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Chapter 1

Introduction

Planck made two great discoveries in his lifetime: the energy quantum and Einstein
[Miller 81]

1.1 Einstein’s Impact on Twentieth Century Physics

When one mentions the word ‘relativity’ the name Albert Einstein springs
to mind. So it is quite natural to ask what was Einstein’s contribution to
the theory of relativity, in particular, and to twentieth century physics, in
general. Biographers and historians of science run great lengths to rewrite
history.

Undoubtedly,Abraham Pais’s [82] book, Subtle is the Lord, is the defini-
tive biography of Einstein; it attempts to go beneath the surface and gives
mathematical details of his achievements. A case of mention, which will
serve only for illustration, is the photoelectric effect.

Pais tells us that Einstein proposed Emax = hν − P, where ν is the fre-
quency of the incident (monochromatic) radiation and P is the work func-
tion — the energy needed for an electron to escape the surface. He pointed
out that [this equation] explains Lenard’s observation of the light intensity
independence of the electron energy. Pais, then goes on to say that first

E [sic Emax] should vary linearly with ν. Second, the slope of the (E, ν) plot is a
universal constant, independent of the nature of the irradiated material. Third,
the value of the slope was predicted to be Planck’s constant determined from the
radiation law. None of this was known then.

This gives the impression that Einstein singlehandedly discovered the
photoelectric law. This is certainly inaccurate. Just listen to what J. J.
Thomson [28] had to say on the subject:

It was at first uncertain whether the energy or the velocity was a linear function
of the frequency. . . Hughes, and Richardson and Compton were however able to
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show that the former law was correct. . . The relation between maximum energy
and the frequency can be written in the form 1

2 mv2 = kν − V0e, where V0 is a
potential characteristic of the substance. Einstein suggested that k was equal to h,
Planck’s constant. [italics added]

Pais asks “What about the variation of the photoelectron energy with light
frequency? One increases with the other; nothing more was known in 1905.”
So it is not true that “At the time Einstein proposed his heuristic principle,
no one knew how E depended on ν beyond the fact that one increases with
the other.” . . . And this was the reason for Einstein’s Nobel Prize.

1.1.1 The author(s) of relativity

Referring to the second edition of Edmund Whittaker’s book, History of the
Theory of Relativity, Pais writes

Forty years latter, a revised edition of this book came out. At that time Whittaker
also published a second volume dealing with the period from 1910 to 1926. His
treatment of the special theory of relativity in the latter volume shows how well the
author’s lack of physical insight matches his ignorance of the literature. I would
have refrained from commenting on his treatment of special relativity were it not
for the fact that his book has raised questions in many minds about the priorities
in the discovery of this theory. Whittaker’s opinion on this point is best conveyed
by the title of his chapter on this subject: ‘The Relativity Theory of Poincaré and
Lorentz.’

Whittaker ignited the priority debate by saying

In the autumn of the same year, in the same volume of the Annalen der Physik as his
paper on Brownian motion, Einstein published a paper which set forth the relativity
theory of Poincaré and Lorentz with some amplifications, and which attracted much
attention. He asserted as a fundamental principle the constancy of the speed of light,
i.e. that the velocity of light in vacuo is the same for all systems of reference which
are moving relatively to each other: the assertion which at the time was widely
accepted, but has been severely criticized by later writers. In this paper Einstein gave
the modifications which must now be introduced into the formulae for aberration
and the Doppler effect.

Except for the ‘severe criticism,’ which we shall address in Sec. 4.2.1, Whit-
taker’s appraisal is balanced. Pais’s criticism that “as late as 1909 Poincaré
did not know that the contraction of rods is a consequence of the two
Einstein postulates,” and that “Poincaré therefore did not understand one
of the most basic traits of special relativity” is an attempt to discredit
Poincaré in favor of Einstein. In fact, there have been conscientious attempts
at demonstrating Poincaré’s ignorance of special relativity.
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The stalwarts of Einstein, Gerald Holton [88] and Arthur Miller [81]
have been joined by John Norton [04] and Michel Janssen [02]. There has
been a growing support of Poincaré, by the French, Jules Leveugle [94],
Christian Marchal, and Anatoly Logunov [01], a member of the Russian
Academy of Sciences. It is, however, of general consensus that Poincaré
arrived at the two postulates first — by at least ten years — but that “he
did not fully appreciate the status of both postulates” [Goldberg 67].Appre-
ciation is fully in the mind of the beholder.

There is a similar debate about who ‘discovered’ general relativity,
was it Einstein or David Hilbert? These debates make sense if the theories
are correct, unique and compelling — and most of all the results they bear.
In this book we will argue that they are not unique. It is also very dangerous
when historians of science enter the fray, for they have no means of judging
the correctness of the theories. However, since it makes interesting reading
we will indulge and present the pros and cons of each camp.

Why then all the appeal for Einstein’s special theory of relativity?
Probably because the two predictions of the theory were found to have
practical applications to everyday life. The slowing down of clocks as a
result of motion should also apply to all other physical, chemical and bio-
logical phenomena. The apparently inescapable conclusions that a twin
who goes on a space trip at a speed near that of light returns to earth to find
his twin has aged more than he has, and the decrease in frequency of an
atomic oscillator on a moving body with the increase in mass on the moving
body which is converted into radiation, all have resulted in paradoxes.

All this means that the physics of the problems have as yet to be under-
stood. Just listen to the words of the eminent physicist Victor Weisskopf [60]:

We all believe that, according to special relativity, an object in motion appears to
be contracted in the direction of motion by a factor [1 − (v/c)2]1/2. A passenger in
a fast space ship, looking out the window, so it seemed to us, would see spherical
objects contracted into ellipsoids.

Commenting on James Terrell’s paper on the “Invisibility of the Lorentz
contraction” in 1960, Weisskopf concludes:

. . . is most remarkable that these simple and important facts of the relativistic
appearance of objects have not been noticed for 55 years.

It is well to recognize that what appears as to be a firmly established
phenomenon keeps popping up in different guises. It is the same type
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of remarks that the space contraction is a ‘psychological’ state of mind, and
not a ‘real’ physical effect, that prompted Einstein to reply:

The question of whether the Lorentz contraction is real or not is misleading. It is
not ‘real’ insofar as it does not exist for an observer moving with the object.

Here, Einstein definitely committed himself to the ‘reality’ of the Lorentz
contraction.

1.1.1.1 Einstein’s retraction of these two postulates and the
existence of the aether

The cornerstones of relativity are the equivalence of all inertial frames,
and the speed of light is a constant in all directions in vacuo. These pos-
tulates were also those of Poincaré who uttered them at least seven years
prior to Einstein. So what makes Einstein’s postulates superior to those of
Poincaré?

Stanley Goldberg [67] andArthur Miller [73] tell us that Poincaré’s [04]
statements

the laws of physical phenomena must be the same for a stationary observer as for
an observer carried along in a uniform motion of translation; so that we have not
and cannot have any means of discerning whether or not we are carried along in
such a motion,

and

no velocity can surpass that of light,

were elevated to “a priori postulates” [Goldberg 67] which “stood at the
head of his theory.” These postulates also carry the name of Einstein. Why
then would Einstein ever think of retracting them?

If time dilatation and space contraction due to motion are actual pro-
cesses then there is no symmetry between observers in different inertial
frames. The first postulate of relativity is therefore violated [Essen 71].
Einstein used gedanken experiments which is an oxymoron. Consider what
Einstein [16] has to say about a pair of local observers on a rotating disc:

By a familiar result of the special theory of relativity the clock at the circumference —
judged by K — goes more slowly than the other because the former is in motion
and the latter is at rest. An observer at the common origin of coordinates capable
of observing the clock at the circumference by means of light would therefore see
it lagging behind the clock beside him. As he will not make up his mind to let the
velocity of light along the path in question depend explicitly on the time, he will
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interpret his observations as showing that the clock at the circumference ‘really’
goes more slowly than the clock at the origin.

First the uniformly rotating disc is not an inertial system so the special
theory does not apply. Second, local observers cannot discern any changes
to their clocks or rulers as to where they are on the disc because they shrink
or expand with them. It is only to us Euclideans that these variations are
perceptible.

If the velocity of light is independent of the velocity of its source, how
then can the outward journey of a light signal to an observer moving at
velocity v be c + v, on its return it travels with a velocity c − v? Although
this violates the second postulate, such assertions appear in the expression
for the elapsed time of sending out a light signal from one point to another
and back again in the Michelson–Morley experiment whose null result they
hope to explain. They also appear alongside Einstein’s relativistic velocity
composition law in his famous 1905 paper “On the Electrodynamics of
Moving Bodies.”

Also in that paper is his ‘definition’ of the velocity of light as the ratio
of “light path” to the “time interval.” But we are not allowed to measure
the path of the light ray and determine the time it took, for c has been
elevated to a universal constant! “How can two units of measurement be
made constant by definition?” Essen queries.

In his first attempt to explain the bending of rays in a gravitational
field, Einstein [11] claims

For measuring time at a place which, relative to the origin of the coordinates, has
a gravitation potential �, we must employ a clock which — when removed to the
origin of coordinates — goes (1 + �/c2) times more slowly than the clock used for
measuring time at the origin of coordinates. If we call the velocity of light at the
origin of coordinates c0, then the velocity of light c at a place with the gravitational
potential � will be given by the relation

c = c0

(
1 + �

c2

)
.

The principle of the constancy of the velocity of light holds good according to this theory
in a different form from that which usually underlies the ordinary theory of light. [italics
added]

On the contrary, this violates the second postulate which makes no refer-
ence to inertial nor non-inertial frames.And is his equation a cubic equation
for determining c?
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It did not take Max Abraham [12] long to point this out stating
that Einstein had given “the death blow to relativity,” by retracting the
invariance of c. Abraham said he warned “repeatedly against the siren
song of this theory. . . [and] that its originator has now convinced himself
of its untenability.” What Abraham objected most to was that even if rela-
tivity could be salvaged, at least in part, it could never provide a “complete
world picture,” because it excludes, by its very nature, gravity.

Einstein also uses the same Doppler expression for the frequency shift.
The Doppler shift is caused by the motion of the source with respect to the
observer. “There is, therefore, no logical reason why it should be caused
by the gravitational potential, which is assumed to be equivalent to the
acceleration times distance” [Essen 71]. Thus Einstein is proposing another
mechanism for the shift of spectral lines that employs accelerative motion
rather than the relative motion of source and receiver. Does the acceleration
of a locomotive cause a shift in the frequency of its whistle? or is it due
to its velocity with respect to an observer on a stationary platform? But
no, Einstein has replaced the product of acceleration and distance with
the gravitational potential — which is static! Just where a clock is in a
gravitational field will change its frequency. This is neither a shift caused
by velocity nor acceleration.

Everyone would agree that Einstein removed the aether. Whereas
Hertz considered the aether to be dragged along with the motion of a
body, Lorentz considered the aether to be immobile, a reference frame for
an observer truly at rest. On the occasion of a visit to Leyden in 1920, Ein-
stein [22a] had this to say about the aether:

. . . the whole change in the conception of the aether which the special theory of
relativity brought about, consisted in taking away from the aether its last mechanical
quality, namely, its immobility. . . . according to the general theory of relativity space
is endowed with physical qualities; in this sense, therefore, there exists an aether.
. . . space without aether is unthinkable; for in such a space there not only would
be no propagation of light, but also no possibility of the existence for standards of
space and time (measuring rods and clocks), nor therefore any space time intervals
in the physical sense. But this aether may not be thought of as endowed with the
quality characteristic of ponderable media, as consisting of parts which may be
tracked through time. The idea of motion may not be applied to it.

