serve as a model for a typical 

complex cubic polynomial map with the two singularities represented by 

the special (critical) points a and b? (In fact, points a and b are not 

special in the Σ-space, they are special with respect to the projection P.) 
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The answer is positive, but to justify it requires a bit of mathematics 

beyond high school algebra. In Chapter 9, we will discuss how to 

generalize the construction of Σ. That generalization is known under the 

name of Riemann surface. 

 


