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Abstract Most smoothing procedures are via averaging. Pseudo-Poincaré in-
equalities give a basic Lp-norm control of such smoothing procedures in terms
of the gradient of the function involved. When available, pseudo-Poincaré in-
equalities are an efficient way to prove Sobolev type inequalities. We review
this technique and its applications in various geometric setups.

1 Introduction

This paper is concerned with the question of proving the Sobolev inequality

∀ f ∈ C∞c (M), ‖f‖q 6 S(M, p, q)‖∇f‖p (1.1)

when M = (M, g) is a Riemannian manifold, perhaps with boundary ∂M ,
and C∞c (M) is the space of smooth compactly supported functions on M (if
M is a manifold with boundary ∂M , then points on ∂M are interior points
in M and functions in Cc(M) do not have to vanish at such points). We say
that (M, g) is complete when M equipped with the Riemannian distance is
a complete metric space.

In (1.1), p, q ∈ [1,∞) and q > p. The norms ‖ · ‖p and ‖ · ‖q are computed
with respect to some fixed reference measure, perhaps the Riemannian mea-
sure dv on M or, more generally, a measure dµ on M of the form dµ = σdv,
where σ is a smooth positive function on M . We set V (x, r) = µ(B(x, r)),
where B(x, r) is the geodesic ball of center x ∈ M and radius r > 0. The
gradient ∇f of f ∈ C∞(M) at x is the tangent vector at x defined by
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gx(∇f(x), u) = df |x (u)

for any tangent vector u ∈ Tx. Its length |∇f | is given by |∇f |2 = g(∇f,∇f).
We will not be concerned here with the (interesting) problem of finding the

best constant S(M, p, q) but only with the validity of the Sobolev inequality
(1.1), for some constant S(M, p, q).

In Rn, equipped with the Lebesgue measure dx, (1.1) holds for any p ∈
[1, n) with q = np/(n − p). The two simplest contexts where the question
of the validity of (1.1) is meaningful is when M = Ω is a subset of Rn, or
when Rn is equipped with a measure µ(dx) = σ(x)dx. In the former case, it
is natural to relax our basic assumption and allow domains with nonsmooth
boundary. It then becomes important to pay more attention to the exact
domain of validity of (1.1) as approximation by functions that are smooth up
to the boundary may not be available (cf., for example, [13, 14]).

The fundamental importance of the inequality (1.1) in analysis and geom-
etry is well established. It is beautifully illustrated in the work of V. Maz’ya.
One of the fundamental references on Sobolev inequalities is Maz’ya’s treaty
“Sobolev Spaces” [13] which discuss (1.1) and its many variants in Rn and in
domains in Rn (cf. also [1, 3, 14] and the references therein). Maz’ya’s treaty
anticipates on many later works including [2]. More specialized works that
discuss (1.1) in the context of Riemannian manifolds and Lie groups include
[11, 19, 23] among many other possible references.

The aim of this article is to discuss a particular approach to (1.1) that is
based on the notion of pseudo-Poincaré inequality. This technique is elemen-
tary in nature and quite versatile. It seems it has its origin in [4, 7, 17, 18]
and was really emphasized first in [7, 18], and in [2]. To put things in some
perspective, recall that the most obvious approach to (1.1) is via some “rep-
resentation formula” that allows us to “recover” f from its gradient through
an integral transform. One is them led to study the mapping properties of
the integral transform in question.

However, this natural approach is not well suited to many interesting ge-
ometric setups because the needed properties of the relevant integral trans-
forms might be difficult to establish or might even not hold true. For instance,
its seems hard to use this approach to prove the following three (well-known)
fundamental results.

Theorem 1.1. Assume that (M, g) is a Riemannian manifold of dimension
n equipped with its Riemannian measure and which is of one of the following
three types:

1. A connected simply connected noncompact unimodular Lie group equipped
with a left-invariant Riemannian structure.

2. A complete simply connected Riemannian manifold without boundary with
nonpositive sectional curvature (i.e., a Cartan–Hadamard manifold).

3. A complete Riemannian manifold without boundary with nonnegative Ricci
curvature and maximal volume growth.
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Then for any p ∈ [1, n) the Sobolev inequality (1.1) holds on M with q =
np/(n− p) for some constant S(M, p, q) < ∞.