Essentially what Einstein is saying that what was not good for special
relativity is good for general relativity for “We know that [the new aether]
determines the metrical relations in the space-time continuum.” How is it
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needed for the propagation of light signals and yet has not the character-
istics of a medium? Einstein’s real problem is with rotations for “Newton
might no less well have called his absolute space ‘aether;’ what is essential
is merely that besides observable objects, another thing, which is not per-
ceptible, must be looked upon as real, to enable acceleration or rotation to
be looked upon as something real.”

This is five years after Einstein’s formulation of general relativity, and
his desire is to unite the gravitational and electromagnetic fields into “one
unified conformation” that would enable “the contrast between aether and
matter [to] fade away, and, through the general theory of relativity, the
whole of physics would become a complete system of thought.” The search
for that utopia was to occupy Einstein for the remainder of his life.

1.1.1.2 Which mass?

In Lorentz’s theory two masses result depending on how Newton’s law is
expressed, i.e.

F = d
dt

(mv),

or

F = ma,

where a is the acceleration. Both forms of the force law coincide when the
mass is independent of the velocity, but not so when it is a function of
the velocity. If the force is perpendicular to the velocity there results the
transverse mass,

mt = m0√
(1 − β2)

,

while if parallel to the velocity there results the longitudinal mass,

ml = m0

(1 − β2)3/2 .

While it is true that a larger force is required to produce an acceleration in
the direction of the motion than when it is perpendicular to the motion,
it “is unfortunate that the concept of two masses was ever developed,
for the [second] form of Newton’s law is now recognized as the correct
one” [Stranathan 42].
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In the early days of relativity the relativistic mass was written m =
4
3E/c2, and not m = E/c2. Einstein was aloof to the factor of 4

3 — which
was a consequence of the Lorentz transform on energy — but not to there
being two masses. According to Einstein [05] “with a different definition
of the force and acceleration we would obtain different numerical values
for the masses; this shows that we must proceed with great caution when
comparing different theories of the motion of the electron.” Apart from
‘numerical’ differences, Kaufmann’s experiments identified the mass as
the transverse mass, but this did not prevent Einstein [06a] to propose
an experimental method to determine the ratio of the transverse to the
longitudinal mass.

According to Einstein the ratio of the transverse to longitudinal mass
would be given by the ratio of the electric force, eE, to the potential, V, “at
which the shadow-forming rays get deflected,” i.e.

mt

ml
= ρ

2
Ex

V
,

where ρ is the radius of curvature of the shadow-forming rays and Ex is
the electric field in the x-direction. As the ‘definition’ of the longitudinal
mass, ml, Einstein takes

kinetic energy = 1
2

mlv
2.

It would be very difficult for Einstein to get this energy as a nonrelativistic
approximation of a relativistic expression for the kinetic energy.

Einstein’s contention that

A change of trajectory evidently is produced by a proportional change of the field
only at electron velocities at which the ratio of the transverse to longitudinal mass
is noticeably different from unity

is at odds with his assumption of the validity of the equation of motion,

m0
d2x
dt2 = −eEx,

which holds “if the square of the velocity of the electrons is very small
compared to the square of the velocity of light.” The mass of the electron
m0 is not specified as to whether it is the transverse or longitudinal mass,
or a combination of the two.
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This example shows that Einstein was not attached to his relativity
theory as he is made out to be. Why is it that the same types of contradic-
tions and incertitudes found in Poincaré’s statements are used as proof as
to his limitations as a physicist, while there is never mention of them in
Einstein’s case?

1.1.1.3 Conspiracy theories

In order to defend the supremacy of German science, David Hilbert, with
the help of Hermann Minkowski and Emil Wiechert, set out to deny
Poincaré the authorship of relativity. Hilbert was the last in a long line
of illustrious Göttingen mathematicians who sought to retain the domi-
nance of the University which boasted of the likes of Carl Friedrich Gauss,
Bernhard Riemann and Felix Klein. Whereas there existed a friendly com-
petition between Felix Klein and Poincaré [Stillwell 89], Hilbert’s prede-
cessor, there was jealousy between Hilbert and Poincaré, which was only
exasperated when Poincaré won the Bolyai prize in mathematics for the
year 1905. Ironic as it may be, János Bolyai was the co-inventor of hyper-
bolic geometry, and the rivalry between Klein and Poincaré had to do with
the development of that geometry.

As the story goes, Arnold Sommerfeld [04], an ex-assistant of Klein’s,
Gustav Herglotz and Wiechert were working on superluminal electrons
during the fall of 1904 through the spring of 1905. In the summer months
of 1905, beginning on the notorious date of the 5th of June, the Göttingen
mathematicians organized seminars on the ‘theory of electrons,’ in which
there was a session on superluminal electrons chaired by Wiechert on the
24th of July.

The date of the 5th of June coincided with Poincaré’s [05] presentation
of his paper, “Sur la dynamique de l’électron,” to the French Academy of
Sciences. The printed paper was published and sent out to all correspon-
dents of the Academy that Friday, the 9th of June. The earliest it could have
arrived in Göttingen was Saturday the 10th, or given postal delays it would
have arrived no latter than the following Tuesday, the 13th of June.a In that

aThese dates are reasonable since the other German physics bi-monthly journal,
Fortschrift der Physik had a synopsis of the Poincaré paper in its 30th of June issue.
Given the publication delay, it would make the 10th of June arrival date of the
Comptes Rendus issue more likely.
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paper Poincaré supposedly declared that no material body can go faster
than the velocity of light in vacuum, and this threw a wrench into the works
of the Göttingen school [Marchal].

However, this is nothing different than what Poincaré [98] had been
saying since 1898 when he postulated the invariance of light in vacuo to all
observers, whether they are stationary or in motion. Or, to what Poincaré
reiterated in 1904: “from these results, if they are confirmed would arise a
new mechanics [in which] no velocity could surpass that of light.” So the
all-important date of the publication date of 5th of June to the proponents
of the conspiracy theory [Leveugle 04] is a red herring for it said only
what he had said before on the limiting velocity of light. Moreover, there
was a continual boycott of Poincaré’s relativity work in such prestigious
German journals as Annalen der Physik. Consequently, there was no con-
tingency for the appearance of Einstein’s paper when it did. But let us
continue.

So the plot was hatched that some German, of minor importance and
one who was willing to take the risks of plagiarism, had to be found that
would reproduce Poincaré’s results without his name. Now Minkowski
knew of Einstein since he had been his student at the ETHb from 1896–
1900. Einstein was also in contact with Planck, since Einstein’s summary
of the work appearing in other journals for the Beiblätter zu der Annalen der
Physik earned him a small income. In fact, there is one review of Einstein of
a paper by A. Ponsot “Heat in the displacement of the equilibrium of a cap-
illary system,” that appeared in the Comptes Rendu 140 just 325 pages before
Poincaré’s June 5th paper. To make matters worse, an article by Weiss,
which appeared in the same issue of Comptes Rendu, was summarized in the
November issue of the Supplement, but not for Poincaré’s paper.

Neither that paper nor its longer extension that was published in the
Rendiconti del Circolo Matematico di Palermo [06] were ever summarized in
the Beiblätter. Surely, these papers would have caught the eye of Planck,
who was running the Annalen, and was known to be in correspondence
with Einstein not only in this connection, but, also with regard to questions
on quanta. Einstein had also published some papers on the foundations

bThe Eidgenössische Technische Hochschule (ETH) was then known as the Eid-
genössische Polytechnikum; the name was officially changed in 1911.
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of thermodynamics during the years 1902–1903 in the Annalen whose sim-
ilarity with those of J. Willard Gibbs was “quite amazing” even to Max
Born [51].

Thus, the relativity paper was supposedly prepared by the Göttingen
mathematicians and signed by Einstein who submitted it for publication
at the end of June, arriving at the offices of the Annalen on the 30th of
June. Einstein was an outsider, being considered a thermodynamicist, with
a lot to gain and little, if nothing, to lose. The paper fails to mention
either Lorentz or Poincaré, and, for that matter, contains no references
at all. If there was a referee for the paper,c other than Planck himself, it
would have been obvious that the transformation of the electrodynamic
quantities went under the name of Lorentz, with Lorentz’s parameter k(v)
replaced by Einstein’s ϕ(v), both ultimately set equal to 1, and the relativis-
tic addition law had already been written down by Poincaré as a conse-
quence of the Lorentz transform in his 1905 paper on “Sur la dynamique
de l’électron.” Although Einstein derives the relativistic composition law
in the same way as Poincaré, he provides a new generalization when the
composition of Lorentz transformations are in different planes, for that
also involves rotations. It has been claimed that there was no connection
between Lorentz and Einstein for Einstein gets the wrong expression for
the transverse mass in his “Electrodynamics of moving bodies,” while
Lorentz errs when he subjects the electric current to a Lorentz transforma-
tion [Ohanian 08]. But, it is clear from his method of derivation from the
Lorentz force, that Einstein’s error was a typo. Einstein’s paper appeared in
the 26th of September issue of the Annalen, and Planck lost no time in orga-
nizing a symposium on his paper that November, which, in the words of
von Laue, was “unforgettable.”

Not all is conjecture, certain things are known. First, Poincaré worked
in friendly competition with Klein in studying universal coverings of sur-
faces. What initiated Poincaré on his studies of hyperbolic geometry was

cApparently the paper was handled by Wilhelm Röntgen, a member of the Kurato-
rium of the Annalen, who gave it to his young Russian assistant,Abraham Joffe [Auf-
fray 99]. Joffe noted that the author was known to the Annalen, and recommended
publication. That an experimental physicist should have handled the paper, and not
the only theoretician on the Kuratorium — Planck — would have made such a refer-
ring procedure extremely dubious.
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an 1882 letter of Klein to Poincaré who informed him of previous work by
Schwarz. Second, it was Klein who brought Hilbert to Göttingen. When
criticized about his choice, Klein responded “I want the most difficult
of all.” Third, Klein was known to pass on important letters and scien-
tific material to Hilbert. Fourth, since Klein and Poincaré were on good
terms and in contact, it would be unthinkable that Klein did not know
of Poincaré’s work on relativity, and that Klein would have passed this
on to Hilbert. Fifth, there was a lack of “kindred spirit” [Gray 07] between
Poincaré and Hilbert from their first meeting in Paris in 1885. Sixth, Poincaré
was “unusually open about his sources,” [Gray 07] and non-polemical,
while Hilbert had a tremendous will who thought every problem was solv-
able. Lastly, Poincaré’s work on relativity was actively boycotted in Ger-
many, and later in France thanks to Paul Langevin. Thus, it is unthinkable
that Hilbert was in the dark about relativity theory prior to 1905. His col-
league, Minkowski, became interested in electrodynamics through reading
Lorentz’s papers. According to C. Reid, in “Hilbert,” Hilbert conducted a
joint seminar with Minkowski.Ayear after their study, in 1905, they decided
to dedicate the seminar to a topic in physics: the electrodynamics of moving
bodies. Hilbert was often quoted as saying “physics is too important to be
left to the physicists.” What is truly unbelievable that the discover of rela-
tivity and two models of hyperbolic geometry would not even once think
there was a relation between the two. Everything else is conjecture, even
Einstein’s supposed receipt of the latest issue of Volume CXL of Comptes
Rendus, vested as a reviewer for the Beiblätter, on Monday the 12th of June
in the Berne Patent Office. Undoubtedly, that would have created a dire
urgency to finish his article on the electrodynamics of a moving body [Auf-
fray 99]. But wherever the real truth may lie, there cannot be any doubt
that Planck played a decisive role in Einstein’s rise to fame.

The behavior of Langevin to a fellow countryman is even more baf-
fling when we realize that he was the first French physicist to learn of the
“new mechanics” of Poincaré, which would later be known as relativity, but
without the name of its author. Langevin had accompanied Poincaré to the
Saint-Louis Congress of 1904 where he presented his principle of relativ-
ity. It is hardly admissible that Langevin was not familiar of all Poincaré’s
publications especially when Poincaré [06] dedicated a whole section of
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his 1906 article in the Rendiconti to him, entitling it “Langevin Waves,” and
stating

Langevin has put forth a particularly elegant formulation of the formulas which
define the electromagnetic field produced by the motion of a single electron.

Yet, in his obituary column of Poincaré, Langevin fails to note Poincaré’s
priority over Einstein’s writing

Einstein has rendered the things clearer by underlining the new notions of space and
time which correspond to a group totally different than the conserved transforma-
tions of rational mechanics, and asserting the generality of the principle of relativ-
ity and admitting that no experimental procedure could ascertain the translational
movement of a system by measurements made on its interior. He has succeeded
in giving definitive form to the Lorentz group and has indicated the relations that
exist between the same quantity simultaneously made on each of two systems in
relative movement.

Henri Poincaré arrived at the same equations in the same time following a differ-
ent route, his attention being directed to the imperfect form which the formulas for
the transformation had been given by Lorentz. Familiar with the theory of groups,
he was preoccupied to find the invariants of the transformation, elements which
are unaltered and thanks to which it is possible to pronounce all the laws of physics
in a form independent of the reference system; he sought the form that these laws
must have in order to satisfy the principle of relativity.

This could not have appeared in a more appropriate place: Revue de Méta-
physique et de Morales!

Another priority feud also erupted between Einstein and Hilbert over
general relativity in November 1915. It ended with the publication of papers
with the unpretentious titles of “The foundation of the general theory of
relativity,” by Einstein, and “The foundations of physics,” by Hilbert. His-
torians of science make Einstein’s theory the ultimate theory of gravita-
tion with titles like “How Einstein found his field equations,” [Norton 84],
and “Lost in the tensors: Einstein’s struggle with covariance principles”
[Earman & Glymour 78]. In the opinion of O’Rahilly [38], “Einstein’s the-
ory, which delights every aesthetically minded mathematician, is a much
less grandiose affair as judged and assessed by the physicist.” He points out
that Walther Ritz arrived at prediction of a perihelion advance of the planets
in 1908. We will use his same force equation to show he could have obtained
the other predictions of general relativity in Sec. 3.8.2. Furthermore, the
same experimental tests of these equations can be obtained with far more
simplicity, as we shall see in Chapter 7. The proponents of the conspiracy
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theory claim that Einstein’s conciliatory letter of December to Hilbert may
be due, in part, for the favor that Hilbert did for him ten years earlier.

The defenders of Einstein belittle Poincaré for his “lack of insight into
certain aspects of the physics involved” [Goldberg 67]. The same can be
said of Einstein; in a much quoted letter to Carl Seelig on the occasion of
the 50th ‘anniversary’ of relativity, Einstein writes:

The new feature was the realization of the fact that the bearing of the Lorentz-
transformations transcended their connection with Maxwell’s equations and was
concerned with the nature of space and time in general. A further result was that
the Lorentz invariance is a general condition for any physical theory. This was for
me of particular importance because I had already previously found that Maxwell’s
theory did not account for the micro-structure of radiation and could therefore have
no general validity.

In a letter to von Laue in 1952, Einstein elaborated what he meant by a
“second type” of radiation pressure:

one has to assume that there exists a second type of radiation pressure, not deriv-
able from Maxwell’s theory, corresponding to the assumption that radiation energy
consists of indivisible point-like localized quanta of energy hν (and of momentum
hν/c, c = velocity of light), which are reflected undivided. The way of looking at
the problem showed in a drastic and direct way that a type of immediate reality
has to be ascribed to Planck’s quanta, that radiation, must, therefore, possess a kind
of molecular structure as far as energy is concerned, which of course contradicts
Maxwell’s theory.

Maxwell’s equations together with the Lorentz force satisfy the
Lorentz transform so it is difficult to see that the transformation is more
general than what it transforms. In addition, the discovery of Planck’s
radiation law did not contradict the Stefan–Boltzmann radiation law,
nor provide a new type of radiation. Here, Einstein is confusing macro-
scopic laws with the underlying microscopic processes that are entirely
compatible with those laws when the former are averaged over all fre-
quencies of radiation. Consequently, there is no second type of radiation
pressure.

What the conspiracy theories have in common with their opponents is
the presumption that the end result is correct. What authority did Poincaré’s
June paper of 1905 have for dashing the efforts of Sommerfeld’s investiga-
tions on superluminal electrons? Weber was no stranger to superluminal
particles nor was Heaviside. In all the years preceding that paper, there
was no authority bearing down upon them even though the mathemat-
ical structure of relativity had been set in place. What was supposedly
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new about Einstein’s paper was the liberation of space and time from an
electromagnetic framework, as he claimed in his letter to Seelig. But is this
true?

1.1.1.4 Space-time in Einstein’s world

The conventional way of rebuffing the conspiracy theories is “to show the
nature of Poincaré’s ideas and approach that prevented him from pro-
ducing what Einstein achieved” [Cerf 06]. Einstein was not so unread as
he would have us believe for he used Poincaré’s method — radar signal-
ing — in discussing simultaneous events, and falls into the same trap as
Poincaré did.

Poincaré asks us to consider two observers, A and B, who are equipped
with clocks that can be synchronized with the aid of light signals. B sends a
signal to A marking down the time instant in which it is sent. A, on the other
hand, resets his clock to that instant in time when he receives the signal.
Poincaré realized that such a synchronization would introduce an error
because it takes a time t for light to travel between B and A. That is, A’s clock
would be behind B’s clock by a time t = d/c, where d is the distance between
B and A. This error, according to Poincaré is easy to correct: Let A send a
light signal to B. Since light travels at the same speed in both directions,
B’s clock will be behind A’s by the same time t. Therefore, in order to
synchronize their clocks it is necessary for A and B to take the arithmetic
mean of the times arrived at in this way. This is also Einstein’s result.

Certainly the definition of the velocity v = d/t seems innocuous
enough. But, as Louis Essen [71] has pointed out it is possible to define the
units of any two of these terms. Normally, one measures distance in meters
and time in seconds so the velocity is meters per second. But making the
velocity of light constant “in all directions and to all observers whether sta-
tionary or in relative motion” is tantamount to making c a unit of measure-
ment, or what will turn out to be an absolute constant. According to Essen,
“the definition of the unit of length or of time must be abandoned; or, to
meet Einstein’s two conditions, it is convenient to abandon both units.”

The two conditions that Essen is referring to is the dilatation of time
and the contraction of length. There is no new physical theory, but, “simply
a new system of units in which c is constant” so that either time or length
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or both must be a function of c such that their ratio, d/t, gives c. This is not
what Louis de Broglie [51] had to say:

Poincaré did not take the decisive step. He left to Einstein the glory of having
perceived all the consequences of the principle of relativity and, in particular, of
having clarified through a deeply searching critique of the measures of length and
duration, the physical nature of the connection established between space and time
by the principle of relativity.

So by elevating the velocity of light to a universal constant, Einstein
implied that the geometry of relativity was no longer Euclidean. The
number c is an absolute constant for hyperbolic geometry that depends
for its value on the choice of the unit of measurement. To the local
observers there is no such thing as time dilatation nor length contrac-
tion. These distortions are due to our Euclidean perspective. It is all a
question of ‘frame of reference.’

Poincaré after having written down his relativistic law of the com-
position of velocities should have realized that the only function which
could satisfy such a law is the hyperbolic tangent, which is the straight line
segment in Lobachevsky (velocity) space. Thus, time and space have no
separate meaning, but only their ratio does.

Consider Einstein’s two postulates which he enunciated in 1905:

(i) The same laws of electrodynamics and optics will be valid for all frames
of reference for which the equations of mechanics hold.

(ii) Light is always propagated in empty space with a definite velocity c,
which is independent of the state of motion of the emitting body.

Match them against Poincaré’s first two postulates as he pronounced
them in 1904:

(i) The laws of physical phenomena should be the same whether for an
observer fixed, or for an observer carried along in a uniform move-
ment of translation; so that we could not have any means of discerning
whether or not we are carried along in such a motion;

(ii) Light has a constant velocity and in particular that its velocity is the
same in all directions.
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Now Poincaré introduces a third postulate, which Pais makes the
following comment:

The new mechanics, Poincaré said, is based on three hypotheses. The first of these
is that bodies cannot attain velocities larger than the velocity of light. The second
is (I use modern language) that the laws of physics shall be the same in all inertial
frames. So far so good. Then Poincaré introduces a third hypothesis. ‘One needs
to make still a third hypothesis, much more surprising, much more difficult to
accept, one which is of much hindrance to what we are currently used to. A body in
translational motion suffers a deformation in the direction in which it is displaced. . .

However strange it may appear to us, one must admit that the third hypothesis is
perfectly verified.’ It is evident that as late as 1909 Poincaré did not know that
the contractions of rods is a consequence of the two Einstein postulates. Poincaré
therefore did not understand one of the most basic traits of special relativity.

Whether or not rods contract or rotate when in motion will be dis-
cussed in Sec. 9.9, but it appears that Pais is reading much too much into
what Poincaré said as to what he actually did. In Sec. 4 of “Sur la dynamique
de l’électron” published in 1905, entitled “The Lorentz transformation and
the principle of least action,” Poincaré shows that both time dilatation and
space contraction follow directly from the Lorentz transformations. By the
Lorentz transformation,

δx′ = γl(δx − βct), δy′ = lδy, δz′ = lδz, δt′ = γl(δt − βδx/c),

it follows that for measurements made on a body at the same moment,
δt = 0, in an inertial system moving with a relative velocity β = v/c along
the x-axis, the body undergoes contraction by a factor γ−1 when viewed in
the unprimed frame when we set l = 1. It is therefore very strange that
Poincaré would reintroduce this as a third hypothesis when it is a con-
sequence of Lorentz’s transformation which he accepts unreservedly. As
Poincaré was prone to writing popular articles and books he may have
thought that the contraction of rods were sure to catch the imagination of
the layman.

The problem is in the interpretation of what is meant by the second
postulate regarding the constancy of light, which is usually interpreted as
the velocity of light relative to an observer, whether he be stationary or
moving at a velocity v. Thus, instead of obtaining values c + v or c − v for
the velocity of light, for an observer moving at ±v relative to the source,
one would always ‘measure’ c. A frequency would therefore not undergo
a Doppler shift, contrary to what occurs.
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According to Einstein’s prescription, the time taken for a light signal
to complete a ‘back-and-forth’ journey over a distance d is the arithmetic
average of the two

t = 1
2

d
[

1
c + v

+ 1
c − v

]
= d

c
c2 − v2 .