One remarkable thing about this theorem is the conflicting nature of the
curvature assumptions made in the different cases. Connected Lie groups
almost always have curvature that varies in sign, whereas the second and
third cases we make opposite curvature assumptions. Not surprisingly, the
original proofs of these different results have rather distinct flavors.

The result concerning unimodular Lie groups is due to Varopoulos and
more is true in this case (cf. [22, 23]).

The result concerning Cartan–Hadamard manifolds is a consequence of a
more general result due to Michael and Simon [15] and Hoffmann and Spruck
[12]. A more direct prove was given by Croke [9] (cf. also [11, Section 8.1 and
8.2] for a discussion and further references).

The result concerning manifolds with nonnegative Ricci curvature and
maximal volume growth (i.e., V (x, r) > crn for some c > 0 and all x ∈
M, r > 0) was first obtained as a consequence of the Li-Yau heat kernel
estimate using the line of reasoning in [22].

One of the aims of this paper is to describe proofs of these three results
that are based on a common unifying idea, namely, the use of what we call
pseudo-Poincaré inequalities. Our focus will be on how to prove the desired
pseudo-Poincaré inequalities in the different contexts covered by this theorem.
For relevant background on geodesic coordinates and Riemannian geometry
see [5, 6, 10].

2 Sobolev Inequality and Volume Growth

There are many necessary conditions for (1.1) to hold and some are discussed
in Maz’ya’s treaty [13] in the context of Euclidean domains. For instance, if
(1.1) holds for some fixed p = p0 ∈ [1,∞) and q = q0 > p0 and we define m
by 1/q0 = 1/p0 − 1/m, then (1.1) also holds for all p ∈ [p0,m) with q given
by 1/q = 1/p − 1/m (this easily follows by applying the p0, q0 inequality to
|f |α with a properly chosen α > 1 and using the Hölder inequality). More
importantly to us here is the following result (cf., for example, [2] or [19,
Corollary 3.2.8]).

Theorem 2.1. Let (M, g) be a complete Riemannian manifold equipped with
a measure dµ = σdv, 0 < σ ∈ C∞(M). Assume that (1.1) holds for some
1 6 p < q < ∞ and set 1/q = 1/p− 1/m. Then for any r ∈ (m,∞) and any
bounded open set U ⊂ M

∀ f ∈ C∞c (U), ‖f‖∞ 6 Crµ(U)1/m−1/r‖∇f‖r. (2.1)
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Corollary 2.1. If the complete Riemannian manifold (M, g) equipped with
a measure dµ = σdv satisfies (1.1) for some 1 6 p < q < ∞, then

inf{s−mV (x, s) : x ∈ M, s > 0} > 0

with 1/q = 1/p− 1/m.

Proof. Fix r > m and apply (2.1) to the function

φx,s(y) = y 7→ (s− ρ(x, y))+ = max{(s− ρ(x, y), 0},

where ρ is the Riemannian distance on (M, g). Because (M,ρ) is complete,
this function is compactly supported and can be approximated by smooth
compactly supported functions in the norm ‖f‖∞ + ‖∇f‖r, justifying the
use of (2.1). Moreover, |∇φx,s| 6 1 a.e. so that ‖∇φx,s‖r 6 V (x, r)1/r. This
yields s 6 CrV (x, s)1/m−1/rV (x, s)1/r = CrV (x, s)1/m as desired. ut

Remark 2.1. Let Ω be an unbounded Euclidean domain.

(a) If we assume that (1.1) holds but only for all traces f |Ω of functions f ∈
C∞c (Rn), then we can conclude that (2.1) holds for such functions. Applying
(2.1) to ψx,s(y) = (s− ‖x− y‖)+, x ∈ Ω, s > 0, yields

|{z ∈ Ω : ‖x− z‖ < s}| > csm.

(b) If, instead, we consider the intrinsic geodesic distance ρ = ρΩ in Ω and
assume that (1.1) holds for all ρ-Lipschitz functions vanishing outside some ρ-
ball, then the same argument, properly adapted, yields V (x, s) > csm, where
V (x, s) is the Lebesgue measure of the ρ-ball of radius s around x in Ω.

For domains with rough boundary, the hypotheses made respectively in
(a) and (b) may be very different.