We are thus forced to conclude that instead of obtaining the velocity c, we
get the velocity c(1 − v2/c2), which differs from the former in the presence
of a second order term, −v2/c2. Rather, if we use the relativistic velocities
(c + v)/(1 + v/c) and (c − v)/(1 − v/c), we obtain

t = 1
2

d
[

1 + v/c
c + v

+ 1 − v/c
c − v

]
= d/c,

and the second-order effect disappears, just as it would in the Michelson–
Morley experiment [cf. Sec. 3.2].

It is not as Einstein claims: “The quotient [distance by time] is, in
agreement with experience, a universal constant c, the velocity of light
in empty space.” The ‘experience’ is the transmission of signals back and
forth, like those envisioned by Poincaré. In this setting, the ‘principle’ of
the constancy of light is untenable [Ives 51].

The velocities of light in the out and back directions co and cb will, in
general, be different. If the distance traversed by the light signal is d, the
total time for the outward and backward journey is, according to Einstein,

t = 1
2

(
d
co

+ d
cb

)
=

(
co + cd

cocd

)
d
2

. (1.1.1)

But, according to the principle of relativity, there should be no difference
in the velocities of light in the outward and backward directions, so that
this principle decrees

t = d
c

. (1.1.2)

Equating (1.1.1) and (1.1.2) yields [Ives 51]

(co + cb)/2
cocb

= 1
c

,
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which can easily be rearranged to read:

c√
(cocb)

= 2
√

(cocb)
(co + cb)

≤ 1. (1.1.3)

The inequality in (1.1.3) follows from the arithmetic-geometric mean
inequality which becomes an equality only when co = cb = c. Thus, if
there are no superluminal velocities, the latter case must hold, for if not,
one of the two velocities, co or cb must be greater than c.

Asimilar situation occurs for the inhomogeneous dispersion equation
of a wave [cf. Sec. 11.5.6],

ω2 = c2κ2 + ω2
0,

where ω and κ are the frequency and wave number, and ω0 is the critical
frequency below which the wave becomes attenuated. Differentiation of
the dispersion equation gives

ωdω = c2κ dκ.

Introducing the definitions of phase and group velocities, u = ω/κ and
w = dω/dκ, it becomes apparent that u > c implies w < c [Brillouin 60].
Since uw = c2, the equivalence of the two velocities requires the critical
frequency to vanish and so restores the isotropy of space.

Einstein [05] uses absolute velocities to show that two observers trav-
eling at velocities ±v would not find that their clocks are synchronous
while those at rest would declare them so. He considers light emitted at
A at time tA to be reflected at B at time tB which arrives back at A at time t′A.
If d is the distance between A and B, the time for the outward and return
journeys are

tB − tA = d
c + v

,

and

t′A − tB = d
c − v

,

respectively. Since these are not the same, Einstein concludes that what
seems simultaneous from a position at rest is not true when in relative
motion. But, in order to do so, Einstein is using absolute velocities: the
velocity on the outward journey is c + v, and the velocity of the return
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journey is, c − v, and so violates his second postulate. If the relativistic law
of the composition of velocities is used, instead, the total times for outward
and return journeys become the same, which is what is found to within the
limits of experimental error [Essen 71].

Einstein then attempts to associate physical phenomena with the fact
that clocks in motion run slower than their stationary counterparts, and
rods contract when in motion in comparison with identical rods at rest. He
considers what is tantamount to the Lorentz transformations, as a rotation
through an imaginary angle, θ,

x′ = x cosh θ − ct sinh θ, ct′ = ct cosh θ − x sinh θ,

at the origin of the system in motion so that x′ = 0. He thus obtains

x/t = c tanh θ, t′ = t
√

(1 − v2/c2) = t/ cosh θ. (1.1.4)

He then concludes that clocks transported to a point will run slower by
an amount 1

2 tv2/c2 with respect to stationary clocks at that point, which is
valid up to second-order terms.

Rather, what Einstein should have noticed is that

θ = tanh−1 v/c = 1
2

ln

(
1 + v/c
1 − v/c

)

is the relative distance in a hyperbolic velocity space whose ‘radius of
curvature’ is c. Space and time have lost their separate identities, and
only appear in the ratio v = x/t whose hyperbolic measure is θ = v̄/c.
The role of c is that of an absolute constant, whose numerical value will
depend on the arbitrary choice of a unit segment. By raising the velocity of
light to a universal constant, Einstein implied that the space is no longer
Euclidean. Euclidean geometry needs standards of length and time; in this
sense Euclidean geometry is relative. In terms of meters and seconds, the
speed of light is 3×108 m/s. If there was no Bureau of Standards we would
have no way of defining what a meter or second is.

Not so in Lobachevskian geometry where angles determine the sides
of the triangle. In Lobachevskian geometry lengths are absolute as well
as angles. The ‘radius of curvature’ c is no longer an upper limit to the
velocities, but, rather, defines the unit of measurement. Lobachevskian
geometries with different values of c will not be congruent.As c approaches
infinity, Lobachevskian formulas go over into their Euclidean counterparts.
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The exponential distance,

ev̄/c =
(

1 + v/c
1 − v/c

)1/2

= ν′

ν
, (1.1.5)

is the ordinary longitudinal Doppler factor for a shift in the frequency, ν′,
due to a moving source at velocity v. In the Euclidean limit, θ ≈ x/ct and
(1.1.5) reduces to the usual Doppler formula [Varičak 10]:

ν′ = ν(1 + v/c).

It is undoubtedly for this reason that both Einstein and Planck found non-
Euclidean geometries distasteful. For as Planck remarked [98]

It need scarcely be emphasized that this new conception of the idea of time makes
the most serious demands upon the capacity of abstraction and projective power
of the physicist. It surpasses in boldness everything previously suggested in spec-
ulative natural phenomena and even in the philosophical theories of knowledge:
non-Euclidean geometry is child’s play in comparison. And, moreover, the princi-
ple of relativity, unlike non-Euclidean geometry, which only comes seriously into
consideration in pure mathematics, undoubtedly possesses a real physical signifi-
cance. The revolution introduced by this principle into the physical conceptions of
the world is only to be compared in extent and depth with that brought about by
the introduction of the Copernican system of the universe.

Prescinding Planck’s degrading remarks concerning non-Euclidean
geometries, we can safely conclude that

the distortion effects due to the spatial contraction and time dilatation
of moving objects can be perceived by an observer using a Euclidean
metric and clock. To local observers in hyperbolic space, there is no
possible way of discerning these distortions because their rulers and
clocks shrink or expand with them. All the ‘peculiar consequences’ are
based on the issue of ‘frame of reference.’

What is truly tragic is that Poincaré never realized that his models of
non-Euclidean geometries were pertinent to relativity. According to Arthur
Miller [73]

For a scientist of Poincaré’s talents the awareness of Lorentz’s theory should have
been the impetus for the discovery of relativity. Poincaré seemed to have all the req-
uisite concepts for a relativity theory: a discussion of the various null experiments
to first and second order accuracy in v/c; a discussion of the role of the speed of
light in length measurements; the correct relativistic transformation equations for
the electromagnetic field and the charge density; a relativistically invariant action
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principle; the correct relativistic equation for the addition of velocities; the concept of the
Lorentz group; a rudimentary of the four-vector formalism and of four-dimensional
space; a correct relativistic kinematics. . . [italics added]

so what went wrong? Miller claims that “his relativity was to be an induc-
tive one with the laws of electromagnetism as the basis of all of physics.”
This, according to Miller, prevented him from grasping the “universal
applicability of the principle of relativity and therefore the importance of
the constancy of the velocity of light in all inertial frames.” In other words,
the equations are right but the deductions are wrong. One can deduce what
he likes from the equations as long as it is compatible with experiment.

While Miller [81] acknowledges that both Poincaré and Einstein,
“simultaneously and independently,” derived the relativistic addition law
for velocities, “only Einstein’s view could achieve its full potential.” He
further claims that Poincaré never proved “the independence of the veloc-
ity of light from its source. . ..” These assertions have no justification at all:
Poincaré did not have to prove anything, the velocity addition law negates
ballistic theories. It is also not true that “Lorentz’s theory contained special
hypotheses for this purpose.” No special hypotheses are needed since the
velocity addition law is a direct outcome of the Lorentz transformations.
Here is a clear intent to disparage Poincaré.

And where is the experimental verification of Einstein’s theory as
opposed to Poincaré’s? Or, maybe, Poincaré just did not go far enough?
According to Scribner [64] the whole of the kinematical part of Einstein’s
1905 paper could have been rewritten in terms of aether theory. So accord-
ing to him, the aether would play the role of the caloric in Carnot’s theory
which, by careful use, did not invalidate his results. Carnot never ‘closed’
his cycle for that would have meant equating the heat absorbed at the hot
reservoir with the heat rejected at the cold reservoir since, according to
caloric theory, heat had to be conserved.

Where Einstein puts into quotation marks “stationary” as opposed to
“moving” it does not imply a physical difference because one is relative to
the other. Moreover, the distinctions between “real” and “apparent” must
likewise be abandoned. If there is no distinction between the two, then why
should Einstein have taken exception to Varičak’s remark that Einstein’s
“contraction is, so to speak, only a psychological and not a physical fact.”
This brought an immediate reaction from Einstein to the effect that Varičak’s
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note “must not remain unanswered because of the confusion that it could
bring about.” After all these years has the confusion been abated?

To condemn Lorentz and Poincaré for their belief in the aether is
absurd. The aether for them was the caloric for Carnot. But did the caloric
invalidate Carnot’s principle? And if Carnot has his principle, why does
Poincaré not have his? Carnot’s principle still stands when the scaffolding
of caloric theory falls.

Another analogy associates Poincaré to Weber, and Einstein to Max-
well. Weber needed charges as the seat of electrical force, while Maxwell
needed the aether as the medium in which his waves propagate. Maxwell’s
circuital equations make no reference to charges as the carriers of
electricity.

Miller [73] asserts that Poincaré did not realize “in a universal rela-
tivity theory the basic role is played by the energy and momentum instead
of the force.” But it was Lorentz’s force that was able to bridge Maxwell’s
macroscopic field equations with the microscopic world of charges and
currents.

It is clear that Poincaré did not want to enter into polemics with
Einstein. And Einstein, on his part, admits that his work was preceded
by Poincaré. After a critical remark made by Planck on Einstein’s first
derivation of �m = �E/c2, to the effect that it is valid to first-order only,
the following year Einstein [06b] makes another attempt. In this study
he proposes to show that this condition is both necessary and sufficient
for the law of momentum, which maintains invariant the center of grav-
ity, citing Poincaré’s 1900 paper in the Lorentz Festschrift. He then goes
on to say

Although the elementary formal considerations to justify this assertion are already
contained essentially in a paper of Poincaré, I have felt, for reasons of clarity, not to
avail myself of that paper.

Even though Einstein clearly admits to Poincaré’s priority no one seems to
have taken notice of it.

On July the 5th 1909, Mittag-Leffler, editor of Acta Mathematica writes
to Poincaré to solicit a paper on relativity writing

You know without doubt Minkowski’s Space and Time published after his death, and
also the ideas of Einstein and Lorentz on the same problem. Now, Fredholm tells
me that you have reached the similar ideas before these other authors in which you
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express yourself in a less philosophical, but more mathematical, manner. Would
you write me a paper on this subject . . . in a comprehensible language that even the
simple geometer would understand.

Poincaré never responded.
Then there was the letter of recommendation of Poincaré’s to Weiss

at the ETH where he considers Einstein

as one of the most original minds that I have met. I don’t dare to say that
his predictions will be confirmed by experiment, insofar as it will one day be
possible.

Notwithstanding, Einstein writes in November 1911 that “Poincaré was
in general simply antagonistic.” Relativity was probably just a word to
him, since it was he who postulated the ‘principle of relativity.’ But it
is true that Poincaré looked to experimental confirmation for his princi-
ple. Be that as it may, what is truly incomprehensible is Poincaré’s lack
of appreciation of the velocity addition law, for that should have put him
on the track of introducing hyperbolic geometry. Then the distortions in
space and time could be explained as the distortion we Euclideans observe
when looking into another world governed by the axioms of hyperbolic
geometry. To the end of his life, Poincaré maintained that Euclidean geom-
etry is the stage where nature enacts her play, never once occurring to
him that his mathematical investigations would have some role in that
enactment.

Now Poincaré was more than familiar with Lorentz’s contraction of
electrons when they are in motion. He even added the additional, non-
electromagnetic, energy necessary to keep the charge on the surface of the
electron from flying off in all directions. The contraction of bodies is likened
to the inhabitants of this strange world becoming smaller and smaller as
they approach the boundary. The absolute constant needed for such a geom-
etry would be the speed of light which would determine the radius of cur-
vature of this world. In retrospect, it is unbelievable how Poincaré could
have missed all this.

It is also said that Poincaré was using the principle of relativity as a
fact of nature, to be disproved if there is one experiment that can invalidate
it. This is not much different than the second law of thermodynamics. In
fact when Kaufmann’s measurements of the specific charge initially tended
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to favor the Abraham model of the electron [cf. Sec. 5.4.1], Poincaré [54]
appears to have lost faith in his principle for

[Kaufmann’s] experiments have given grounds to the Abraham theory. The princi-
ple of relativity may well not have been the rigorous value which has been attributed
to it.

Kaufmann’s experiments were set-up to discriminate between various
models proposed for the dependency of the mass of the electron on its
speed. And if the Lorentz model had been found wanting, Einstein had
much more to lose since his generalization of Lorentz’s electron theory to
all of matter would certainly have been its death knell. Einstein had this to
say in his Jahrbuch [07] article:

It should also be mentioned that Abraham’s and Bucherer’s theories of the motion
of the electron yield curves that are significantly closer to the observed curve than
the curve obtained from the theory of relativity. However, the probability that their
theories are correct is rather small, in my opinion, because their basic assumptions
concerning the dimensions of the moving electron are not suggested by theoretical
systems that encompass larger complexes of phenomena.

The last sentence is opaque, for what do the dimensions of a moving
electron share with larger complexes of phenomena? And how are both
related with Kaufmann’s deflection measurements? Einstein may not have
likedAbraham’s model, butAbraham did because, according to him, it was
based on common sense. It must be remembered that Lorentz’s theory of
the electron was also a model. According to Born and von Laue, Abraham
will be remembered for his unflinching belief in “the absolute aether, his
field equations, his rigid electron just as a youth loves his first flame, whose
memory no later experience can extinguish.”

But how rigid could Abraham’s electron be if the electrostatic energy
depended on its contraction when in motion? That is everyone will agree
that “Abraham took his electron to be a rigid spherical shell that maintained
its spherical shape once set in motion. . . [yet] a sphere in the unprimed
coordinate system becomes, in the primed system, an ellipsoid of revolu-
tion” [Cushing 81]. The unprimed system is related to the prime system
by a dilation factor, equal to the inverse FitzGerald–Lorentz contraction,
which elongates one of the axes into the major axis of the prolate ellipsoid.
In the Lorentz model, one of the axes is shortened by the contraction factor
so that an oblate ellipsoid results. In fact, as we shall see in Sec. 5.4.4, that
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the models of Abraham and Lorentz are two sides of the same coin, which
are related in the same way that hyperbolic geometry is related to elliptic
geometry, or a prolate ellipsoid to an oblate ellipsoid.

If we take Einstein’s [Northrop 59] remark:

If you want to find out anything about theoretical physicists, about the methods
they use, I advise you to stick closely to one principle: don’t listen to their words,
fix your attention on their deeds.

at face value, then according to Einstein’s own admission, there is no dif-
ference between the Poincaré–Lorentz theory and his. Whether the mass
comes from a specific model of an electron in motion, or from general prin-
ciples which makes no use of the fact that the particle is charged or not, they
merge into the exact same formula for the dependence of mass on speed.

1.1.2 Models of the electron

At the beginning of the twentieth century several models of the electron
were proposed that were subsequently put to the test by Kaufmann’s exper-
iments involving the deflection of fast moving electrons by electric and
magnetic fields. The two prime contenders were the Abraham and Lorentz
models. If mass of the electron were of purely electromagnetic origin, it
should fly apart because the negative charges on the surface would repel
one another. There is a consensus of opinion that it was for this reason
Abraham chose a rigid model of an electron which would not see the accu-
mulation of charge that a deformed sphere would.

Miller [81] contends that Abraham “chose a rigid electron because a
deformable one would explode, owing to the enormous repulsive forces
between its constituent elements of charge.” Even a spherical electron
would prove unstable without some other type of binding forces. In that
case, “the electromagnetic foundations would be excluded from the out-
set,” according to Abraham. In order to calculate the electrostatic energy
Abraham needed an expression for the capacitance for an ellipsoid of
revolution. This he found in an 1897 paper by Searle. The last thing he
had to do was to postulate a dependence of the semimajor axis of rev-
olution upon the relative velocity β = v/c. ‘Rigid’ though the electron
may be, Abraham evaluated the electrostatic energy in the primed system
where a sphere of radius a turns into a cigar-shaped prolate ellipsoid with
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semimajor axis a/
√

(1−β2). So Abraham’s rigid electron was not so rigid as
he might have thought for the total electromagnetic energy he found was
proportional to [Bucherer 04]:

1
2

ln

(
1 + β

1 − β

)
− β.

This expression happens to be the difference between the measures of dis-
tance in hyperbolic and Euclidean velocity spaces. When the radius of cur-
vature, c, becomes infinite, the total electromagnetic energy will vanish, and
we return to Euclidean space. So Abraham’s total electromagnetic energy
was a measure of the distance into hyperbolic space which depended on
the magnitude of the electron’s velocity.

Abraham’s model fell into disrepute, and even Abraham abandoned
it in latter editions of his second volume of Theorie der Elektrizität. However
his electron turns out to be a cigar-shaped, prolate ellipsoid when in motion,
while Lorentz’s was a pancake-shaped, oblate ellipsoid. So the two models
were complementary to one another; the former belonging to hyperbolic
velocity space while the latter to elliptic velocity space, with the transition
between the two being made by ‘inverting’ the semimajor and semiminor
axes.

1.1.3 Appropriation of Lorentz’s theory of the electron
by relativity

Another historian of science, Russell McCormmach [70], claims that:

Einstein recognized that not only electromagnetic concepts, but the mass and kinetic
energy concepts, too, had to be changed. Entirely in keeping with his goal of finding
common concepts for mechanics and electromagnetism, he deduced from the elec-
tron theory elements of a revised mechanics. In his 1905 paper he showed that all
mass, charged or otherwise, varies with motion and satisfies the formulas he derived
for the longitudinal and transverse masses of the electron. He also found a new
kinetic energy formula applying to electrons and molecules alike. And he argued
that no particle, charged or uncharged, can travel at a speed greater than that of
light since otherwise its kinetic energy becomes infinite. He first derived these
non-Newtonian mechanical conclusions for electrons only. He extended them from
electrons to material particles on the grounds that any material particle can be
turned into an electron by the addition of charge “no matter how small.” It is curi-
ous to speak of adding an indefinitely small charge, since the charge of an electron
is finite. Einstein could speak this way because he was concerned solely with the
“electromagnetic basis of Lorentzian electrodynamics and optics of moving bodies”
[italics added].
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The argument that takes us from electrodynamic mass to mass in
general is the following. Kaufmann and others have deflected cathode
rays by electric and magnetic fields to find the ratio of charge to mass.
This ratio was found to change with velocity. If charge is invariant, then
it must be the mass in the ratio that increases with the particle’s velocity.
These measurements cannot be used to confirm that all the mass of the
electron is electromagnetic in nature. The reason is that “Einstein’s theory
of relativity shows that mass as such, regardless of its origin, must depend
on the velocity in a way described by Lorentz’s formula” [italics added]
[Born 62].

In a collection dedicated to Einstein, Dirac [86] in 1980 observed

In one aspect Einstein went much farther than Lorentz, Poincaré and others, namely
in assuming that the Lorentz transforms should be applicable in all of physics, and
not only in the case of phenomena related to electrodynamics. Any physical force,
that may be introduced in the future, must be consistent with Lorentz transforms.

According to J. J. Thomson [28],

Einstein has shown that to conform with the principles of Relativity mass must
vary with velocity according to the law m0/

√
(1 − v2/c2). This is a test imposed

by Relativity on any theory of mass. We see that it is satisfied by the conception
that the whole of the mass is electrical in origin, and this conception is the only
one yet advanced which gives a physical explanation of the dependence of mass
on velocity.

So this would necessarily rule out the existence of neutral matter, and, in
fact, this is what Einstein [05] says when he remarks that charge “no matter
how small” can be added to any ponderable body.

The dependencies of mass upon motion arose from the assumption
that bodies underwent contraction in the direction of their motion. This
follows directly from the nature of the Lorentz transformation. From the
geometry of the body one could determine the energy, W , and momentum,
G, since the two are related by

dW = v dG,

in a single dimension. Then since G = mv, the expression for the increment
in the energy becomes

dW = v2dm + mv dv.
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Introducing dW = c2dm, and integrating lead to

m/m0 = 1/
√

(1 − β2), (1.1.6)

where m0 is a constant of integration, and β = v/c, the relative velocity.
Expression (1.1.6) was derived by Gilbert N. Lewis in 1908. The same

proof was adopted by Philipp Lenard, a staunch anti-relativist, in his Über
Aether und Uräther who attributes it to Hassenöhrl’s [09] derivation of radia-
tion pressure. The only verification of a dependency of mass upon velocity
at that time was Kaufmann’s experiments on canal rays. Kaufmann was
able to measure the ratio e/m, and assuming that the charge is constant, all
the variation of this ratio must be attributed to the mass.

The mass of the negative particle contains both electromagnetic and
non-electromagnetic contributions. However, Lewis contended that what-
ever its origin is mass remains mass so that “it matters not what the sup-
posed origin of this mass may be. Equation (1.1.6) should therefore be
directly applicable to the experiments of Kaufmann.” But an accelerating
electron radiates, and the radiative force is missing from dG. This did not
trouble Lewis, and he went on to compare the observed value of the relative
velocity with that calculated from (1.1.6). His results are given in the follow-
ing table.

m/m0 β (observed) β (calculated)

1 0 0
1.34 0.73 0.67
1.37 0.75 0.69
1.42 0.78 0.71
1.47 0.80 0.73
1.54 0.83 0.76
1.65 0.86 0.80
1.73 0.88 0.82
2.05 0.93 0.88
2.14 0.95 0.89
2.42 0.96 0.91
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Although the calculated and observed values of the relative veloci-
ties follow the same monotonic trend, the latter are between 6–8% larger.
Lewis believed that this was within the limits of experimental error in Kauf-
mann’s experiments. While Kaufmann claimed a higher degree of accuracy
is necessary, Lewis believed that

notwithstanding the extreme care and delicacy with which the observations are
made, it seems almost incredible that measurements of this character, which con-
sisted in the determination of the minute displacement of a somewhat hazy spot
on a photographic plate, could have been determined with the precision claimed.