3 The Pseudo-Poincaré Approach to Sobolev
Inequalities

Our aim is to illustrate the following result which provide one of the most
elementary and versatile ways to prove a Sobolev inequality in a variety of
contexts (cf., for example, [2, Theorem 9.1]). The two main hypotheses in
the following statement concern a family of linear operators Ar acting, say,
on smooth compactly supported functions. The first hypothesis captures the
idea that Ar is smoothing. The sup-norm of Arf is controlled in terms of the
Lp-norm of f only and tends to 0 as r tends to infinity. The second hypothesis
implies, in particular, that Arf is close to f if |∇f | is in Lp and r is small.
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Theorem 3.1. Fix m, p > 1. Assume that for each r > 0 there is a linear
map Ar : C∞c (M) → L∞(M) such that

• ∀ f ∈ C∞c (M), r > 0, ‖Arf‖∞ 6 C1r
−m/p‖f‖p.

• ∀ f ∈ C∞c (M), r > 0, ‖f −Arf‖p 6 C2r‖∇f‖p.

Then, if p ∈ [1, m) and q = mp/(m − p), there exists a finite constant
S(M, p, q) = C(p, q)C2C

1/m
1 such that the Sobolev inequality (1.1) holds

on M .

Outline of the proof. The proof is entirely elementary and is given in [2]. For
illustrative purpose and completeness, we explain the first step. Consider the
distribution function of |f |, F (s) = µ({x : |f(x)| > s}). Then

F (s) 6 µ({|f −Arf | > s/2}) + µ({|Arf | > s/2}).

By hypothesis, if s = 2C1r
−m/p‖f‖p, then µ({|Arf | > s/2}) = 0 and

F (s) 6 µ({|f −Arf | > s/2}) 6 2pCp
2rps−p‖∇f‖p

p.

This gives

sp(1+1/m)F (s) 6 2p(1+1/m)C
p/m
1 Cp

2‖∇f‖p
p‖f‖p/m

p .

This is a weak form of the desired Sobolev inequality (1.1). But, as is already
apparent in [13], such a weak form of (1.1) actually imply (1.1) (cf. also
[2, 19]). ut

Remark 3.1. When p = 1 and µ = v is the Riemannian volume, we get

s1+1/mv({|f | > s}) 6 21+1/mC
1/m
1 C2‖∇f‖1‖f‖1/m

1 .

For any bounded open set Ω with smooth boundary ∂Ω we can find a
sequence of functions fn ∈ C∞c (M) such that fn → 1Ωn and ‖∇fn‖1 →
vn−1(∂Ω). This yields the isoperimetric inequality

v(Ω)1−1/m 6 21+1/mC
1/m
1 C2vn−1(∂Ω).

Of course, as was observed long ago by Maz’ya and others, the classical co-
area formula and the above inequality imply

∀ f ∈ C∞c (M), ‖f‖m/(m−1) 6 21+1/mC
1/m
1 C2‖∇f‖1.

There are many situations where one does not expect (1.1) to hold, but
where one of the local versions

∀ f ∈ C∞c (M), ‖f‖q 6 S(M, p, q)(‖∇f‖p + ‖f‖p), (3.1)
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or (b indicates an open relatively compact inclusion)

∀Ω b M, ∀ f ∈ C∞c (Ω), ‖f‖q 6 S(Ω, p, q)(‖∇f‖p + ‖f‖p) (3.2)

may hold. This is handled by the following local version of Theorem 3.1 (cf.
[2] and [19, Section 3.3.2]).

Theorem 3.2. Fix an open subset Ω ⊂ M . Assume that for each r ∈ (0, R)
there is a linear map Ar : C∞c (Ω) → L∞(M) such that

• ∀ f ∈ C∞c (Ω), r ∈ (0, R), ‖Arf‖∞ 6 C1r
−m/p‖f‖p.

• ∀ f ∈ C∞c (Ω), r ∈ (0, R), ‖f −Arf‖p 6 C2r‖∇f‖p.

Then, if p ∈ [1,m) and q = mp/(m − p), there exists a finite constant S =
S(p, q) such that

∀ f ∈ C∞c (Ω), ‖f‖q 6 SC
1/m
1 (C2‖∇f‖p + R−1‖f‖p). (3.3)

Another useful version is as follows. For any open set Ω we let W 1,p(Ω) be
the space of those functions in Lp(Ω) whose first order partial derivatives in
the sense of distributions (in any local chart) can be represented by a locally
integrable function and such that

∫

Ω

|∇f |pdv < ∞.