So what is Lewis comparing his results to?
Kaufmann’s initial results agreed better with the expression,

m
m0

= 3
4

1
β2

(
1 + β2

2β
ln

1 + β

1 − β
− 1

)
,

derived from Abraham’s model rather than (1.1.6), which coincides with
the Lorentz model, but which has been “derived from strikingly different
principles.” Why neutral matter should be subject to the deflection by the
electromagnetic fields in Kaufmann’s set-up is not broached. But, Lewis
considers that the mass of a positively charged particle emanating from
a radioactive source would be a good test-particle because it consists of
mainly ‘ponderable’ matter with a very small ‘electromagnetic’ mass.

Lewis believed that his non-Newtonian mechanics revived the parti-
cle nature of light. From the fact that the mass, according to (1.1.6), becomes
infinite as the velocity approaches that of light, it follows that “a beam of
light has mass, momentum and energy, and is traveling at the velocity of light
would have no energy, momentum, or mass if it were at rest. . ..” This is almost
two decades before Lewis [26] was to coin the name ‘photon’ in a paper
entitled “The conservation of photons.” The paper was quickly forgotten,
but the name stuck.

1.2 Physicists versus Mathematicians

In attempting to unravel the priority rights to the unification of light
and electricity we can appreciate a remarkable confluence of physi-
cists and mathematicians in one single arena that was never to repeat
itself. On the physics side there were André-Marie Ampère, Ludwig
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Boltzmann, Rudolf Clausius, Michael Faraday, Hermann von Helmholtz,
James Clerk Maxwell, and Wilhelm Weber, while on the mathematics side
there were Carl Friedrich Gauss and Bernhard Riemann, and those that
should have been there, but were not: János Bolyai and Nicolai Ivanovitch
Lobachevsky.

To Ampère credit must go to the fall of the universal validity of New-
ton’s inverse square law as a means by which particles interact with one
another at a distance. Today, Ampère is remembered as a unit, rather than
as the discoverer of that law, and contemporary treatises on electromag-
netism present the alternative formulation of Jean-Baptiste Biot and Félix
Savart.Although both laws of force coincide when the circuit is closed, they
differ on the values that the force takes between two elements of current
when open. That the interaction of persisting direct (galvanic) currents
needed an angular-dependent force was loathed and scorned at. Surely,
magnetism cannot be the result of the motion of charged particles. Odd
as it may seem, like many of the French physics community, Biot rejected
Ampère’s discovery outright.

Since the angular dependencies vanish when electric currents appear
in complete circuits, it seemed as extra baggage to many, including
Maxwell, who reasoned in continuous fields which could store energy
and media (i.e. the aether) in which waves could propagate in. Yet, it was
Ampère’s attempt that would initiate a search for a molecular understand-
ing of what electricity is and how it works.

1.2.1 Gauss’s lost discoveries
It may take very long before I make public my investigations on this issue; in fact, this may
not happen in my lifetime for I fear the ‘clamor of the Boeotians.’
Gauss in a letter to Bessel in 1829 on his newly discovered geometry.

Gauss’s seal was a tree but with only seven fruits; his motto read “few,
but ripe.” Such was, in effect, an appraisal of Gauss’s scientific accomplish-
ments. Gauss had an aversion for debate, and, probably, a psychological
problem of being criticized by people inferior to him, like the Boeotians of
Greece who were dull and ignorant.

Ampère’s discovery would have finished in oblivion had it not caught
the eye of Gauss. By 1828 Gauss was resolved to test Ampère’s angle law
when he came into contact with a young physicist, Wilhelm Weber. With no
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surprise, Weber was offered a professorship at Göttingen three years later,
and an intense collaboration between the two began. According to his 1846
monograph, Weber was out to measure a force of one current on the other.
This was something not contemplated by Ampère who was satisfied to
making static, or what he called ‘equilibrium,’ measurements.

When Weber was ready to present his results, he shied away from a
discussion of the angular force because he knew it would cause commotion.
A letter from Gauss persuaded him otherwise, and insisted that further
progress was needed to find a “constructible representation of how the
propagation of the electrodynamic interaction occurs.”

Weber accepted Fechner’s model in which opposite charges are mov-
ing in opposite directions, and interpreted Ampère’s angular force in terms
of the force arising from relative motion, depending not only on their rel-
ative velocities but also on their accelerations. In so doing, Weber can thus
be considered to be the first relativist! The anomaly in Ampère’s law, where
there appears a diminution of the force at a certain angle, now appeared
as a diminution of the force at a certain speed. That constant later became
known as Weber’s constant, and in a series of experiments carried out with
Rudolf Kohlrasch it was found to be the speed of light, increased by a fac-
tor of the square root of 2. Present at these experiments was Riemann, and
Riemann was later to present his own ideas on the matter.

In the 1858 paper, “A contribution to electrodynamics,” that was read
but not published until after Riemann’s death, Riemann states

I have found that the electrodynamic actions of galvanic currents may be explained
by assuming that the action of one electrical mass on the rest is not instantaneous,
but is propagated to them with a constant velocity which, within the limits of
observation, is equal to that of light.

Although he errs referring to φ = −4πρ as Poisson’s law, instead
of ∇2φ = −4πρ, Riemann surely did not merit the wrath that Clausius
bestowed upon him. Riemann proposes a law of force similar to that of
Weber, where the accelerations along the radial coordinate connecting the
two particles are replaced by the accelerations projected onto the coordi-
nate axes, and advocates the use of retarded potentials instead of a scalar
potential.

In his Treatise, Maxwell cites Clausius’s criticisms as proof of the
unsoundness of Riemann’s paper. Surely, Maxwell had no need of
Clausius’s help, so it was probably used to avoid direct criticism. Moreover,
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Clausius’s criticisms are completely unfounded, and what Maxwell found
wanting in Weber’s electrokinetic potential actually applies to Clausius’s
expression. Whereas Clausius had some grounds for his priority dispute
with Kelvin when it came to the second law, here he has none.

Weber’s formulation,which today is all but forgotten, held sway in
Germany until Heinrich Hertz [93], Helmholtz’s former assistant, verified
experimentally the propagation of electromagnetic waves and showed that
they had all the characteristics of light. Helmholtz then crowned Maxwell’s
theory, and went even a step further by generalizing it to include longitu-
dinal waves, if ever there would be a need of them [cf. Sec. 11.5.5].

Gauss played a fundamental role in bridging the transition from
Ampère to Weber. Moreover, Maxwell’s formulation of a wave equation,
from his circuit equations, in which electromagnetic disturbances prop-
agate at the speed of light, was undoubtedly what Gauss thought was
as an oversimplification of the problem. The complexity of the interac-
tions in Ampère’s hypothesis persuaded him that it was not as simple as
writing down a wave equation for a wave propagating at the speed of
light. This will not be the only time Gauss loses out on a fundamental
discovery.

Gauss’s letters are more telling than his publications, and if it had not
been for his reluctance to publish he would have certainly been the discov-
erer of what we now know as hyperbolic geometry. Gauss wrote another
famous letter, this time to Taurinus in 1824, again reluctant to publish his
findings. This is what he said:

. . . that the sum of the angles cannot be less than 180◦; this is the critical point, the
reef on which all the wrecks occur. . . I have pondered it for over thirty years, and I
do not believe that anyone can have given it more thought. . . than I, though I have
never published anything on it. The assumption that the sum of three angles is less
than 180◦ leads to a curious geometry, quite different from ours (the Euclidean),
but thoroughly consistent. . .

Gauss is, in fact, referring to hyperbolic geometry, and it is another of his
lost discoveries. The credit went instead to Bolyai junior and Lobachevsky.
In 1831, Gauss was moved to publish his findings, as it appears in a letter
to Schumacher:

I have begun to write down during the last few weeks some of my own meditations,
a part of which I have never previously put in writing, so that already I have had
to think it all through anew three or four times. But I wished this not to perish
with me.
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But it was too late, before Gauss could finish his paper, a copy of Bolyai’s
Appendix arrived.

Gauss’s reply to Wolfgang Bolyai senior unveils his disappointment:

If I commenced by saying that I am unable to praise this work, you would certainly
be surprised for a moment. But I cannot say otherwise. To praise it, would be to
praise myself. Indeed the whole contents of the work, the path taken by your son,
the results to which he is led, coincide almost entirely with my meditations, which
have occupied my mind partly for the last thirty or thirty-five years. So I remained
quite stupefied. . . it was my idea to write down all this later so that at least it should
not perish with me. It is therefore a pleasant surprise for me that I am spared the
trouble, and I am very glad that it is just the son of my old friend, who takes
precedence of me in such a remarkable manner.

Even more mysterious is why Gauss failed to help the younger Bolyai
gain recognition for his work. Was it out of jealousy or Gauss’s extreme
prudence?

Another person who was looking to the stars for confirmation that
two intersecting lines can be parallel to another line was Lobachevsky.
He, like Gauss, considered geometry on the same status of electrodynam-
ics, that is, a science founded on experimental fact. Lobachevsky fully
realized that deviations from Euclidean geometry would be exceedingly
small, and, therefore, would need astronomical observations. Just as Gauss
attempted to measure the angles of a triangle formed by three mountain-
tops, Lobachevsky claimed that astronomical distances would be necessary
to show that the sum of the angles of a triangle was less than two right
angles.

In 1831 Gauss deduced from the axiom that two lines through a given
point can be parallel to a third line that the circumference of a circle is
2πR sinh r/R, where R is an absolute constant. By simply replacing R by iR,
he obtained 2πR sin r/R, or the circumference of a circle of radius r on the
sphere. The former will be crucial to the geometrical interpretation of the
uniformly rotating disc that had occupied so much of Einstein’s thoughts.
And we will see in Sec. 9.11 that Gauss’s expression for the hyperbolic
circumference is what modern cosmologists confuse with the expansion
factor of the universe.

The first person to show that there was a complete correspondence
between circular and hyperbolic functions was Taurinus in 1826, who was
in Gauss’s small list of correspondents on geometrical matters. Although
this lent credibility to hyperbolic geometry, neither Taurinus nor Gauss
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felt confident hyperbolic geometry was self-consistent. In 1827 Gauss came
within a hair’s breadth of what would latter be known as the Gauss–Bonnet
theorem. This theorem shows that the surfaces of negative curvature pro-
duce a geometry in which the angular defect is proportional to the area.
Gauss was cognizant that a pseudosphere was such a surface, and Gauss’s
student Minding latter showed that hyperbolic formulas for triangles are
valid on the pseudosphere. But, a pseudosphere is not a plane, like the
Euclidean plane, because it is infinite only in one direction. The exten-
sion of the pseudosphere to a real hyperbolic plane came much later with
Eugenio Beltrami’s exposition in 1868. So it was not clear to Gauss and
his associates what this new geometry was, and, if, in fact, it was logically
consistent.

Gauss dabbled in many areas of physics and mathematics, and it
would appear that his interests in electricity and non-Euclidean geome-
tries are entirely disjoint. Who would have thought that these two lost
discoveries might be connected in some way? Surely Poincaré did not and
it is even more incredible because he developed two models of hyperbolic
geometry that would have made the handwriting on the wall unmistakable
to read.

1.2.2 Poincaré’s missed opportunities

Jules-Henri Poincaré began his career as a mathematician, and, undoubt-
edly, became interested in physics because of the courses he gave at the
Sorbonne. Poincaré was not a geometer by trade, but made a miraculous
discovery that the Bolyai–Lobachevsky geometry which the geometers,
Beltrami and Klein, were trying to construct already existed in mainstream
mathematicians [Stillwell 96]. The tragedy is that he failed to see what he
called a Fuchsian group was the same type of transform that Lorentz was
using in relativity, and that he would be commenting on the latter without
any recognition of the former.

1.2.2.1 From Fuchsian groups to Lorentz transforms

Poincaré’s first encounter with hyperbolic geometry came when he was
trying to understand the periodicity occurring in solutions to particular
differential equations. The single periodicities of trigonometric functions
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were well-known, and so too the double periodicities of elliptic functions.
Double periodicity can be best characterized by tessellations consisting of
parallelograms in the complex Euclidean plane whose vertices are multi-
ples of the doubly periodic points.

Poincaré found a new type of periodic function, which he called ‘Fuch-
sian,’ after the mathematician Lazarus Immanuel Fuchs who first discov-
ered them.d The periodic function is invariant under a group of substitu-
tions of the form

z �→ az + b
cz + d

, (1.2.1)

for which ad − bc 	= 0, for otherwise it would result in a lack-luster con-
stant mapping. Poincaré wanted to study this group of transformations
by the same type of tessellations that elliptic functions could be charac-
terized in the complex Euclidean plane. Only now the tessellation con-
sists of curvilinear triangles in a disc, shown in Fig. 1.1, which Poincaré
obtained from earlier work by Schwarz in 1872. The curvilinear triangles
form right-angled pentagons which are mapped onto themselves by the
linear fractional transformation, (1.2.1). As Poincaré tells us

Just at the time I left Caen, where I was living, to go on a geological excursion . . .

we entered an omnibus to go some place or other. At the moment I put my foot on
the step the idea came to me, without anything in my former thoughts seeming to
have paved the way for it, that the transformation I had used to define Fuchsian
functions were identical with those of non-Euclidean geometry.

The linear fractional transformations, (1.2.1), can be used to define a new concept
of length for which the cells of the tessellation are all of equal size. The resulting
geometry is precisely that of Bolyai–Lobachevsky which, through Klein’s
renaming in 1871, has come to be known as hyperbolic geometry.

If c = b and d = a, then the fractional linear transformation (1.2.1)
becomes the distance-preserving and orientation-preserving map, with
a2 − b2 = 1, of Poincaré’s conformal disc model of the hyperbolic plane
D

2-isometrics. What Poincaré failed to realize is that by interpreting z as
the linear fractional transformation (1.2.1), with a = cosh � and b = sinh �,
becomes precisely the transformation he named in honor of Lorentz, where

dAfter Klein informed Poincaré in May 1880 that there were groups of linear frac-
tional transformations, other than those of Fuchs, Poincaré named them ‘groupes
kleinéens,’ to the chagrin of Klein.
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Fig. 1.1. A tiling of the hyperbolic plane by curvilinear triangles that form right-
angled pentagons.

the sides of any curvilinear triangle in Fig. 1.1 are proportional to the hyper-
bolic measures of the three velocities in three different reference frames.
Had Poincaré recognized this, it would have changed his mind about the
‘convenience’ of Euclidean geometry, and would have brought hyperbolic
geometry into mainstream relativity.

That is, given three bodies moving with velocities u1, u2 and u3,
the corresponding triangle with curvilinear sides has as its vertices the
points u1, u2 and u3. The relative velocities will correspond to the sides
of the triangle and the angles between the velocities will add up to some-
thing less than two right angles. It should also be appreciated that the
square of the relative velocity is invariant under (1.2.1). Suppose that w
is a relative velocity formed from the composition of u and v, then if
these velocities are replaced by the velocities u′ and v′ relative to some
other frame, the value of w will be unaffected by the change. In other
words, the square of the relative velocity w is invariant under a Lorentz
transformation.
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However, it never dawned on Poincaré that these curvilinear-shaped
triangles might be relativistic velocity triangles for he kept mathematics
and physics well separated in his mind. For he considered

. . . the axioms of geometry . . . are only definitions in disguise. What then are we
to think of the question: Is Euclidean geometry true? We might as well ask if the
metric system is true and if the old weights and measures are false; if Cartesian
coordinates are true and polar coordinates false. One geometry cannot be more
true than another: it can only be more convenient.

Convenience was certainly not the answer.e

1.2.2.2 An author of E = mc2

Unquestionably the most famous formula in all of physics, its origins lie
elsewhere than in Einstein’s [05b] paper “Does the inertia of a body depend
upon its energy content?” John Henry Poynting [07] derived a relation
between energy and mass from the radiation pressure around the turn of
the twentieth century. Friedrich Hassenöhrl [04] obtained the effective mass
of blackbody radiation as 4

3ε/c2, where ε = hν. The same factor of 4
3 was

found by Comstock [08] from his electromagnetic analysis, and represents
the sum of the energy and the work done by compression, the latter being
equal to one-third of the energy in the ultrarelativistic limit. The sum of the
two quantities is the enthalpy, as was first clearly stated by Planck [07],
so in Einstein’s title ‘heat content,’ or enthalpy, should replace ‘energy
content.’

Once again we find evidence of Poincaré’s priority in the derivation of
the famous formula, and, as we have mentioned, Einstein’s recognition of it
[cf. p. 23]. In the second edition of his text, Électricité et Optique, Poincaré [01]
treats the problem of the recoil due to a body’s radiation. He considers
the emission of radiation in a single direction, and in order to maintain
fixed the center of gravity, the body recoils like an ‘artillery cannon’ (pièce
d’artillerie). According to the theory of Lorentz, the amount of the recoil
will not be negligible. Suppose, says Poincaré, that the artillery piece has a
mass of 1 kg, and the radiation that is sent in one direction at the velocity

eStrangely, we find Einstein [22b] uttering the same words: “For if contradictions
between theory and experience manifest themselves, we should rather decide to
change physical laws than to change axiomatic Euclidean geometry.”
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of light has an energy of three million Joules. Then, according to Poincaré,
it will recoil a distance of 1 cm.

Actually, the relation between ‘electromagnetic momentum’ and
Poynting’s vector appears in a 1895 paper by Lorentz, which was com-
mented and elaborated upon by Poincaré [00] in 1900. He derives the
expression between the momentum density, G, and the energy flux, S, as

G = S/c2. (1.2.2)

Even earlier in 1893, J. J. Thomson refers to ‘the momentum’ arising from
the motion of his Faraday tubes. It is only later that Abraham [03] intro-
duced the term ‘electromagnetic momentum.’ Pauli [58] unjustly attributes
(1.2.2) to Planck [07] as a theorem regarding the equivalence between
momentum density and the energy flux density. According to Pauli,

This theorem can be considered as an extended version of the principle of the
equivalence of mass and energy. Whereas the principle only refers to the total energy,
the theorem has also something to say on the localization of momentum and energy.

Since the magnitude of the energy flux, S = Ec, (1.2.2) becomes:

mv = E/c.

Then introducing m = 103 grams, E = 3×1013 ergs, and c = 3×1010 cm/sec,
Poincaré finds v = 1 cm/sec for the recoil speed. Thus, Poincaré derived
E = Gc, and if G is the momentum of radiation, G = mc, so that m = E/c2

is the mass equivalent to the energy of radiation.
Poincaré was infatuated with the break-down of Newton’s third law,

the equality between action and reaction, in his new mechanics. In a follow-
up paper entitled, “The theory of Lorentz and the principle of reaction,”
Poincaré [00] considers electromagnetic energy as a ‘fictitious fluid’ (fluide
fictif) with a mass E/c2. The corresponding momentum is the mass of this
fluid times c. Since the mass of this fictitious fluid was ‘destructible’ for
it could reappear in other guises, it prevented him from identifying the
fictitious fluid with a real fluid. What Poincaré could not rationalize became
‘fictitious’ to him.

The lack of conservation of the fictitious mass prevented Poincaré
from identifying it with real mass, which had to be conserved under all
circumstances. What is conserved, however, is the inertia associated with
the radiation that has produced the recoil of the artillery cannon. It is the
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difference between the initial mass and what is radiated that is equal to the
change in energy of the system. Ives [52] showed that

m − m′ = �m = E/c2, (1.2.3)

where m′ is the change in mass after radiation, and E/c2 is the mass of
the radiant energy, which follows directly from Poincaré’s 1904 relativity
principle.

The difference between the Doppler shift in the frequency due to a
source moving toward and away from a fixed observer is:

�ν = 1
2
ν

[(
1 + β

1 − β

)1/2

−
(

1 − β

1 + β

)1/2
]

= νv
c
√

(1 − β2)
. (1.2.4)

The frequency shift becomes a nonlinear function of the velocity, just like
the expression for the relativistic momentum. But here there is no mass
present!

The relation between frequency and energy was known at the time; it
is given by Planck’s law, E = hν, so that (1.2.4) could be written as

h�ν/c = Ev
c2√(1 − β2)

= G,

where G is momentum imparted to the artillery piece due to recoil. It is
given by

G = �m√
(1 − β2)

v,

if (1.2.3) holds. The derivation is thus split into two parts: A nonrelativistic
relation between mass and energy, (1.2.3), which depends only on the cen-
tral frequency, ν, and a relativistic part that relates the size of the shift to the
velocity, according to (1.2.4). It is through the difference in the Doppler
shifts that the momentum acquires nonlinear dependency upon the
velocity,

1
2
(ev̄/c − e−v̄/c) = sinh (v̄/c) = β√

(1 − β2)
, (1.2.5)

where v̄ is the hyperbolic measure of the velocity whose Euclidean measure
is v. Equation (1.2.5) also indicates that c is the absolute constant of velocity
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space. If we multiply (1.2.5) through by πc, it becomes Gauss’s expression
for the semi-perimeter of a non-Euclidean circle of radius v̄, and absolute
constant c, that he wrote in a letter to Schumacher in 1831 [cf. Eq. (9.11.24)].

Where is the mass dependence on velocity?

The Doppler shifts refer to a shift in frequency, the frequency is related
to an energy, the energy is related to mass; that is, the mass equivalent
of radiation. In fact, the attributed nonlinear dependence of mass on its
speed, (1.2.4), can be obtained without mentioning mass at all!

Poincaré was ever so close to developing a true theory of relativity,
but ultimately could not break loose of the classical bonds which held
him. It is even a greater tragedy that he could not bridge the gap between
his mathematical studies on non-Euclidean geometries and relativity that
could have unified his lifelong achievements.

1.3 Exclusion of Non-Euclidean Geometries from
Relativity

Neither Whittaker, nor Pais, gave any reference to the potential role that
non-Euclidean geometries could have played in relativity. Pais pays lit-
tle tribute to Hermann Minkowski other than saying that Einstein had a
change in heart; rather than considering the transcription of his theory into
tensorial form as ‘superfluous learnedness’ (überflüssige Gelehrsamkeit),
he later claimed it was essential in order to bridge the gap from his special
to general theories.