We write ‖f‖Ω,p for the Lp-norm of f over Ω. Note that C∞(Ω) ∩W 1,p(Ω)
is dense in W 1,p(Ω) for 1 6 p < ∞ (cf., for example, [1, 3, 13]).

Theorem 3.3. Fix an open subset Ω ⊂ M . Assume that for each r ∈ (0, R)
there is a linear map Ar : C∞(Ω) ∩W 1,p(Ω) → L∞(M) such that

• ∀ f ∈ C∞(Ω) ∩W 1,p(Ω), r ∈ (0, R), ‖Arf‖∞ 6 C1r
−m/p‖f‖p.

• ∀ f ∈ C∞(Ω) ∩W 1,p(Ω), r ∈ (0, R), ‖f −Arf‖p 6 C2r‖∇f‖p.

Then, if p ∈ [1,m) and q = mp/(m − p), there exists a finite constant S =
S(p, q) such that

∀ f ∈ W 1,p(Ω), ‖f‖q 6 SC
1/m
1 (C2‖∇f‖p + R−1‖f‖p). (3.4)

4 Pseudo-Poincaré Inequalities

The term Poincaré inequality (say, with respect to a bounded domain Ω ⊂
M) is used with at least two distinct meanings:

• The Neumann type Lp-Poincaré inequality for a bounded domain Ω ⊂ M
is the inequality



Pseudo-Poincaré Inequalities 355

∀ f ∈ W 1,p(Ω), inf
ξ∈R

∫

Ω

|f − ξ|pdv 6 PN (Ω)
∫

Ω

|∇f |pdv.

• The Dirichlet type Lp-Poincaré inequality for a bounded domain Ω ⊂ M
is the inequality

∀ f ∈ C∞c (Ω),
∫

Ω

|f |pdv 6 PD(Ω)
∫

Ω

|∇f |pdv.

When p = 2 and the boundary is smooth, the first (respectively, the second)
inequality is equivalent to the statement that the lowest nonzero eigenvalue
λN (Ω) (respectively, λD(Ω)) of the Laplacian with the Neumann boundary
condition (respectively, the Dirichlet boundary condition) is bounded below
by 1/PN (Ω) (respectively, 1/PD(Ω)). Note that if M = Sn is the unit sphere
in Rn+1 and Ω = B(o, r), r < 2π, is a geodesic ball, then PN (Ω) → 1/(n+1)
and PD(Ω) →∞ as r tends to 2π.

Here, we will use the term Poincaré inequality for the collection of the
Neumann type Poincaré inequalities on metric balls. More precisely, we say
that the Lp-Poincaré inequality holds on the manifold M if there exists P ∈
(0,∞) such that

∀B = B(x, r), ∀ f ∈ W 1,p(B), inf
ξ∈R

∫

B

|f − ξ|pdv 6 Prp

∫

B

|∇f |pdv. (4.1)

The notion of pseudo-Poincaré inequality was introduced in [7, 18] to de-
scribe the inequality

∀ f ∈ C∞c (M), ‖f − fr‖p 6 Cr‖∇f‖p, (4.2)

where
fr(x) = V (x, r)−1

∫

B(x,r)

fdv.

Although this looks like a version of the previous Poincaré inequality, it is
quite different in several respects. The most important difference is the global
nature of each of the members of the pseudo-Poincaré inequality family: in
(4.2) all integrals are over the whole space.

We say the doubling volume condition holds on M if there exists D ∈
(0,∞) such that

∀x ∈ M, r > 0, V (x, 2r) 6 DV (x, r). (4.3)

The only known strong relation between (4.1) and (4.2) is the following
result from [8, 18].

Theorem 4.1. If a complete manifold M equipped with a measure dµ =
σdv satisfies the conjunction of (4.3) and (4.1), then the pseudo-Poincaré
inequality (4.2) holds on M .
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The most compelling reason for introducing the notion of pseudo-Poincaré
inequality is that unimodular Lie groups always satisfy (4.2) with C = 1 (cf.
[22] and the development in [7]). The proof is extremely simple and the result
slightly stronger.

Theorem 4.2. Let G be a connected unimodular Lie group equipped with a
left-invariant Riemannian distance and Haar measure. For any group element
y at distance r(y) from the identity element e

∀ f ∈ Cc(G), ‖f − fy‖p 6 r(y)‖∇f‖p,

where fy(x) = f(xy).

Proof. Indeed, let γy : [0, r(y)] → G be a (unit speed) geodesic joining e to
y. Thus,

|f(x)− f(xy)|p 6 r(y)p−1

∫ r(y)

0

|∇f(xγy(s))|pds.

Integrating over x ∈ G yields the desired result. ut
With this simple observation and Theorem 3.1, we immediately find that

any simply connected noncompact unimodular Lie group M of dimension n
satisfies the Sobolev inequality

‖f‖np/(n−p) 6 S(M, p)‖∇f‖p.

This is because the volume growth function V (x, r) = V (r) is always faster
than crn (cf. [23] and the references therein). In fact, for r ∈ (0, 1), we
obviously have V (r) ' rn and, for r > 1, either V (r) ' rN for some integer
N > n or V (r) grows exponentially fast. This line of reasoning yields the
following improved result (due to Varopoulos [22], with a different proof).

Theorem 4.3. Let G be a connected unimodular Lie group equipped with a
left-invariant Riemannian structure and Haar measure. If the volume V (r)
of the balls of radius r in G satisfies V (r) > crm for some m > 0 and all
r > 0, then (1.1) holds on G for all p ∈ [1,m] and q = mp/(m− p).

In this article, we think of a pseudo-Poincaré inequality as an inequality
of the more general form

∀ f ∈ C∞c (M), ‖f −Arf‖p 6 Cr‖∇f‖p, (4.4)

where Ar : C∞c (M) → L∞(M) is a linear operator. It is indeed very useful to
replace the ball averages

fr = V (x, r)−1

∫

B(x,r)

fdµ

by other types of averaging procedures. One interesting case is the following
instance.
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Theorem 4.4. Let (M, g) be a Riemannian manifold, and let ∆ be the
Friedrichs extension of the Laplacian defined on smooth compactly supported
functions on M . Let Ht = et∆ be the associated semigroup of selfadjoint
operator on L2(M,dv) (the minimal heat semigroup on M). Then

∀ f ∈ C∞c (M), ‖f −Htf‖2 6
√

t‖∇f‖2. (4.5)

Consequently, if there are constants C ∈ (0,∞), T ∈ (0,∞] and m > 2 such
that

∀ t ∈ (0, T ), ‖Htf‖∞ 6 Ct−m/4‖f‖2, (4.6)

then there exists a constant S = S(C, m) ∈ (0,∞) such that the Sobolev
inequality

∀ f ∈ C∞c (M), ‖f‖2m/(m−2) 6 S(‖∇f‖2 + T−1‖f‖2) (4.7)

holds on M .

Proof. In order to apply Theorem 3.2 with Ar = Hr2 , it suffices to prove
(4.5). But

Htf − f =
∫ t

0

∂sHsfds

and

〈∂sHsf, Hτf〉 = 〈∆Hsf, Hτf〉 = −‖H(s+τ)/2(−∆)1/2f‖22 > −‖∇f‖22.

Hence ‖Htf − f‖22 6 t‖∇f‖22 as desired. ut
Remark 4.1. One can show that (4.7) and (4.6) are, in fact, equivalent prop-
erties. This very important result was first proved by Varopoulos [21]. This
equivalence holds in a much greater generality (cf. also [23]). When m ∈ (0, 2),
one can replace (4.7) by the Nash inequality

∀ f ∈ C∞c (M), ‖f‖2(1+2/m)
2 6 N(‖∇f‖2 + T−1‖f‖2)‖f‖4/m

1

which is equivalent to (4.6) (for any fixed m > 2). See, for example, [2, 4, 19,
23] and the references therein.

5 Pseudo-Poincaré Inequalities and the Liouville
Measure

Given a complete Riemannian manifold M = (M, g) of dimension n (without
boundary), we let TxM be the tangent space at x, Sx ⊂ TxM the unit
sphere, and SM the unit tangent bundle equipped with the Liouville measure
defined by
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