Minkowski, in his November 1907 address to the Göttingen Mathe-
matical Society, began with the words “The world in space and time is, in
a certain sense, a four-dimensional non-Euclidean manifold” [cf. p. 37]. The
invariance of the hyperboloid of space-time from the Lorentz transform was
identified as a pseudosphere of imaginary radius, or a surface of negative,
constant curvature. It is plain from Whittaker’s formulas that the Lorentz
transformation consists of a rotation through an imaginary angle.

Poincaré too viewed the Lorentz transformation as a rotation in four-
dimensional space-time about an imaginary angle and that the ratio of the
space to time transformations gave the relativistic law of velocity addition.
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But, he could not bring himself to identify the velocity as a line element in
Lobachevsky space.

Edwin Wilson, who was J. Willard Gibbs’s last doctoral student, and
Lewis [12] felt the need to introduce a non-Euclidean geometry for rota-
tions, but not for translations. They assumed, however, that Euclid’s fifth
postulate (the parallel postulate) held, and, therefore, excluded hyper-
bolic geometry from the outset, even though their space-time rotations are
through an imaginary angle. Had they realized that their non-Euclidean
geometry was hyperbolic they would have retracted the statement that
“Through any point on a given line one and only one parallel (non-
intersecting) line can be drawn.”

It would have also saved them the trouble of inventing a new geome-
try for the space-time manifold of relativity. They do, in fact, disagree with
Poincaré that

it is, however, inconsistent with the philosophic spirit of our time to draw a sharp
distinction between that which is real and that which is convenient, and it would
be dogmatic to assert that no discoveries of physics might render so convenient
as to be almost imperative the modification or extension of our present system of
geometry.

Neither their plea nor paper had a sequel.
In the last of his eight lectures, delivered at Columbia University in

1909, we listened to Planck’s animosity toward non-Euclidean geometries.
Although blown up, and completely out of proportion, Planck was making
a statement that he does not want any infringement on the special theory of
relativity by mathematicians. Where would this infringement come from?
From nowhere else than the Göttingen school of mathematicians, notably
Felix Klein.

The Hungarian Academy of Science established the Bolyai Prize in
mathematics in 1905. The commission was made up of two Hungarians
and two foreigners, Gaston Darboux and Klein. The contenders were none
other than Poincaré and Hilbert. Although the prize went to Poincaré, his
old friend Klein refused to present him with it citing ill health. According
to Leveugle [04] it would have meant that Klein had to publicly admit
Poincaré’s priority over Einstein to the principle of relativity, and the group
of transformations that has become known as the Lorentz group, a name
coined by Poincaré in honor of his old friend. This would not have been
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received well by the Göttingen school for not only did Hilbert come in
at second place, it would have been a debacle of all their efforts to retain
relativity as a German creation.

Arnold Sommerfeld, a former assistant to Klein, showed in 1909
that the famous addition theorem of velocities, to which Einstein’s
name was now attached, was identical to the double angle formula for
the hyperbolic tangent. The velocity parallelogram closes only at low
speeds. This was the first demonstration that hyperbolic geometry def-
initely had a role in relativity, and its Euclidean limit emerged at low
speeds.

Now Sommerfeld would surely have known that the hyperbolic tan-
gent is the straight line segment in Lobachevsky’s non-Euclidean geometry.
Acknowledgment of his former supervisor’s interest in relativity surfaced
in the revision of Pauli’s [58, Footnote 111] authoritative Mathematical Ency-
lopedia article on relativity where he wrote:

This connection with the Bolyai–Lobachevsky geometry can be briefly described
in the following way (this had not been noticed by Varičak): If one interprets
dx1, dx2, dx3, dx4 as homogeneous coordinates in a three-dimensional projective
space, then the invariance of the equation (dx1)2 + (dx2)2 + (dx3)2 − (dx4)2 = 0
amounts to introducing a Cayley system of measurement, based on a real conic
section. The rest follows from the well-known arguments of Klein.

Sommerfeld just could not resist rewriting the history of relativity. He
changed Minkowski’s opinion of the role Einstein had in formulating the
principle of relativity. Quite inappropriately he inserted a phrase praising
Einstein for having used the Michelson experiment to show that a state of
absolute rest, where the immobile aether would reside, has no effect on
physical phenomena [Pyenson 85]. He also exchanged the role of Einstein
as the clarifier with that as the originator of the principle of relativity.f

A much more earnest attempt to draw hyperbolic geometry into the
mainstream of relativity was made by Vladimir Varičak. Varičak says that

fAnd Sommerfeld’s revisions did not stop at relativity. Writing in the obituary col-
umn of the recently deceased Marion von Smolukowski, Sommerfeld lauds Einstein
for his audacious assault on the derivation of the coefficient of diffusion in Brow-
nian motion, “without stopping to bother about the details of the process.” Von
Laue, writing in his History of Physics clearly states that Smolukowski developed
a statistical theory of Brownian motion in 1904 “to which Einstein gave definitive
form (1905).”
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even before he heard Minkowski’s 1907 talk, he noticed the profound anal-
ogy between hyperbolic geometry and relativity. At low velocities, the laws
of mechanics reduce to those of Newton, just as Lobachevskian geome-
try reduces to that of Euclidean geometry when the radius of curvature
becomes very large. To Varičak, the Lorentz contraction appears as a defor-
mation of lengths, just as the line segment of Lobachevskian geometry is
bowed.

Taking the line element of the half-plane model of hyperbolic geom-
etry, Varičak says that it cannot be moved around without deformation.
Thus, he queries whether the Lorentz contraction can be understood as
an anisotropy of the (hyperbolic) space itself. Varičak also appreciates that
in relativity the velocity parallelogram does not close; hence, it does not
exist, and must be replaced by hyperbolic addition, which is the double
angle formula of the hyperbolic tangent. Relativity abandons the absolute,
but does introduce an absolute velocity, c; this corresponds to the absolute
constant in the Lobachevsky velocity space.

Owing to the fact that an inhabitant of the hyperbolic plane would
see no distortion to his rulers as he moves about because his rulers would
shrink or expand with him, Varičak questions the reality of the Lorentz
transform. To Varičak, the “contraction is, so to speak, only a psychological
and not a physical fact.” Although known non-Euclidean geometries were
not entertained by Einstein, Varičak’s formulation should have raised eye-
brows. But it did not. The only thing that it would do, by questioning the
reality of the space contraction, would be to cause confusion, and this pro-
voked a response by Einstein himself. But whose confusion did he abate?

Apart from optical applications referring to the Doppler shift and
aberration, which were already contained in Einstein’s 1905 paper in a
different form, Varičak produced no new physical relations or new insights
into old ones. These factors led to the demise of the hyperbolic approach
to relativity, as far as physicists were concerned.

However, there was an isolated incident in 1910, where Theodor
Kaluza [10] draws an analogy between a uniformly rotating disc and
Lobachevskian geometry. Kaluza writes the line element as

∫ √
1 + r2

1 ± r2

(
dϕ

dr

)2

dr, (*)
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which at constant radius becomes

∫
r2√

1 ± r2
dϕ. (**)

If Kaluza wants to show that the circumference of a hyperbolic circle is
greater than its Euclidean counterpart, he has to choose the negative sign
in expression (*), bring out the dr from under the square root, and remove
the square in the numerator of (**). Apart from these typos, and the fact that
the first factor in (*) had to be divided by (1 − r2)2, Kaluza was the first to
draw attention to the fact that the hyperbolic metric of constant curvature
describes exactly a uniformly rotating disc. The paper was stillborn.

Another unexplainable event is that Einstein entered into a mathe-
matical collaboration with his old friend, Marcel Grossmann, to develop
a Riemannian theory of general relativity. Grossmann was an expert in
non-Euclidean geometries; so why did he not set Einstein on the track of
looking at known non-Euclidean metrics instead of putting him on the
track of Riemannian geometry? Probably Einstein wanted the general the-
ory to reduce to Minkowski’s metric in the absence of gravity which meant
that the components of the metric tensor reduce to constants. But that
meant he was fixing the propagation of gravitational interactions at the
speed of light. Grossmann is, however, usually remembered for having
led Einstein astray in rejecting the Ricci tensor as the gravitational tensor
[Norton 84].

In order for it to reproduce correctly the curvature of ‘space-time,’ the
coefficients would have to be (nonlinear) functions of space, and maybe
even of time. According to Einstein the Riemannian metric should play
the role of the gravitational field. Curvature would be a manifestation of
the presence of mass–energy so that if he could find a curvature tensor,
comprising of the components of the metric tensor, then by setting it equal
to a putative energy–momentum tensor he could find the components of
the metric tensor, and thereby determine the line element.

Such an equation would combine time and space with energy and
momentum. The rest is history and has been too amply described by
historians of science. Since the metric has ten components, the search
was on for a curvature tensor with the same number of components.
The contraction of the Riemann–Christoffel tensor into the Ricci tensor,
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having ten components, seemed initially as a good bet to be set equal the
energy–momentum tensor. Setting the Ricci tensor equal to zero was made
a condition for the emptiness of space. It constitutes Einstein’s law of grav-
itation, and as Dirac [75] tells us

‘Empty’ here means that there is no matter present and no physical fields except
the gravitational field. [italics added] The gravitational field does not disturb the
emptiness. Other fields do.

So gravity can act where matter and radiation are not!
When the field is not empty, setting the Ricci tensor equal to the

energy–momentum tensor leads to inconsistencies insofar as energy–
momentum is not conserved. If the Ricci tensor vanishes then so do all
that is related to it, like the scalar, or total, curvature. Einstein found that if
he subtracted one-half the curvature-invariant from the Ricci tensor and set
it equal to the energy–momentum tensor, then energy–momentum would
be conserved.

The equipment needed to carry out the program involves, curvi-
linear coordinates, parallel displacement, Christoffel symbols, covariant
differentiation, Bianchi relations, the Ricci tensor and its contraction, plus
a knowledge of what the energy–momentum tensor is. The only outstand-
ing solution is known as the Schwarzschild metric, in which the metric is
constructed on solving the ‘outer’ and ‘inner’ solutions [cf. Secs. 9.10.3 and
9.10.4].All the known tests of general relativity are independent of the time-
component of the metric, except for the gravitational shift of spectral lines,
which is independent of the spatial component. The latter was predicted by
Einstein in 1911, prior to his general theory of relativity. However, it does
not follow from the Doppler shift so Einstein was either uncannily lucky, or
the true explanation lies elsewhere.

Viewed from a pseudo-Euclidean point of view, there is a clear
distinction between special and general relativity. Within the hyperbolic
framework, this separation between inertial and noninertial ones becomes
blurred. This is because the uniformly rotating disc is, as Stachel [89] claims,
the missing link to Einstein’s general theory. That the Beltrami metric
describes exactly the uniformly rotating disc, means that hyperbolic geom-
etry is also the framework for noninertial systems.

We have already seen Planck’s hostility to non-Euclidean geometries.
There was also Wilhelm Wien, Planck’s assistant editor of the Annalen, who
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insisted that relativity has “no direct point of contact with non-Euclidean
geometry,” and Arnold Sommerfeld who considered the reinterpretation
of relativity in terms of non-Euclidean geometry could “be hardly recom-
mended.” Authoritarianism carried the day and non-Euclidean geometry
was shelved for good. It is the purpose of this monograph to show that
non-Euclidean geometries make inroads into relativistic phenomena and
warrant our attention.
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